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It is essential but inconvenient to perform high-quality on-line optimization for

synchrotron radiation beamlines. Usually, synchrotron radiation beamlines are

optimized manually, which is time-consuming and difficult to obtain global

optimization for all optical elements of the beamline. In this contribution

a general method based on the genetic algorithm for automatic beamline

optimization is introduced. This method can optimize all optical components of

any beamline simultaneously and efficiently. To test this method, a program

developed using LabVIEW is examined at the XAFCA beamline of the

Singapore Synchrotron Light Source to optimize the beam flux at the sample

position. The results demonstrate that the beamline can be optimized within 17

generations even when the initial flux is as low as 4% of its maximum value.

1. Introduction

Maintaining a synchrotron radiation beamline under optimal

conditions, to maximize its potential in scientific research, is a

challenging and time-consuming task. A slight change in the

position of any optical element may result in a large fluctua-

tion of flux or beam position at the sample position due to the

low divergence of the synchrotron radiation beam, especially

in the third- and fourth-generation synchrotron radiation

facilities. For example, when switching mirrors and/or crystals

of a beamline in order to cover different energy ranges,

the relevant optical elements often require re-optimization;

otherwise, the flux may decline significantly. Thermal slope

errors of mirrors and/or crystals may affect the emergent angle

between the beam and these optical elements (Lenardi et al.,

1989; Zhang et al., 2013), which results in beam position shift

and a lesser beam flux at the sample position. Thus, in these

situations it is necessary to re-optimize the beamline. Usually,

the beamline optimization work is performed manually which

is time-consuming even for experienced scientists. Moreover,

the coupling among optical elements makes it even more

difficult to find the global optimization for each of them.

Therefore, a method which can efficiently find the global

optimum of a synchrotron radiation beamline is highly

desired.

Several attempts for automatic beamline optimization have

been carried out. In 1995, an adaptive controller, using a

linguistic control scheme, was developed by Roberto Pugliese

et al. (Pugliese & Poboni, 1995; Svensson & Pugliese, 1998).

This method is based on fuzzy logic, which is highly dependent

on the operating experience and cannot ensure the global

optimum of the beamline. The other optimization strategy is

the wavefront analysis method (Hignette et al., 1997, 2001;

Arzt et al., 2005). While using this method, the optical
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components have to be adjusted one by one, which cannot

ensure the global optimum either.

In this contribution, an automatic beamline optimization

method based on the genetic algorithm (GA) is introduced,

which can optimize all optical elements of a beamline simul-

taneously and efficiently. GA is a global optimization algo-

rithm which ensures the final results are globally optimized.

Moreover, for a subjective function to be optimized by the

GA, its gradient information and mathematical model are

not required. The only necessary information is the output

corresponding to a certain input. These facts lead to the

conclusion that a GA-based optimization can be performed at

any beamline with any kind of optical components. Funda-

mental knowledge of the GA is introduced in x2, while x3

introduces how the automatic beamline GA-based optimiza-

tion was realised. In x4 the empirical results of optimizing the

flux at the sample position of the XAFCA beamline of the

Singapore Synchrotron Light Source (Du et al., 2015) are

outlined.

2. Genetic algorithm

In 1975, the GA was introduced as a computational analogy,

simulating the main process of natural selection based on

Darwin’s theory of evolution, to solve optimization and search

problems (Holland, 1975). Fig. 1 shows the main components

and genetic operators in a GA. As shown in Fig. 1(a), a

possible value of each variable for an objective function is

regarded as a gene; a set of genes of the whole variables is

denoted as a chromosome, which is also referred to as an

individual in the GA; a group of individuals is called a

population, which is a collection of candidate solutions. The

number of individuals in a population is called population size,

which is denoted as N. For a certain individual, the value of

the objective function is called the fitness of this individual.

Fig. 1(b) shows the four genetic operators of a typical evolu-

tion cycle:

EVALUATE: the fitness of each individual is calculated.

SELECT: according to the principle of ‘survival of the

fittest’, the individuals with better fitness are picked out to

generate the next-generation population. The selected indi-

viduals are called parents.

CROSSOVER: two selected individuals mate, through

exchanging part of their genes, with a certain probability

denoted as Pc. The individuals generated by this operator are

called offspring.

