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The characteristics of Friedel pairs in diffraction contrast tomography (DCT)

are studied in the condition that the rotation axis of the sample is not exactly

perpendicular to the incident X-ray direction. For the rotation axis

approximately aligned along the vertical direction, the Friedel pairs close to

the horizontal plane are insensitive to the non-perpendicularity of the rotation

axis, and can be used to refine the sample-to-detector distance and X-ray energy,

while the Friedel pairs close to the vertical direction are sensitive to the non-

perpendicularity of the rotation axis, and can be used to determine the rotation

axis orientation. The correct matching proportion of Friedel pairs decreases

with increasing non-perpendicularity of the rotation axis. A method of data

processing considering rotation axis misalignment is proposed, which signifi-

cantly increases the correct matching and indexing proportions of the diffraction

spots. A pure aluminium polycrystalline sample is investigated using DCT

at beamline 4W1A of Beijing Synchrotron Radiation Facility. Based on the

analysis of Friedel pairs, the sample-to-detector distance and X-ray energy are

refined to be 8.67 mm and 20.04 keV, respectively. The non-perpendicular angle

of the rotation axis is calculated to be 0.10�. With these refined geometric

parameters, the matching proportion of the spatial position of diffraction spots

is 90.62%. Three-dimensional reconstruction of the sample with 13 grains is

realised using the algebraic reconstruction technique. It is demonstrated that the

precise correction of the orientation of the sample rotation axis is effective

in DCT suffering from rotation axis misalignment, and the higher accuracy

in determining the rotation axis is expected to improve the reconstruction

precision of grains.

1. Introduction

As a kind of three-dimensional (3D) X-ray diffraction tech-

nique, X-ray diffraction contrast tomography (DCT) is a

non-destructive imaging method which can yield grain-level

microstructures of polycrystalline materials in three dimen-

sions (Ludwig et al., 2008; Johnson et al., 2008). It can obtain

the grain boundary crystallographic planes and orientation

distribution function of polycrystalline materials (Ludwig et

al., 2010; King et al., 2010; Kostenko et al., 2012; Syha et al.,

2012; Reischig et al., 2013). Reconstruction of grains is

performed using the 3D algebraic reconstruction technique

(ART) combining with extinction spots and diffraction spots

(Johnson et al., 2008). For materials with negligible intra-

granular orientation spread the reconstruction precision of

DCT is comparable to that of electron backscatter diffraction

(Syha et al., 2013). Along with the propagation-based X-ray
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phase-contrast imaging (Cloetens et al., 1997), DCT is applied

to the studies of crack growth and fatigue damage of poly-

crystalline materials (King et al., 2008; Ludwig et al., 2009a;

Herbig et al., 2011; King et al., 2011) and recently extended to

neutron imaging (Peetermans & Lehmann, 2013).

The 3D X-ray diffraction technique can be divided into

near- and far-field approaches. A number of software packages

for indexing grains which are applicable to the diffraction data

have been developed (Lauridsen et al., 2001; Schmidt, 2005,

2014; Suter et al., 2006; Moscicki et al., 2009; Bernier et al.,

2011; Sharma et al., 2012 Li et al., 2013). In the near-field case,

the spatial and angular information are coupled in diffraction

spots and scattering vectors cannot be derived from the

diffraction spots directly (Nervo et al., 2014). There are two

types of solutions to resolve the ambiguity: (i) forward

modeling (Schmidt, 2005; Suter et al., 2006; Li et al., 2013), (ii)

