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A fast algorithm for ring artefact reduction in high-resolution micro-

tomography with synchrotron radiation is presented. The new method is a

generalization of the one proposed by Titarenko and collaborators, with a

complete sinogram restoration prior to reconstruction with classical algorithms.

The generalized algorithm can be performed in linear time and is easy to

implement. Compared with the original approach, with an explicit solution, this

approach is fast through the use of the conjugate gradient method. Also, low/

high-resolution sinograms can be restored using higher/lower-order derivatives

of the projections. Using different order for the derivative is an advantage over

the classical Titarenko’s approach. Several numerical results using the proposed

method are provided, supporting our claims.
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1. Introduction

Micro-computed tomography essentially relies on the inver-

sion of the Radon transform, which is a well known operator

in inverse problems, especially in image reconstruction. Typi-

cally, a three-dimensional volume must be restored from a

stacking of two-dimensional reconstructed images, where the

ith feature image satisfies the following principle,

input

image

����� sinogram

s 2 V
�!

output

image

����� feature

f 2 U
: ð1Þ

The most established method in tomography consists of

converting X-rays into visible light with a scintillator and

projecting onto a CCD using standard microscope optics.

These projections can be used as input for computerized

tomographic reconstruction. A common source of degradation

in tomographic reconstruction is through the superimposition

of so-called ‘ring artifacts’. There are several known reasons

for the generation of ring artifacts in reconstructed images.

Primarily, these are due to defective pixels on the CCD

detector or non-linear response of individual detector

elements. Defective pixels typically result in a sharp single-

pixel artifact unless several consecutive pixels are flawed.

Larger artifacts are generally a result of imperfect or dusty

scintillator crystals, which can easily exceed a single pixel.

Other causes have recently been reported, such as mono-

chromator vibration (see Titarenko et al., 2010a) or thermal

processes generating additional electrons in the CCD (see

Titarenko et al., 2009). For 180� rotation of the sample, semi-

circle artifacts are generated; only for 360� scans will the full

ring artifact be generated. As such, these imperfections are

independent of the projection angle and will appear uniformly

for all angles in ring format, superimposed on the sample

image. Regardless of the source of these artifacts, the resulting

degradation of the image quality, obscuring relevant details, is

detrimental to the computed tomography process.

In order to illustrate the artefacts of the reconstructed

image using the analytical inversion with filtered back-

projection algorithm, we consider the example of Fig. 1, where

a human tooth was introduced to a standard tomography using

the Medipix detector. From the corrupted sinograms we

clearly see the ring artifacts in the reconstructed image. Some

authors in the literature used to filter the reconstructed image

transforming to polar coordinates in order to identify the ring

structures (see Sijbers & Postnov, 2004, and references

therein). Indeed, this is because the polar transformation

maps circles to straight lines, which can be detected using an

appropriate filter. Converting from polar coordinates to

Cartesian and vice versa can be done with a computational

cost of Oðn2Þ where n is the size of the feature image.

Unfortunately, changing to polar/Cartesian coordinates

introduces additional noise in the reconstructed image. Polar

transformation is a fast algorithm compared with the average

computational cost of a reconstructed slice, which is

Oðn2 log nÞ (see Andersson, 2005). The main disadvantage of

polar/Cartesian algorithms is the need to filter the high

frequencies with several thresholds on the cut-off frequency,

depending on some prior knowledge of the sample under

investigation. Another technique for removal of stripe arte-

facts in the sinogram is the Fourier–Wavelet approach,

presented by Münch et al. (2009). It is a fast technique, with

linear computational cost OðnÞ based on a discrete wavelet
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decomposition of the sinogram. This is a more sophisticated

technique which is able to remove horizontal and vertical

stripes in many imaging problems.

A fast tomographic experiment, as carried out at the

Brazilian Synchrotron Light Laboratory, goes through the

following scheme,

sinogram

of each slice
�!
ðAÞ filter

of each slice
�!
ðBÞ reconstruct

each slice

Step (B) is usually done with a fast reconstruction algorithm,

specially designed to handle a huge tomographic data set. In

our case we use only analytical reconstruction through ‘pyhst’,

a fast hierarchical inversion algorithm implemented for

graphics processing unit (gpu) (see Mirone et al., 2013). Step

(A) is the main contribution of this manuscript, where a fast

filtering of each sinogram has to be carried out, prior to

reconstruction.

Titarenko et al. (2009, 2010a,b,c) introduced a fast algorithm

for filtering the sinogram prior to reconstruction, based on the

optimality conditions of a quadratic functional. Their method

is direct and with a linear computational cost, i.e. OðnÞ. This

has a great impact on building fast three-dimensional volumes

for the tomographic data set. Therefore, even with more

sophisticated inversion schemes, such as the expectation

maximization algorithm (Helou et al., 2014; De Pierro, 1995)

or recent algorithms based on compressed sensing techniques

(Candes et al., 2006), the stacking process remains almost

unaffected.

In this manuscript we present a generalization of Titar-

enko’s algorithm, still preserving the computational linear

cost. Our method preserves the sinogram structure also

introducing some radial smoothness on each projection, a

similar approach also presented in their work (Titarenko et al.,

2010c). For real tomographic data, measured in the Brazilian

Synchrotron Light Laboratory, our method is competitive with

Titarenko’s original approach.

The manuscript is organized as follows. x2 presents the

theoretical fundamentation of Titarenko’s original work

further generalized in x3 and x4. Some numerical experiments

are presented in x5, discussion in x6, and x7 gives the final

conclusions.

2. Generalized variational approach

Theoretically, the pair fs; f g from equation (1) is related

through the Radon transform (Deans, 1983), given below,

sðt; �Þ � R f ðt; �Þ ¼
R
R

2

f ðxÞ � t � x � n�
� �

dx; ð2Þ

where n� = ðcos �; sin �Þ stands for the direction of the X-ray

path, x corresponds to a pixel of the feature image f 2 U, and

y = ðt; �Þ corresponds to a pixel of the sinogram s 2 V. Typi-

cally, U and V are inner product spaces of square integrable

functions, e.g. L2 or a Schwarz space. It can be shown that the

linear operator R: U ! V is invertible for an appropriate

choice of U and V. A complete discussion about the action of

R can be found by Natterer & Wubbeling (2001).