MUTATE: the offspring’s genes are modified randomly,

with a certain probability denoted as Pm.

In the GA, a population evolves towards a better popula-

tion through selection, crossover and mutation, which is

analogous to biological evolution. In INITIALIZE, the first

generation of the population, i.e. the initial population, is

generated randomly. The initial population will then start its

evolution cycles. For each generation, all individuals are

EVALUATED first. Then, the better individuals will be

SELECTED and generate their offspring through CROSS-

OVER. Each offspring will then MUTATE. The mutated

offspring will form a new population and go to the next

evolution cycle until the termination criteria are satisfied.

When the termination criteria are satisfied, the best individual

of the last generation will be regarded as the solution of the

problem.

3. Framework for beamline optimization using the GA

The beamline optimization task can be defined as finding the

minimum or maximum values of the objective function,

subject to the given constraints:

Objective function : g ¼ f ðx1; x2; x3; . . . ; xmÞ;

Constraints: ai � xi � bi; 1 � i � m;

g � 0;

where xi represents the position of the ith stepper motor (SM),

m represents the number of SMs. [ai, bi] with 1 � i � m is

called search space. The value of xi can be obtained and

adjusted by a beamline control system, while g is the objective

function. It may depend on several of the beamline para-

meters, for example flux, resolution power, spot shape and

position. In this section we introduce the framework of the

GA-based beam flux optimization. So the function value of g

can be obtained by reading the ionization chamber (IC0)

before the sample. In this case: xi corresponds to a gene; a set

of candidate values of (x1, x2, x3, . . . , xm) corresponds to an

individual (chromosome); the function value f(x1, x2, x3, . . . ,

xm) corresponds to the fitness of individual (x1, x2, x3, . . . , xm).

Further details of the procedure of flux optimization in a

beamline based on the GA are outlined in Fig. 2. This mainly

consists of seven modules, i.e. INITIALIZE POPULATION,

RUN SMs & READ IC0, ALL INDIVIDUALS EVAL-

UATED, TERMINATION CRITERIA, SELECT, CROSS-

OVER, MUTATE. Basic details of these modules are outlined

by the following six steps:
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Figure 1
(a) Main components and (b) genetic operators in a GA.



Step 1. INITIALIZE POPULATION. This step generates

N� 1 sets of random values of (x1, x2, x3, . . . , xm) in the search

space, i.e. N � 1 individuals. In this work, the set of the initial

positions of SMs is regarded as the initial individual. The

N � 1 randomly generated individuals and the initial indivi-

dual compose the first generation.

Step 2. RUN the SMs to the positions corresponding to the

ith individual, and then READ the output of the IC0, which

will be regarded as the fitness of the ith individual. Repeat this

process until all of the individuals are evaluated. This step

is for evaluation. In order to improve the efficiency of the

algorithm, the IC0 keeps recording the value of flux during

the SMs running. The positions of SMs corresponding to the

largest reading will be regarded as a new individual, which will

then replace the current individual. This largest reading will

now replace the fitness of the current individual. This step is

different from the traditional GA and leads to a higher effi-

ciency. We named this the ‘Observer Mode for Evolutionary

Algorithm’ (OMEA). Further discussion about OMEA will be

shown in another paper.

Step 3. Judge whether the TERMINATION CRITERIA

are met or not. Stop the optimization if it is true; otherwise

proceed towards the next step. Here, the TERMINATION

CRITERIA can be: the best individual of each generation

reaches a plateau which means that successive iterations no

longer produce better results and the fitness of the best indi-

vidual exceeds a certain threshold value.

Step 4. SELECT N/2 couples individuals from the whole

population, according to the principle of ‘survival of the

fittest’. It will ensure that the better individuals have more

chance of passing on their gene to the next generation. There

are various methods to select the better individuals, such as

roulette wheel selection, Boltzmann selection, tournament

selection, rank selection, steady state selection and so on

(James, 1985; David & Kalyanmoy, 1991; Chang, 2003). In our

case, the roulette wheel selection method was chosen. In

roulette wheel selection, the probability of one individual

being selected is proportional to its share of the fitness of the

whole population. In order to improve the efficiency of the

algorithm, a strategy called elitist selection is applied. This

ensures that the best individual of each generation will be

present in the next generation (Thierens, 1997). Under this

strategy, the individual who has the best fitness of the previous

generation will replace the one that has the worst fitness

among the selected individuals of the current generation.