tricks to determine the scattering vectors from near-field data

by means of ray-tracing on multiple detectors (Lauridsen et al.,

2001) or the use of Friedel pairs (Ludwig et al., 2009b). DCT is

a variant of near-field 3DXRD. The method of using Friedel

pairs for DCT data processing and geometry refinement has

been applied under the condition that the rotation axis has

high orientation precision of better than 0.01�(Ludwig et al.,

2009b; Reischig et al., 2013). However, perfect alignment of

the rotation axis can hardly be achieved in experiments; a

small non-perpendicularity of the rotation axis may affect the

correct matching of Friedel pairs, thus undermining the 3D

reconstruction of grains. This article mainly studies the char-

acteristics of Friedel pairs in the case of low precision in the

rotation axis orientation, as well as the correct matching

proportions of Friedel pairs at different non-perpendicula-

rities of the rotation axis and sampling angular intervals. It is

found that the effect of rotation axis non-perpendicularity

varies with the orientations of lattice planes, and that the

correct matching proportion of Friedel pairs is severely

reduced by rotation axis inclination. We demonstrate that it is

possible to accurately determine the inclination of the rotation

axis and to match and index near-field diffraction data

suffering from rotation axis misalignment. We introduce a

modified calibration and indexing procedure, based on the

analysis of a subset of the available Friedel pairs, and

successfully apply this procedure to experimental data of an

aluminum polycrystalline sample with a non-perpendicular

rotation axis. Some limitations of this approach are discussed.

2. Principle of Friedel pairs

The principle of DCT data processing based on Friedel pairs

is shown in Fig. 1. During the experiment, the sample is

continuously rotated by 360�, and the diffraction contribution

will be observed when the Bragg condition is fulfilled. If the

rotation axis is perpendicular to the incident beam, the

diffraction contribution will be observed both in ! and ! +

180� corresponding to the Bragg reflections from (hkl) and

(�h�k�l). Such pairs are called Friedel pairs. In a full 360�

rotation, each set of lattice planes can give rise to four

diffraction contributions at most (Ludwig et al., 2009b).

However, when the rotation axis is not precisely perpendicular

to the incident beam, the characteristics of the Friedel pairs

will be different, as discussed below.

The laboratory coordinate system is also shown in Fig. 1.

The X axis is parallel to the incident beam, and the Z axis is

vertical in this work.

3. Characteristics of Friedel pairs in the
non-perpendicular rotation axis condition

When diffraction from (hkl) lattice planes with a Bragg angle �
appears at a rotation angle !, the angle between the normal

vector of the (hkl) lattice plane and the negative direction of

the incident beam is ’ = 90� � �. If the rotation axis is

perpendicular to the incident beam, the diffraction arising

from (�h�k�l) will appear at ! + 180� with ’ = 90� + � as

shown in Fig. 2(a). However, when the rotation axis is not

perpendicular to the incident beam, the angle between the

Friedel pair will not equal 180� as shown in Fig. 2(b).

We assume that the unit vector of the rotation axis is r =

ðrx; ry; rzÞ, and the unit vector of the normal of the (hkl) lattice

plane is a = ðax; ay; azÞ. We can obtain arot via rotating a by !
using Rodrigues’ rotation formula:

arot ¼ a cos!þ ðr� aÞ sin!þ rðr � aÞð1� cos!Þ; ð1Þ

arot ¼ ax; ay; az

� �
�

r 2
x ð1� cos!Þ þ cos! rxryð1� cos!Þ þ rz sin! rxrzð1� cos!Þ � ry sin!

ryrxð1� cos!Þ � rz sin! r 2
y ð1� cos!Þ þ cos! ryrzð1� cos!Þ þ rx sin!

rzrxð1� cos!Þ þ ry sin! rzryð1� cos!Þ � rx sin! r 2
z ð1� cos!Þ þ cos!

2
64

3
75

ð2Þ

Assuming that the vector (1, 0, 0) is the negative direction of

the incident beam and the angle between arot and (1, 0, 0) is ’,

we then have
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Figure 1
Schematic of a Friedel pair in the coordinate system fixed to the sample.
In the condition that the rotation axis is perpendicular to the incident
beam, a Friedel pair consisting of diffraction spots A and C appears at !
and ! + 180� (Ludwig et al., 2009b).



cos ’ ¼
arot � ð1; 0; 0Þ

arot

�� �� : ð3Þ

We can obtain equation (4) based on equations (2) and (3),

cos ’ ¼ axr2
x þ ayryrx þ azrzrx

� �
ð1� cos!Þ

þ ax cos!� ayrz � azry

� �
sin!: ð4Þ

When ’ is equal to 90� � � or 90� + �, diffraction will be

observed. From a Friedel pair, we acquire two groups of ’, !
and aðax; ay; azÞ, and then substitute them into equation (4) to

obtain two equations. Combining with |r| = 1, we can obtain

the unit vector of the rotation axis rðrx; ry; rzÞ. The Friedel pair

can be chosen according to the following discussions.