This means that, if we are given s =Rf , the function f could

be recovered using f = R�1s with an appropriate formula

for R�1. In practice, y lies in a discrete mesh of points

ft1; t2; . . . ; tRg � f�1; �2; . . . ; �Ng 2 N, where N and R are

assumed to be large, e.g. N ’ 1000 and R ’ 3000. Therefore, a

good estimate of the solution f could be found using the

classical filtered backprojection algorithm, which is fast

(mainly due to fast Fourier transforms) and approximates the

inverse operator R�1 (Gabor, 2009).

The approach of Titarenko et al. (2009, 2010a,b,c) searches

for a regularized sinogram that does not contain horizontal

stripes. These horizontal stripes are the main source for ring

artefacts in the image reconstruction. A regularized sinogram

is obtained through the minimization of an appropriate

Tikhonov functional (Tikhonov 1963a,b; Yagola et al., 2002).

A brief mathematical description of Titarenko’s method is

given in Appendix A. In this case, we are looking for a

regularized sinogram, the solution of

min
s2V

VðsÞ ¼
1

2

Z
N

@ttsð Þ
2
þ @��s
� �2

h i
dt d� þ

�

2
ks�mk2: ð3Þ

This was also explored in the work of Twomey (1963) for the

solution of integral equations of the first kind. The solution is

presented in Appendix A. For completeness, the pseudo-code

of the original Titarenko’s ring suppression algorithm is given

below,
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Figure 1
Reconstruction of the feature image f, using a corrupted sinogram sðt; �Þ.
(a) f in Cartesian coordinates. (b) f in polar coordinates. Transforming the
reconstructed image to polar coordinates, in order to remove vertical
stripes, was a popular approach for removing ring artefacts. See Sijbers &
Postnov (2004).



Titarenko’s Algorithm (TA):

Input: Corrupted sinogram M 2 RR�N

[1] Set eN ¼ ð1Þ 2 R
N and � 2 R

[2] Set matrix T1 as in (42)

[3] Define explicitly A � ðT1 þ �IdÞ
�1; (see Titarenko et al.

(2010a)

[4] Define m ¼ ð1=NÞMeN

[5] Compute n� ¼ �AT1m

Output: Restored sinogram

for ði; jÞ 2 NR�N

Sj;i ¼ Mj;i þ n�j
end

2
4 ð4Þ

3. Generalized Titarenko’s algorithm without angle
dependency

Assuming that the deviation from s to m does not depend on

the angle, i.e.

sðyÞ ¼ mðyÞ þ nðtÞ; ð5Þ

and changing to the discrete case, we are now searching for n�

such that

n� ¼ argmin
n2RR

VðnÞ ¼
1

2

X
i; j

F2 Mj;i þ nj

� �2
þ�

N

2
knk2

( )
; ð6Þ

where F2 is a second-order finite difference operator given by

F2½Pj;i	 ¼ Pj�1;i � 2Pj;i þ Pjþ1;i: ð7Þ

Since V is quadratic, solving rVðn�Þ = 0 guarantees a solution

of (6). To make the calculations easier, let VðnÞ = DðnÞ + BðnÞ,

with D related to the finite difference operator. Denoting Mi

as the ith column of M 2 RR�N, a straightforward calculation

gives us

rDðnÞ ¼
P

i

T2½Mi þ n	; rBðnÞ ¼ �Nn; ð8Þ

where T2 is a pentadiagonal matrix,

T2: F ¼

1 �2 1 0 . . . 0 0 0

�2 5 �4 1 . . . 0 0 0

1 �4 6 �4 . . . 0 0 0

..

. . .
. ..

.

0 0 0 0 . . . 6 �4 1

0 0 0 0 . . . �4 5 �2

0 0 0 0 . . . 1 �2 1

0
BBBBBBBB@

1
CCCCCCCCA

R�2�R

:

ð9Þ

Therefore, the optimality criteria gives us the noise vector n�

in the same fashion as in (40) (see Appendix A),

rVðn�Þ ¼ 0) T2

P
i Mi

� �
þ N T2n� þ �Nn� ¼ 0

) ðT2 þ �IdÞn
� ¼ �T2m; ð10Þ

with m the average projection, as defined in (41).

3.1. Further generalizations

It is a well known fact, especially in discrete differential

equations, that finite difference operators are closely related

to tridiagonal or pentadiagonal matrices. The structure of the

matrix depends on the type of approximation used for the

associated derivatives. In the present case, we are also

approximating derivatives and we have exactly the same

problem. The finite difference operator F1 used by Titarenko

et al. (2010a,c) (see Appendix A) was easily expanded to a

finite difference operator F2 when minimizing (3). Of course,

this can be expanded even more.

Considering only the discrete case, it is easy to realise that

F½Pj;i	 ¼ fT
j Pi; Pi 2 R

R
ð11Þ

is the general form of the finite difference operator applied to

the ith column of matrix P, and f j is the vector associated with

the linear functional F, i.e. f j is the jth row of a matrix F. In the

case of F1 and F2 we have the following matrices,

T1: F ¼

1 �1 0 . . . 0 0

0 1 �1 . . . 0 0

..

. . .
. ..

.

0 0 0 . . . �1 1

0
BB@

1
CCA

R�1�R

ð12Þ

and

T2: F ¼

1 �2 1 0 . . . 0 0 0

0 1 �2 1 . . . 0 0 0

..

. . .
. ..

.

0 0 0 0 . . . 1 �2 1

0
BB@

1
CCA

R�2�R

: ð13Þ

The number of rows of matrix F strongly depends on the

operator F; as a rule, the offset from the main diagonal indi-

cates the number of rows of F. As a consequence, one can

easily verify that matrices T1 and T2 satisfy T1 = FTF and T2 =

FTF.

Inspired by (3), (37) and (11), we want to solve the

following generalized optimization problem,

n� ¼ argmin
n2RR

VðnÞ ¼
1

2

XN

i¼1

XR

j¼1

fT
j ðMi þ nÞ

� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DðnÞ

þ �
N

2
knk2|fflfflfflfflffl{zfflfflfflfflffl}

BðnÞ

8>>>><
>>>>:

9>>>>=
>>>>;
:

ð14Þ

Using the same notation as in (8), and letting Pi � Mi þ n, it is

not difficult to show that

@D

@nj

¼
P

i

ðfT
1 PiÞf j;1 þ . . .þ ðfT

RPiÞf j;R ð15Þ

¼
P

i

FT
j

fT
1 Pi

..