Step 5. The couples selected will CROSSOVER and

generate their offspring, with a probability of Pc. In this step, a

random number between 0 and 1 is generated. If this number

is less than Pc, then CROSSOVER will be performed;

otherwise, the algorithm returns to Step 4. In order to perform

the CROSSOVER step, a crossover site along the chromo-

some, which is a random integer between 2 and N � 1, is

chosen first. Then the genes of the two chromosomes will be

exchanged up to the crossover site, as shown in Fig. 1(b).

Step 6. Each offspring generated from Step 5 will MUTATE

with a probability of Pm. Then the algorithm proceeds onto

Step 2. In this step, random numbers between 0 and 1 are

generated for each gene of the offspring. If the number is less

than Pm, the MUTATE step will be performed on the gene, as

shown in Fig. 1(b). The gene will be replaced by a random

number in the search space.

4. Method testing

To test this method, the flux at the sample position of the

XAFCA beamline of the Singapore Synchrotron Light Source

(Moser et al., 2004) is optimized. XAFCA is an X-ray

absorption fine-structure (XAFS) facility for catalysis

research, which uses two sets of crystals, Si (111) and KTP

(011), to cover an energy range of 1.2–12.8 keV.

Fig. 3 shows a schematic drawing of the XAFCA beamline.

The first optical component is a vertical collimating mirror

(VCM) which collimates the beam vertically. The second

optical component is a double-crystal monochromator

(DCM). The second Si (111) crystal is a sagittally bent crystal.

The third optical component is a vertical focusing mirror

(VFM) which is to refocus the beam vertically. A four-blade

slit is installed before the IC0 and the beam flux is monitored

by the IC0. To optimize the flux at the sample position we need

to adjust the roll, pitch and yaw of the VCM, DCM and VFM

which are controlled by 14 SMs. Therefore, the positions of the

SMs (x1, x2, x3 , . . . , x14) are the individuals in this test. The

fitness is obtained by reading the IC0: the higher the flux, the

better the fitness.

A LabVIEW program based on the GA was developed to

optimize the XAFCA beamline. The settings for Pc, Pm and N
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Figure 2
Flow chart of a GA-based beamline optimization.



are not unique. In the optimization work, a large value of N

causes more time to be spent within a single generation, while

a smaller population size will cause the efficiency of the GA to

decrease. As for Pc and Pm, usually the combinations of high

Pc combined with low Pm or low Pc combined with high Pm

work well for small population structures (Grefenstette, 1986).

As a result of testing, Pc = 0.8, Pm = 0.05 and N = 10 is a good

option in this application. As mentioned previously, the

termination criterion is that the best fitness reaches a plateau

& � I_obj. A plateau, in this case, is considered to occur when

five successive iterations no longer produce better results.

I_obj represents a reasonable threshold reading of IC0, 1 mA

for instance. The search space is �1 mm for each SM.

The SMs were adjusted manually to obtain different initial

fluxes, and then our program was used to optimize the

beamline. Fig. 4 shows flux versus generation during the

optimization for the five different initial statuses. For easier

comparison, the optimized flux is normalized to unity. The

initial fluxes of lines a to e were 0.91, 0.80, 0.48, 0.17 and 0.04,

respectively. The number of generations for completing the

optimization of line a to e were 10, 11, 11, 14 and 17, respec-

tively. This indicates that, if the initial beam flux fluctuation

is above 48%, the beamline can be optimized within 11

generations. Even if the initial beam flux is only 4% of the

total flux the program still can find the optimized position of

all SMs within 17 generations.