3.1. Friedel pairs from (nh nk nl) lattice planes

The (nh nk nl) lattice planes (n = 1, 2, . . . ) have the same

normal vector but different Bragg angles. When the rotation

axis is perpendicular to the incident beam with a precision of

better than 0.01�, we can ignore the deflection of the rotation

axis (Reischig et al., 2013). Here we assume the rotation axis

has a deflection of 0.01� in the XZ plane, and the unit vector of

the rotation axis is r = [sin(0.01�), 0, cos(0.01�)]. In a full 360�

rotation, the angular interval of ! is 0.01�. We take the normal

vector of the (nh nk nl) lattice planes a = [sin(25�), 0, cos(25�)]

as an example. Using equation (4), we can obtain the ’ (!)

curve as shown in Fig. 3, where the maximum value of ’ is

114.98�, and the minimum value is 65�. The diffraction is

observed when ’ is equal to 90� � � or 90� + �. As shown in

Fig. 3, A–C and B–D are two Friedel pairs when the Bragg

angle is 10�. The number of diffractions varies if we change the

Bragg angle as shown in Table 1.

We consider the case that four diffractions can be observed,

and different Bragg angles correspond to different values of

!C � !A. �! is used to represent the angle difference

between !C � !A and 180�, and its values for different Bragg

angles � are displayed in Table 2.
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Figure 2
Sketches of Friedel pairs for different rotation axes. (a) The rotation axis
is perpendicular to the incident direction. The diffraction spot and its pair
appearing at ! and ! + 180� correspond to the angle between the normal
vector of the (hkl) lattice plane and the negative of the incident direction
being equal to 90� � � and 90� + �, respectively. (b) The pair of the
diffraction spots appearing at ! do not appear at ! + 180� when the
rotation axis is inclined.

Figure 3
’ (!) (a) and its gradient (b) with the rotation axis tilted by an angle of
0.01� on the XZ plane. A, B, C and D denote diffraction spots. Spot A on
the ’ (!) curve has been magnified to help explain the movement of this
spot from A0 on the curve of perfect alignment (dashed line) to A. When
the rotation axis is tilted by 0.01� in the XZ plane, the ’ (!) curve as
shown by the dashed line will move down to the position of the solid line
(if the tilted angle is�0.01�, the curve will move up) and A0 moves to A0 0.
In order to maintain the Bragg condition, A0 0 has to ascend along the
curve to A.



It can be seen from Table 2 that, for different lattice planes

with the same normal vector, the non-perpendicularity has a

smaller effect on the Friedel pairs at smaller Bragg angles.

While the rotation axis is inclined, the center of a ’ � ! curve

moves down or up. Simultaneously, at the same Bragg angle,

the positions corresponding to the four diffractions on the

curve move up or down. As shown in Fig. 3, when the Bragg

angle is smaller, the positions related to the Friedel pairs are

closer to the center of the curve and the absolute gradients of

the curve at these positions are greater; the variation of these

positions in the curve to maintain the Bragg condition will

correspond to smaller variation of !, which consequently leads

to smaller �!. For lattice planes with the same normal vector,

the effect of non-perpendicularity of the rotation axis is

smaller at smaller Bragg angles.

3.2. Friedel pairs from {hkl} crystal planes

The family of {hkl} crystal planes has the same Bragg angle

but different orientations. Taking the rotation axis r =

[sin(0.01�), 0, cos(0.01�)], and the Bragg angle is 10� as an

example. The values of �! related to different normal vectors

on the XZ plane are shown in Table 3.

It can be seen from Table 3 that while the normal vector is

closer to the XY plane the value of �! is smaller. The ’ (!)

curves corresponding to different normal vectors are shown in

Fig. 4(a). As discussed in x3.1, a greater absolute gradient

corresponds to a smaller variation in !. When the normal

vector is closer to the XY plane, the absolute gradient of the

’ (!) curve is greater as shown in Fig. 4(b), and the rotation

axis inclination leads to smaller �!. The lattice planes with

normal vectors closer to the XY plane will be affected less by

the non-perpendicularity of the rotation axis for all {hkl}

planes. The non-perpendicularity of the rotation axis has a

greater effect on the lattice plane with a normal vector closer

to the Z axis, and Friedel pairs from these lattice planes can be

used to calculate the vector of the rotation axis.