.

fT
RPi

0
BB@

1
CCA ¼P

i

FT
j FPi ð16Þ

¼ FT
j F
P

i

Pi ¼ FT
j F
P

i

Mi þ n
� �

ð17Þ

¼ N FT
j F½mþ n	 ð18Þ
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with Fj the jth row of F. From (18) and rBðnÞ = �Nn, we must

have

rVðn�Þ ¼ 0) FTFðmþ n�Þ þ �n� ¼ 0

) FTFþ �Id

� �
n� ¼ �FTF m: ð19Þ

We refer to equation (19) as a generalization of Titarenko’s

algorithm, clearly including case (40) and (10). We can now

choose a whole family of finite difference operators in order to

build a ring suppression algorithm. The generalized approach

is given below, where 
 stands for the Kronecker product

(Horn & Johnson, 1985).

Generalized Titarenko’s Algorithm (GTA):

Input: Corrupted sinogram M 2 RR�N

[1] Set eN ¼ ð1Þ 2 R
N and � 2 R

[2] Set finite difference vector/matrix fh; Fg

[3] Define matrix A ¼ FTFþ �Id

[4] Define m ¼ ð1=NÞMeN

[5] Solve An� ¼ �FTF m

Output: Restored sinogram as in (4)

S ¼ Mþ n� 
 eT
N: ð20Þ

3.2. Finite difference coefficients

We remark that matrix F acting on the operator F is a

convolution matrix based on the kernel h. In fact, from (41) we

have h = ð1;�1Þ 2 R2 and h = ð1;�2; 1Þ 2 R3 in (7). From

Bengt (1988) and Mahesh (1998) we have a wide family of

backward and forward finite difference coefficients, with

different order of accuracy. Some coefficients are depicted in

Table 1. The kernel vector is denoted hkj, with k standing for

the order of derivative and j for the corresponding accuracy.

3.3. Solving the optimality conditions (19)

We want to solve (12) in order to complete step [5] in the

Generalized algorithm GTA. Taking F as in (12), linear system

(19) reduces to (40), which has analytical solution

n� ¼ FTFþ �Id

� ��1
�FTF m
� �

ð21Þ

where ðFTFþ �IdÞ
�1 was explicitly given by Titarenko et al.

(2010a). In the general case, a similar approach is not trivial.

Huckle (1994) presents a Fourier-strategy for solving tridia-

gonal linear systems arising from elliptic partial differential

equations. Although we are not restricted to partial differ-

ential equations, the matrix inversion presented in the original

work of Titarenko et al. is highly connected to the work of

Huckle.

It is easy to observe that matrix F is rank deficient, i.e.

rankðFÞ = R� r, where rþ 1 is the length of the Kernel vector

h, as presented in Table 1. For instance, in (40), rankðTÞ =

R� 1 whereas rankðTÞ = R� 2 in (10). The relaxation para-

meter � ensures that rankðTþ �IdÞ = R so that VðnÞ attains a

minimum.

Let us denote A = FTFþ �Id and f = �T m. We propose

a fast solution of An = f through the use of the conjugate

gradient method (CGM). This is possible since A is a

symmetric and positive definite matrix.1 The CGM iterations

(see Bazaraa et al., 2007) are particularly interesting for this

linear system since A is a convolution matrix. Indeed, the

CGM strongly depends on matrix-vector product Au, for some

u, which is computed using fast Fourier transforms. In fact,

An ¼ FTFnþ �n ¼ ðn ? hÞ ? hþ �n; ð22Þ

where h is the convolution kernel and ? is a symbol for the

circular convolution.

3.4. Computational complexity

The solution of (19) for Titarenko’s case, i.e. h = ð1;�1Þ (see

Table 1), could be computed really fast using a tridiagonal

matrix algorithm (TDMA) (see Thomas, 1949). The compu-

tational complexity of TDMA is OðRÞ. If the analytical inverse

of A is computed previously, we have to perform the matrix-

vector product for each slice, which has complexity OðR2Þ. This

is not the best programming choice, and it is preferable to use

TDMA per iteration. A generic pseudocode for the three-

dimensional reconstruction, using Titarenko’s method, is

given by

½3D	 :

� for each slice½k	; do :

ðaÞ Solve : An ¼ f ) OðRÞ

ðbÞ Update : S ¼ Mþ n
 eT
N ) OðR2Þ

ðcÞ Fast reconstruction : ik ¼ P½S	 ) OðR2 log RÞ

� Stack fikg

8>>>><
>>>>:

For the generalized case, we still have complexity OðRÞ for

step (a), using the conjugate gradient method. Therefore, the

fast reconstruction strategy remains unnaltered. Operator P

stands for the analytical inversion with filtered backprojection,

or an iterative strategy.

Fig. 2(a) depicts the CPU time for each slice, using algo-

rithms TA and GTA in a high-level programming language

like Python. The reconstructions for this particular example

are presented in more details in x5. Even with an analytical

formulation for the inverse matrix A = ðFTFþ �IÞ in Titar-

enko’s original approach, the CPU time is higher if compared

with the solution of An = f through the CGM. Indeed, A is a

symmetric sparse band matrix, and the iterations of CGM

research papers

1336 E. X. Miqueles et al. � Generalized Titarenko’s algorithm J. Synchrotron Rad. (2014). 21, 1333–1346

Table 1
Finite difference coefficients to compute matrix F; see text for details.

Derivative Accuracy Kernel

@t 1 h1;1 = (�1, 1)
2 h1;2 = (�3/2, 2, �1/2)
3 h1;3 = (�11/6, 3, �3/2, 1/3)
6 h1;6 = (�49/20, 6, �15/2, 20/3, �15/4, 6/5, �1/6)

@tt 1 h2;1 = (1, �2, 1)
2 h2;2 = (2, �5, 4, �1)
6 h2;6 = (469/90, �223/10, 879/20, �949/18, 41,

�201/10, 1019/180, �7/10)
@ttt 1 h3;1 = (�1, 3, �3, 1)

5 h3;5 = (�967/120, 638/15, �3929/40, 389/3,
�2545/24, 268/5, �1849/120, 29/15)

1 Indeed, for all 0 6¼ u 2 RR we have uT Au = kFuk2
þ �kuk2 > 0.



converge in at most R steps, where R is the number of rays in

the sinogram. In fact, for a particular example with R = 2048,

Fig. 2(b) shows the number of iterations for the convergence

of the CGM using vector kernal h1;2 and h2;2 for the gener-

alized Titarenko’s algorithm. Even with TA computing just

once the dense matrix A�1, a matrix-product A�1f has to be

performed, for each slice, which has a quadratic computational

cost. Using CGM is a more efficient strategy since the matrix-

product An is computed through convolution.