5. Discussion and conclusion

The GA is a computational analogy, simulating the main

process of natural selection, to solve optimization and search

problems. As a global optimization algorithm, it can be

applied to various systems, such as synchrotron radiation

beamlines, which are difficult to formalize mathematically. In

this work, a general method for automatic beamline optimi-

zation based on the GA is introduced. It was demonstrated

that this method can optimize all the optical components of

the XAFCA beamline simultaneously and efficiently, and the

beamline can be optimized within 17 generations even when

the initial flux is only 4% of total flux. As mentioned

previously, this method only requires the input and its output

of the objective system and the mathematical model between

them is not required. Therefore, it is independent of a parti-

cular beamline setup and can be expanded further to other

beamlines and scientific instrumentations which are driven

by SMs.

Acknowledgements

This research was supported by the Agency for Science,

Technology and Research (A*Star) of Singapore.

References

Arzt, S., Beteva, A., Cipriani, F., Delageniere, S., Felisaz, F., Förstner,
G., Gordon, E., Launer, L., Lavault, B., Leonard, G., Mairs, T.,
McCarthy, A., McCarthy, J., McSweeney, S., Meyer, J., Mitchell, E.,
Monaco, S., Nurizzo, D., Ravelli, R., Rey, V., Shepard, W., Spruce,
D., Svensson, O. & Theveneau, P. (2005). Prog. Biophys. Mol. Biol.
89, 124–152.

Chang, Y. L. (2003). IEEE Trans. Systems Man Cybernetics B, 33,
138–149.

David, E. G. & Kalyanmoy, D. (1991). Foundations of Genetic
Algorithms, edited by G. J. E. Rawlins, pp. 69–93. Los Altos:
Morgan Kaufmann.

Du, Y., Zhu, Y., Xi, S., Yang, P., Moser, H. O., Breese, M. B. H. &
Borgna, A. (2015). J. Synchrotron Rad. 22, 839–843.

Grefenstette, J. J. (1986). IEEE Trans. Systems Man Cybernetics,
SMC-16, 122.

Hignette, O., Freund, A. K. & Chinchio, E. (1997). Proc. SPIE, 3152,
188.

research papers

664 Xi, Borgna and Du � Automatic on-line beamline optimization J. Synchrotron Rad. (2015). 22, 661–665

Figure 4
Performance of the GA-based optimization program on the XAFCA
beamline. Lines a–e represent the normalized flux at the sample position,
which was measured using the ionization chamber, corresponding to the
best individual changes over generations. The initial flux from line a to
line e decreases in order, which results in the increase of the number of
generations needed for convergence. The initial fluxes and the generation
numbers for completing optimization for each line are listed in the figure.

Figure 3
Basic optical arrangement of the XAFCA beamline. The 14 SMs marked in blue are needed to optimize the flux at the sample position.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB5


Hignette, O., Rostaing, G., Cloetens, P. & Ludwig, W. (2001). Proc.
SPIE, 4499, 105.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems.
The University of Michigan Press.

James, E. B. (1985). Proceeding of an International Conference on
Genetic Algorithms and Their Applications, pp. 100–111.

Lenardi, C., Vecile, C. R., Vitali, R. & Rosei, R. (1989). Rev. Sci.
Instrum. 60, 1969.

Moser, H. O., Casse, B. D. F., Chew, E. P., Cholewa, M., Diao, C. Z.,
Ding, S. X. D., Kong, J. R., Li, Z. W., Hua, M., Ng, M. L., Saw, B. T.,
Mahmood, S. B., Vidyaraj, S. V., Wilhelmi, O., Wong, J., Yang, P.,

Yu, X. J., Gao, X. Y., Wee, A. T. S. & Sim, W. S. (2004). Proceeding
of APAC 2004, pp. 460–464.

Pugliese, R. & Poboni, R. (1995). Proceedings of ICALEPCS’95,
Chicago, IL, USA.

Svensson, S. O. & Pugliese, R. (1998). Proc. SPIE, 85, 3455.
Thierens, D. (1997). Proceedings of the Seventh International

Conference on Genetic Algorithms, pp. 152–159. San Fransisco:
Morgan Kaufmann.

Zhang, L., Sánchez del Rı́o, M., Monaco, G., Detlefs, C., Roth, T.,
Chumakov, A. I. & Glatzel, P. (2013). J. Synchrotron Rad. 20, 567–
580.

research papers

J. Synchrotron Rad. (2015). 22, 661–665 Xi, Borgna and Du � Automatic on-line beamline optimization 665

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=cn5060&bbid=BB15