3.3. Friedel pairs close to the XY plane

It has been indicated that a non-perpendicular rotation axis

has a smaller effect on the lattice planes with normal vectors

closer to the XY plane. The influence of non-perpendicularity

of the rotation axis on the XZ plane on the Friedel pairs with

normal vectors close to the XY plane is also investigated.

Assuming that the Bragg angle is 25�, the normal vector is a =

[sin(90�), 0, cos(90�)]. In a full 360� rotation, the angular

interval is 0.01�. As shown in Table 4, the angular difference

between the Friedel pair A–C increases with increasing non-
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Table 3
Rotation angles of Friedel pair A–C and angle difference �! for
different normal vectors a.

Normal vector (a)
Rotation
angle (A)

Rotation
angle (C) �!

[sin(15�), 0, cos(15�)] 47.88� 227.78� 0.10�

[sin(30�), 0, cos(30�)] 69.69� 249.65� 0.04�

[sin(45�), 0, cos(45�)] 75.79� 255.77� 0.02�

[sin(60�), 0, cos(60�)] 78.44� 258.43� 0.01�

[sin(75�), 0, cos(75�)] 79.65� 259.64� 0.01�

[sin(90�), 0, cos(90�)] 80.00� 260.00� 0.00�

Figure 4
’ (!) (a) and its gradient (b) with the rotation axis tilted by an angle of
0.01� on the XZ plane for different normal vectors.

Table 1
Number of diffractions related to different Bragg angles.

Bragg angle ’ = 90� � � ’ = 90�+ �
No. of
diffractions

� > 25� < 65� > 115� 0
� = 25� 65� 115� 1
24.98� < � < 25� 65� < ’ < 65.02� 114.98� < ’ < 115� 2
� = 24.98� 65.02� 114.98� 3
� < 24.98� > 65.02� < 114.98� 4

Table 2
Rotation angles of Friedel pair A–C and angle difference �! for
different Bragg angles.

Bragg
angle (�)

Rotation
angle (A)

Rotation
angle (C) �!

1� 87.66� 267.62� 0.04�

4� 80.53� 260.48� 0.05�

8� 70.80� 250.75� 0.05�

12� 60.55� 240.50� 0.05�

16� 49.31� 229.25� 0.06�

20� 35.99� 215.92� 0.07�

24� 15.77� 195.61� 0.16�



perpendicularity of the rotation axis, and the maximum of �!
is 0.04� within a non-perpendicular angle of 1�.

Therefore, the Friedel pairs corresponding to the normal

vectors which are closer to the XY plane are insensitive to the

non-perpendicularity of the rotation axis. These Friedel pairs

can be used to refine the setup geometry as in the case where

the rotation axis is perpendicular to the incident beam

(Ludwig et al., 2009b; Reischig et al., 2013). The Friedel pairs

corresponding to the normal vectors which are closer to the Z

axis are sensitive to the non-perpendicularity of the rotation

axis. These Friedel pairs can be used to calculate the vector of

the rotation axis with better precision.

4. Correct matching proportion of Friedel pairs

Under the condition that the incident X-ray direction is

perfectly perpendicular to the rotation axis of a sample, the

angle difference of any Friedel pair should be exactly 180�.