3.5. Reduction by blocks

The generalized algorithm (19) could be easily implemented

by blocks of columns. This is important whenever the blank

scan (the flat field) is corrected in between b 2 N projections.

Also, such a strategy could be used to remove artefacts in the

sinogram that are not eliminated using (19).

Let the sinogram be given by

S ¼ ŜS1 ŜS2 . . . ŜSb

� �
; ŜSk 2 R

R�c; ð23Þ

where c 2 N is such that N = cb. Each ŜSk is restored according

to the generalized algorithm, i.e.

ŜSk ¼ M̂Mk þ n
 eT
c ; ð24Þ

where n is the solution of (19), and m is the average projection

within the block, i.e. m = ð1=cÞM̂Mkec. In this case, matrix A =

FTFþ �Id remains the same for each block.

3.6. Geometric mean sinogram

Solving (19) through the conjugate gradient method could

be made fast using convolution and the fast Fourier transform.

Therefore, obtaining two solutions is a simple task, say n1 and

n2. In this case, we have two approximate restored sinograms

S1 and S2, respectively. Each one is given by (20). If we take n1

as the solution of (19) with kernel h1;j, we are minimizing (40).

On the other hand, if we take n2 as the solution of the same

linear system, with kernel h2;j, we are minimizing (41).

Our aim is to combine these two sinograms in order to have

a better one. A convex combination of S1;j and S2;j does not fit

to our needs since we have to choose a proper weight to favour

first or second derivatives. Instead, we set a new sinogram,

denoted by Gð"Þ, whose entries ð j; iÞ are defined by

Gj;ið"Þ ¼ Nj;iPj;i þ "
� �1=2

; ð25Þ

for some previously defined tolerance " > 0. If we take " � 0

we have the geometric mean.2 The choice of " is such that G is

close to the arithmetic mean.

4. Generalized Titarenko’s algorithm with angle
dependency

This case was already presented by Titarenko et al. (2011),

where the corrupted sinogram also depends on the angle of

rotation. In this case, hypothesis (5) is replaced by

sðt; �Þ ¼ mðt; �Þ þ nðt; �Þ; ð26Þ

taking into account physical properties that depend on the

angle of rotation �. After a similar discussion given in

Appendix A, a functional is minimized and a linear equation is

obtained. Without going into further detail, we claim that a

similar analysis of x3 is easily extended for this case, using a

finite difference operator F. Here, we are looking for a

correction matrix N 2 RR�N such that S = Mþ N is the

updated sinogram, with M the measured one.

In this case, the rows of the matrix N are written as a linear

combination of a previously known basis, i.e. N ¼ CD with

C 2 RR�S the unknown coefficients and D 2 RS�N the basis.

After computing the optimality conditions, the following

linear system is obtained,

FTFþ �Id

� �
Ck ¼ Gk; k ¼ 1; 2; . . . ;N; ð27Þ

where fCk;Gkg are the kth columns of matrices C and G,

respectively. Here, matrix G is given by G = BDT 2 R
R�S with

B = FTFM 2 RR�N . In a matricial form, the correction matrix

N is the one that satisfies ðFTFþ �IdÞN = BDTD. General-

ization comes from the fact that we can choose a kernel vector

h, see Table 1, in order to define the finite difference matrix F.

Taking h = ð1;�1Þ 2 R2, matrix ðFTFþ �IdÞ becomes exactly

the one proposed by Titarenko et al. (2010a), with an analytic

inverse. Further details of this algorithm can be found in the

work of Titarenko et al. (2011).
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Figure 2
Complexity of algorithms TA and GTA. (a) Comparison of the CPU time/
slice used by Titarenko’s algorithm and his generalization using the
conjugate gradient method. (b) Number of iterations used by the
conjugate gradient method with order 1 and 2.

2 This is always lower than or equal to the arithmetic mean.



Generalized Titarenko’s algorithm with angle dependency

[GTA(�)]

Input: Corrupted sinogram M 2 RR�N , 0 < S 2 Z

[1] Define D 2 RS�N orthonormal by rows

[2] Set B = ðFTFÞM

[3] Define matrix A = FTFþ �Id

[4] Define matrix G = BDTD

[5] Solve ANk = Gk, for eack k = 1; 2; . . . ;N

Output: Restored sinogram S = Mþ N

Compared with the GTA algorithm, GTA(�) demands a

high computational cost. Loop [5] could be eliminated if the

inverse of matrix A is computed a priori, although this is only

true for kernel vector h = (1, �1); in this case, N = A�1BDTD.

For different kernels, the explicit inverse matrix is no longer

available, and the conjugate gradient method is used.

5. Numerical experiments

In 2011, work began in earnest on the design of an imaging

beamline at the Brazilian Synchrotron Light Source (http://

lnls.br). IMX, which has an electron source size of 391 mm �

97 mm and beam divergence of 808 mrad � 26 mrad, was built

on a 2 T bending magnet of the 1.37 GeV storage. This

beamline can operate in either white beam or monochromatic

beam. The white-beam energy spectrum ranges from 4 keV to

15 keV, with a photon flux at the sample position of approx-

imate 1015 photons s�1. Several scintillators are available at

the beamline, the most utilized being the YAG:Ce (scintillator

crystal), which has an emission wavelength of 550 nm and a

photon output per 8 keV. The scintillator is mounted on a

commercially available microscope system from Optique

Peter3 (Douissard et al., 2012) coupled with a PCO.2000 CCD

camera (Germany). The PCO.2000 is a high-resolution 14-bit

CCD cooled camera with a quantum efficiency of 55% at

500 nm and has a full well capacity of 40000. The resulting

array size of this detector system is 2048� 2048, with pixel size

from 0.37 mm to 3.7 mm. For a typical tomographic scan, 1000

images were acquired over 180�. A schematic of the experi-

mental system for the acquisition of projected data is shown

in Fig. 3.

5.1. Medipix detector

Hybrid silicon photon-counting detectors can meet the

requirements of very high dynamic range and high detection

efficiency specially needed for tomographic applications using

synchrotron radiation. Compared with other families of hybrid

pixel detectors, such as Pilatus (see Kraft et al., 2009) and

XPAD (see Pangaud et al., 2008), the Medipix3RX readout

chip enables a higher spatial resolution with a pixel size of

55 mm by 55 mm. Furthermore, this chip takes advantage of

the advanced CMOS (complementary metal oxide semi-

conductor) technology to allow a high level of functionality in

each pixel, enabling reconstruction of the charge generated

by a photon detected on several neighbour pixels (charge

summing mode) or allowing up to eight energy thresholds per

cluster of four pixels (spectroscopic mode). Unfortunately,

some characteristics of analog and digital circuits of the

ASICS (application specific integrated circuit) are responsible

for a non-linear relationship between measurement and inci-

dent flux. One of these characteristics is the shaping time

directly related to the dead time of the system, which is

responsible for pile-up effects (see Rinkel et al., 2011). The

pixel-to-pixel dispersion of these non-linear parameters

cannot be corrected by simple flat-field normalization. In

tomography, these dispersions are responsible for ring arte-

facts, in addition to global false estimation of the recon-

structed attenuation coefficients.

To assess the robustness of the proposed algorithms for

ring artefact correction, tomographic measurements were

performed on the tomographic beamline of the Brazilian

Synchrotron (LNLS) with a Medipix complementary detector.

A Medipix3RX ASIC bump bonded to a 300 mm silicon sensor

was used in conventional single-pixel mode configured with

single 24-bit counters and high-gain mode (see Gimenez et al.,

2011). The detector was read out using Medipix3 USB inter-

faces and Pixelman software (see Vykydal et al., 2006).

5.2. Examples

In the absence of noise, the theoretical sinogram sðt; �Þ
satisfies the following mathematical relation (Helgason, 1980),

1

2

Z
R

sðt; �Þ dt ¼ zð�Þ ¼ constant

¼
1

2

Z
R

2

f ðxÞ dx 8�: ð28Þ

We refer to constant z as the mass of the sinogram, i.e. the

mean remains constant for all possible values of �. For noisy

data, (28) is no longer true. For the LNLS synchrotron data, as

the beam current decays in time, function zð�Þ is far from

being constant, with a monotonic behaviour.
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Figure 3
Schematic of the imaging beamline IMX at LNLS.

3 http://www.optiquepeter.com/en/applications-synchrotron.php.



Since zð�Þ in (28) is not constant for real measured data

mð�; �Þ, the standard deviation (std) of each projection

mð�; �Þ � m�ð�Þ is a function wð�Þ, say

wð�Þ ¼ stdðm�Þ ) w ¼ w �kð Þ
� �

2 R
N: ð29Þ

Function w = wð�Þ is shown in Fig. 4 for some measured

sinogram at the angle set f�1; . . . ; �1000g. We take the regu-

larization parameter � [see (14)] as the standard deviation

of w, i.e.

� ¼ stdðwÞ: ð30Þ

As is clear from (30), the value of � depends on the measured

sinogram M 2 RR�N . As z = ½zð�kÞ	 is closer to a constant

vector, � is lower as we are dealing with a well behaved

sinogram (at least in theory). The opposite remains true, i.e.

the more distant z is from a constant vector then the higher

will be the penalty since we have an ill-behaved sinogram.

We use the following notation:

Sk;j 2 R
R�N is the restored sinogram Sk;j = M + q
 eT

N ;

where q 2 RR is the solution of (19) with kernel hk;j given in

Table 1;

G = Gð�Þ 2 RR�N is the geometric mean sinogram, with

parameter � defined in (30), using S1;3 and S2;2 as references

[see (25)];

M is the measured sinogram, usually corrupted as in (5).

A measured sinogram at the LNLS, M, is shown in Fig. 5(a).

The region within the rectangle is presented in Fig. 5(b), where

several horizontal stripes are visible. Each stripe generates a

circle in the reconstruction technique.

The generalized Titarenko’s suppression algorithm, with

kernel h1;3, see Table 1, gives the result S1;3 in Fig. 5(c). Using a

high-order finite difference, the horizontal stripes are clearly

reduced. However, as can be noted in Fig. 5(c), there are two

severe horizontal stripes remaining in the restored sinogram.

The one on the top is due to the average projection [see vector

m in (41)]. The second is probably due to dead/damaged pixels

in the CCD camera.

Fig. 5(d) is the restored sinogram S2;2 using the generalized

algorithm with kernel h2;2. The artefact corresponding to the

first stripe is strongly reduced, although the second stripe still

remains, as it is a major corruption in the data. Fig. 5(e) depicts

the geometric sinogram G using the combination of Figs. 5(d)

and 5(c).

The projection at the angle �400 = �=10 for the restored

sinogram S1;3 is presented in Fig. 6(a), compared with the same

projection of the geometric sinogram G. As expected, the

geometric map overcomes the sinogram S1;3, as shown in the

rectangle, zoomed in Fig. 6(b).

To remove the second horizontal stripe (see Fig. 5e), we

adopt the block strategy presented in (24), using only

two blocks. The restored sinograms [only the critical region

of Fig. 5(a)], are shown in Figs. 7(a) and 7(b). The first

was obtained using kernel h2;2 at each block, whereas the

second was obtained using the geometric mean sinogram of

each block, taking h2;2 and h1;3 as appropriate convolution

kernels.

The first horizontal stripe present in the restored sinogram

(see Fig. 5c) leads to the circular shadow outside the sample.

The second horizontal stripe, uncorrected by first-order finite
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Figure 4
Function w = wð�Þ, as defined in equation (29), is the standard deviation
of each measured projection, for a fixed sinogram. In this particular
example the sinogram is presented in Fig. 5(a).

Figure 5
Sinogram I (see text for details). (a) Original sinogram from the LNLS
beamline. (b) Zoomed region from the original sinogram. (c) Sinogram
S1;3. (d) Smoothed sinogram S2;2. (e) Geometric mean sinogram G.



differences, leads to only one strong ring artefact in the feature

image. Using second-order finite differences, i.e. using S2;2, we

obtain the reconstruction in Fig. 8(c). Since the first horizontal

stripe was reduced, the shadow outside the sample, as in

Fig. 8(b), was dramatically reduced. Nevertheless, since the

second stripe still remains in the restored sinogram, the

reconstructed feature image presents one strong ring artefact.

Through the geometric mean sinogram G (see Fig. 5e) we

obtain the reconstruction in Fig. 8(d).

To reduce the leading ring artefact, still present in the

reconstructed images [see Figs. 8(b), 8(c) and 8(d)], we use the

filtered backprojection on the sinogram of Fig. 7(b), which is

the geometric combination of S2;2 (by blocks) and S1;3 (by

blocks). As depicted in Fig. 7(c), the leading ring artefact was

completely eliminated, while still preserving the aspects of the

image; as seen in Fig. 7(d) [zoomed part of Fig. 7(c)].

In order to illustrate the action of the derivative kernel hj;k,

see Table 1, we present a low-resolution simulated example. A

327� 327 image, representing a simulated micro-gear, is

shown in Fig. 9(a). After adding noise to the 527� 180 sino-

gram (i.e. horizontal stripes), the filtered backprojection is

applied to the corrupted sinogram, originating the recon-

structed Fig. 9(b), where the ring artefacts are clearly visible.
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Figure 6
Projections at �400 = �=1000. (a) Projection S1;3ð�; 400Þ versus projection
Gð�; 400Þ. (b) Zoomed region of part (a).

Figure 7
(a) Restoration using two blocks [see equatiion (24)] with kernel h2;2

at each block. (b) Geometric mean sinogram using two blocks. (c)
Reconstruction with the sinogram of (b). (d) Magnified part of (c).

Figure 8
FOV of reconstruction from sinograms presented in Fig. 5. See text for
details.

Figure 9
Simulated example. (a) Image with resolution 327� 327, representing an
ideal micro-gear. (b) Reconstructed image (with strong ring artefacts)
after adding horizontal stripes to the 527� 180 sinogram.



The generalized Titarenko’s algorithm (see x2) with

different orders for the derivative was applied to the

corrupted simulated gear data. The results are depicted in

Fig. 10. Part (a) presents the result obtained using the original

Titarenko’s algorithm (see x2 for an algorithmic description of

TA). In this case the strong ring artefacts were reduced, but

new artefacts are introduced, mainly because the sinogram has

low resolution in the pixel axis. We remark that Titarenko’s

original algorithm is obtained with the generalized algorithm

and kernel vector h1;1. Using the second-order derivative, we

reduce the stripe effects through smoothness in the radial

direction of the sinogram. The reconstructed image using

second derivatives, i.e. using kernel vector h2;1 and h2;2, are

presented in part (b) and (c), respectively. Although the rings

still remain in the reconstructed images, they were reduced if

compared with (a). Using the block strategy and different

kernel vectors, we obtain Figs. 10(d), 10(e) and 10( f).

The Wavelet-FFT approach for ring removal, presented by

Münch et al. (2009), is based on a discrete wavelet decom-

position of the sinogram. Without going into further details,

the algorithm to recover the sinogram S is given by

S ¼ W ½M;L; !; �	; ð31Þ

where M is the measured sinogram, L is the highest decom-

position level using the wavelet type !, and � is a damping

factor, fixed for each decomposition

level. For example, ! could represent a

signature to Daubechies wavelets (e.g.

DB25 or DB42) or to a Haar wavelet

(DB1). Fig. 11 presents some recon-

structions using DB25 with three

different choices for ðL; �Þ. In compar-

ison with the generalized Titarenko’s

algorithm, we note that that the method

is highly sensitive to the choice of ðL; �Þ.
The block strategy was applied to the

corrupted gear data, originating the

reconstructions in Figs. 10(d), 10(e) and

10( f). The restored sinograms were

recovered using the generalized Titar-

enko’s approach using b = 6 blocks [see

(23)], i.e. using GTA in between 30

angles.

The sinogram of the rock, presented

in Fig. 5, was restored using the

generalized Titarenko’s algorithm with

angle dependency [see x4]. Using

kernel vector h = ð1;�2; 1Þ from

Table 1 we obtain the results in

Fig. 12. The restored sinogram

presented in Fig. 12(b) is similar to the

one obtained using the classical Titar-

enko’s approach. The same strong stripe

artefact remains, even with a smoothing

kernel. In this example, GTA(�) is

competitive with GTA, but with a

higher computational cost. Fig. 12(a)

shows the correction matrix N, which is

non-constant through columns. Fig. 13

depicts GTA(�) in the simulated micro-

gear example, with different values of
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Figure 11
Reconstruction of the simulated micro-gear using the Wavelet-FFT correction and Daubechies
wavelet DB25 (Münch et al., 2009). (a) Parameters L = 7, � = 2. (b) Parameters L = 3, � = 3.
(c) Parameters L = 2, � = 7.

Figure 10
Simulated example, for TA and GTA. (a) TA for corrupted data. (b) GTA with h1;2. (c) GTA with
h2;2. (d) GTA with h1;2 and 6 blocks. (e) GTA h2;2 and 60 blocks. ( f ) GTA with h3;1 and 6 blocks. See
text for details.

Figure 12
Sinogram restoration using GTA(�) with kernel h = ð1;�2; 1Þ and S = 5.
(a) Correction matrix N 2 RR�N . (b) Updated sinogram S. See x4 for
details.



parameter S, and with fixed parameter �, as in (30).

Finally, some image reconstructions, with corrupted sino-

grams obtained with the Medipix detector, are shown in

Figs. 14 and 15. As Medipix are low-resolution images, the

same discussion of the micro-gear example of Fig. 9 applies

here. Noisy and low-resolution sino-

grams are better restored with a higher-

order derivative, and using a block

strategy.

6. Discussion

As mentioned in the Introduction, the

generation of ring artifacts in recon-

structed images are usually related to

non-linearity of the pixels’ response.

The model of sinogram corruption given

by (5) accounts for the presence of

strips. It assumes that the deviation

from s to m does not depend on the

angle. In other words, this deviation is

supposed to be independent of the

sample inhomogeneity.

Consider a pixel receiving a signal

(intensity or number of photons)

denoted by I0 without sample and I in

the presence of the sample. The asso-

ciated measurements are denoted Im0

and Im, respectively. The measured

sinogram m and the original one s of

(5) are obtained by calculating the

measured and real X-ray attenuations

of the object, respectively,

mðyÞ ¼ logðIm0Þ � logðImÞ; ð32Þ

sðyÞ ¼ logðI0Þ � logðIÞ: ð33Þ
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Figure 13
Sinogram restoration using GTA(�) with kernel h = ð1;�2; 1Þ and different values of S 2 Z . (a), (b),
(c) S = 2, S = 5 and S = 20, respectively. (d), (e), ( f ) Reconstruction of sinograms (a), (b) and (c),
respectively.

Figure 14
Reconstruction of the human tooth of Fig. 1 with the Medipix detector.
(a) Using sinogram S1;1. (b) Using the geometric sinogram. (c) Enlarged
image of (a). (d) Enlarged image of (b).

Figure 15
Reconstruction of a rock sample with the Medipix detector. (a) Using the
corrupted sinogram. (b) Using the geometric sinogram. (c) Enlarged
image of (a). (d) Enlarged image of (b).



We can deduce the value of the deviation term,

nðyÞ ¼ logðI0=Im0Þ � logðIm=IÞ: ð34Þ

The second term of the last equation,� logðIm=IÞ, depends on

the object composition and in this way on the projection angle

for each pixel. Most non-linear effects, such as the pile-up

phenomenon, tend to increase with the incident flux. This term

is expected to become smaller with higher flux, resulting in

better artefact correction for high-attenuation objects. This

interpretation could explain the behaviour of the ring

suppression algorithm on the images obtained with Medipix

(see Figs. 14, 15 and 16). The ring suppression within the

samples is really efficient for the tooth (Fig. 14) and for the

rock (Fig. 15). This could be related to their high attenuations

with maximum attenuation values over the whole sinograms of

8.3 and 6.2, respectively, for these samples. For the last sample,

the ring suppression within the sample is only partial, which

could be explained by this low attenuation (maximum

attenuation value of 1.8 over the whole sinogram).

We are following the approach of Prince & Willsky (1990),

where a quadratic functional is minimized. This was also the

approach adopted by the classical Titarenko’s approach. In

fact, using a quadratic norm, we obtain an easy linear system

to solve. This is one of the main goals of Titarenko’s algorithm.

Using a total variation norm (TV) penalty should be more

appropriate, but this would introduce another type of algo-

rithm, more difficult and not as fast as the one proposed. One

of the most important aspects of imaging beamlines at a

synchrotron is computational time, where GTA is appropriate.

7. Conclusions

We have presented a fast algorithm for ring artefact reduction

in tomography by generalizing the approach proposed by

Titarenko and collaborators. We provided several numerical

and simulated results using the proposed method. The algo-

rithm was tested on experimental data acquired with two

different detectors: a scintillator mounted on a microscope

system coupled with a CCD camera, and a counting detector

based on a 300 mm Si sensor connected to a Medipix3RX

readout ASIC. For a Medipix detector (with low resolution),

we obtain good results using the gener-

alized approach with high accuracy on

the finite difference operator.

The main limitation of the method

relies on the precision of the model of

data corruption. Further work is

focused on Titarenko’s algorithm

allowing the dependency of the correc-

tion term with the projection angle,

which has already been carried out in

their work of 2011 (Titarenko et al.,

2011), i.e. by considering sðt; �Þ =

mðt; �Þ þ nðt; �Þ instead of (5). We have

applied such a technique in this manu-

script, but the computational cost is

high. We have also compared our strategy, without the angle

dependency, with the Wavelet-FFT algorithm presented by

Münch et al. (2009). The wavelet approach is fast, with a linear

computational cost OðNÞ. Although it is a very competitive

method, it depends on three parameters, fL; !; �g, making it

difficult to choose the best configuration. In contrast with the

present method, which depends on only one parameter, this is

clearly a disadvantage of the wavelet algorithm.

Applying a TV penalty to the corrupted sinogram could be

a good choice to restore the sinogram, penalizing smaller

perturbation. This is an excellent starting point for a new study

on rings artefacts reduction.

APPENDIX A
Titarenko’s Algorithm

In real experiments, the measured sinogram mðyÞ is a corrupt

version of the original one, that we denote by sðyÞ, i.e.

sðyÞ ¼ mðyÞ þ nðyÞ; ð35Þ

where n 2 V is a sinogram to be determined, obeying some

mathematical criteria (see Titarenko et al., 2011). Following

the classical approach of Rudin et al. (1992), the restored

sinogram s 2 V is the one that minimizes the TV, subject to

constraints of mean, say M, and standard deviation, given

by S,

min 1
2 TVðsÞ

s:t MðsÞ ¼ MðmÞ

SðsÞ ¼ �

9=
;, min 1

2 TVðsÞ þ �
2 ks�mk2

s:t s 2 V

�

ð36Þ

Here, the total variation norm is defined by TVðsÞ =R
N krsðyÞk dy. The equivalence of the constrained and

unconstrained optimization problems in (36) was previously

shown by Chambolle (2004). The choice of the regularization

parameter � depends on the nature of the problem and could

be estimated with an appropriate method (see Yagola et al.,

2002). A TV approach will penalize smaller perturbations

on the corrupted sinogram, but in this case the optimality

conditions are more difficult to solve.

research papers

J. Synchrotron Rad. (2014). 21, 1333–1346 E. X. Miqueles et al. � Generalized Titarenko’s algorithm 1343

Figure 16
Reconstruction of the human tooth of Fig. 1 with the Medipix detector, using the Wavelet-FFT
correction and Daubechies wavelet DB25 (Münch et al., 2009). (a) Parameters L = 7, � = 2. (b)
Parameters L = 3, � = 3. (c) Parameters L = 2, � = 7.



The approach adopted by Titarenko et al. (2010a,b,c)

searches for a solution that minimizes the quadratic functional

ð1=2Þ

Z
N

krsðyÞk2 dyþ ð�=2Þks�mk2: ð37Þ

This approach was also explored in the work of Prince &

Willsky (1990, 2002), where the sinogram is restored through

the mimization of the above functional, subject to the Ludwig–

Helgason consistency conditions (Ludwig, 1966; Helgason,

1980).

Assuming that the deviation from s to m does not depend

on the angle, i.e.

sðyÞ ¼ mðyÞ þ nðtÞ; ð38Þ

we arrive at the minimization, in terms of the radial (or noise)

function n = nðtÞ, i.e.

VðnÞ ¼ ð1=2Þ

Z
N

@tmþ @tnð Þ
2 dt d� þ ð�=2Þknk2: ð39Þ

Assumption (38) is motivated by the stripes along the �-axis

on each sinogram.

In a discrete sense, the sinogram m is represented by matrix

M 2 RR�N , and we are looking for a noise vector n 2 RR such

that V = VðnÞ is minimum, with the integral replaced by the

sum and the derivative replaced by finite differences. Since we

are minimizing a quadratic, the function attains a minimum

where the gradient is zero, i.e. rVðn�Þ = 0. The first-order

conditions and a tridiagonal system must be solved to find n�.

Titarenko’s algorithm now follows,

n� ¼ argmin
n2RR

VðnÞ ¼
1

2

X
i; j

F1 Mj;i þ nj

� �2
þ �

N

2

X
j

n2
j

" #

) T1 þ �Idð Þn� ¼ �T1m; ð40Þ

with T1 being a constant tridiagonal matrix, F1 a first-order

finite difference and m the average of the projections, i.e.

F1½Pj;i	 ¼ Pj;i � Pjþ1;i;

m ¼ ð1=NÞMeN 2 R
R;

eN ¼ ð1Þ 2 R
N:

ð41Þ

Titarenko et al. (2010a) presented the exact analytical inverse

of T1 þ �I using properties of hyperbolic trigonometric func-

tions. For completeness, matrix T1 is a tridiagonal matrix,

whose diagonal entries are given by

T1: F ¼

1 �1 . . . 0 0

�1 2 . . . 0 0

..

. . .
. ..

.

0 0 . . . 2 �1

0 0 . . . �1 1

0
BBBB@

1
CCCCA

R�1�R

: ð42Þ

APPENDIX B
Octave codes

The codes for ring suppression, as presented in this manu-

script, are presented below, in Octave open-source program-

ming language. Function ringðÞ performs the correction by

columns, while function ring blocksðÞ corrects by blocks of

columns; see (20), (23) and (24). Auxiliary function

ringMatXvecðÞ performs the matrix-vector product (22) using

the convolution function convðÞ implemented by Octave.

Finally, function ringCGMðÞ iterates using the Conjugate

gradient method in order to solve linear system (21). Func-

tions kronðÞ (Kronecker product), onesðÞ and stdðÞ are also

implemented in Octave (see Eaton et al., 2009).

By changing vector h at line 6 of functions ringðÞ and

ring blocksðÞ, we modify the order of the derivative,

according to Table 1. Transcription of these codes to a high-

level language such as Python could be easily done. We

emphasize that the original Titarenko’s algorithm is obtained

using h ¼ ½1� 1	 at line 6 of function ringðÞ. The same applies

to function ring blocksðÞ.

Function ring aðÞ stands for the algorithm GTA(�) (see x4)

with S as the input parameter; see Titarenko et al. (2011) for

further details on matrices D and value S 2 Z.

function new ¼ ringðoldÞ;

alpha ¼ 2 � stdðstdðoldÞÞ;
pp ¼ sumðold’Þ’=sizeðold; 2Þ;
N ¼ sizeðold; 2Þ;
h ¼ ½�1 2 �1	;
f ¼ �ringMatXvecðh; ppÞ;
n ¼ ringCGMðh; alpha; fÞ;
new ¼ oldþ kronðn; onesð1; NÞÞ;

function new ¼ ring blocksðold; stepÞ;

alpha ¼ 2�stdðstdðoldÞÞ;

R ¼ sizeðold; 1Þ;
N ¼ sizeðold; 2Þ;
h ¼ ½�1 2 �1	;

blocks ¼ fixðN=stepÞ;

for k ¼ 1: blocks;
col ¼ ðk� 1Þ � stepþ 1:k � step;

sino block ¼ oldð:; colÞ;
pp ¼ sumðsino block’Þ’=sizeðsino block; 2Þ;
f ¼ �ringMatXvecðh; ppÞ;
q ¼ ringCGMðh; alpha; fÞ;
newð:; colÞ ¼ sino blockþ diagðqÞ � onesðR; stepÞ;

end
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function y ¼ ringMatXvecðh; xÞ;

s ¼ convðx; fliplrðhÞÞ;
u ¼ sðlengthðhÞ:lengthðxÞÞ;

y ¼ convðu; hÞ;

function x ¼ ringCGMðh; alpha; fÞ

x0 ¼ zerosðsizeðfÞÞ;

r ¼ f� ½ringMatXvecðh; x0Þ þ alpha � x0	;

w ¼ �r;

z ¼ ringMatXvecðh; wÞ þ alpha � w;

a ¼ ðr’ � wÞ=ðw’ � zÞ;
x ¼ x0þ a � w;

B ¼ 0;

for i ¼ 1:10̂ 6

r ¼ r� a � z;

if ðnormðrÞ<1e� 6Þ

break;

endif

B ¼ ðr’ � zÞ=ðw’ � zÞ;
w ¼ �rþ B � w;

z ¼ ringMatXvecðh; wÞ þ alpha � w;

a ¼ ðr’ � wÞ=ðw’ � zÞ;
x ¼ xþ a � w;

end

function new ¼ ring aðold; SÞ;

R ¼ sizeðold; 1Þ;
N ¼ sizeðold; 2Þ;
F ¼ zerosðS; NÞ;
i ¼ 1:N;

for k ¼ 1:fixðS=2Þ;
Dð2 � k;:Þ ¼ sqrtð2=NÞ � cosðpi � i � 2 � k=NÞ;
Dð2 � k� 1;:Þ ¼ sqrtð2=NÞ � sinðpi � i � 2 � k=NÞ;

end

Dð1;:Þ ¼ sqrtð1=NÞ � onesð1; NÞ;
h ¼ ½�1 2 �1	;

for i ¼ 1:N; Bð:; iÞ ¼ �ringMatXvecðh; oldð:; iÞÞ; end

G ¼ B � D’ � D;

alpha ¼ 2 � stdðstdðoldÞÞ;

for w ¼ 1:N;
newð:; wÞ ¼ oldð:; wÞ þ ringCGMðh; alpha; Gð:; wÞÞ;

end

The authors gratefully acknowledge the comments by an

anonymous referee. The authors are also grateful to Hugo H.

Slepicka for helping at the integration of the ring artefact code

with Python programming language at the LNLS imaging
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