However, when the incident X-ray direction is not perpendi-

cular to the rotation axis, mismatch of Friedel pairs occurs, i.e.

the angle difference of Friedel pairs will not equal 180�. Since

the effect of a non-perpendicular rotation axis varies for

different lattice planes as discussed above, a lattice plane with

its normal vector closer to the XY plane will suffer smaller

effects from the non-perpendicular rotation axis, which means

smaller mismatch of Friedel pairs, while it is the opposite for

the normal vector closer to the Z axis. Because the sampling

angular interval is limited, a tiny effect of the non-perpendi-

cularity of the rotation axis on lattice planes with normal

vectors close to the XY plane will be difficult to observe in

relevant rotation angles of diffractions. Friedel pairs from

these normal vectors appear as correctly matched with an

angle difference of 180�. The corresponding occupied part in

the whole 4� solid angle space is defined as the correct

matching district; the other part, consisting of two upward and

downward cone-like spaces with opening angle 2�, is defined

as the mismatching district. A sketch is shown in Fig. 5. The

proportion of the correct matching district within the whole

solid angle space increases when the sampling angular interval

increases.

Assuming that the Bragg angle related to the normal vector

a of a lattice plane is 20�, the proportion of the correct

matching district varies for different rotation axis non-

perpendicularities. When the number of grains is sufficiently

large such that the orientations of a given normal vector of the

lattice plane can be considered as isotropic in the whole solid

angle space, the proportion will represent the correct

matching proportion of the corresponding Friedel pairs. As

stated in x5.1, we have used a static acquisition procedure with

a sampling interval of 0.06�. Note that a diffraction spot is

always expanded and spreads over several successive images

for many reasons, such as the size of the grain, deformation of

the lattice, X-ray energy dispersion and beam divergence. The

diffraction spot may be missed in detection when the sampling

angular interval exceeds the expansion, so the diffraction spot

expansion is set to be 0.06� in solid angle space for calculating

the matching proportions. Additionally, taking into account

that the diffraction intensity has a Gaussian shape, the peak of

the diffraction intensity is also likely to be missed in two

successive images. We define the image which is closer to the

peak of the diffraction intensity as the matched one.

Fig. 6 shows that the proportion of correct matching

decreases rapidly for small non-perpendicularities (about

<0.1� in this discussion), and then gradually to zero, and that a

smaller sampling angular interval leads to faster falling of this

proportion. The case of a Bragg angle of 10� is also calculated

for comparison and the result is shown in Table 5. It indicates

that the proportion of correct matching obtained from a Bragg

angle of 20� is lower than that obtained from a Bragg angle of

10� at the same non-perpendicularity; thus, the decrease in the

correct matching proportion of Friedel pairs caused by mis-

alignment of the rotation axis is more severe for high-index

diffractions.

For a given real object, the quantity and orientations of

grains do not always satisfy the assumed condition, so the

correct matching proportion of Friedel pairs from a certain

family of lattice planes may not completely coincide with

research papers

1066 Qiru Yi et al. � Friedel pairs and diffraction contrast tomography J. Synchrotron Rad. (2015). 22, 1062–1071

Figure 5
Sketch of the correct matching district and mismatching district in the 4�
solid angle space for a given normal vector of lattice plane a. The space
occupied by vector a with all possible directions is a sphere with radius of
modulus a. The mismatching district is composed of two upward and
downward spaces as shown by the darker color, each of which consists of
a cone with an opening angle of 2� and a covered segment. The rest is the
correct matching district. The boundary angle of these two districts is �.

Table 4
Rotation angles of Friedel pair A–C and angle difference �! for
different rotation axis vectors r.

Rotation axes vector (r)
Rotation
angle (A)

Rotation
angle (C) �!

[sin(0.01�), 0, cos(0.01�)] 65.01� 245.01� 0.00�

[sin(0.05�), 0, cos(0.05�)] 65.01� 245.01� 0.00�

[sin(0.1�), 0, cos(0.1�)] 65.01� 245.01� 0.00�

[sin(0.4�), 0, cos(0.4�)] 65.01� 245.01� 0.00�

[sin(0.6�), 0, cos(0.6�)] 65.01� 245.00� 0.01�

[sin(0.8�), 0, cos(0.8�)] 65.02� 244.99� 0.03�

[sin(1.0�), 0, cos(1.0�)] 65.02� 244.98� 0.04�



calculations at the same non-perpendicularity of the rotation

axis. However, as long as the volume of the correct matching

district is not zero, some normal vectors of the lattice plane

can be found in this district, which could be used in geometry

refinement. The choice of these normal vectors is not

restricted by crystal plane family, since any normal vector of

a lattice plane can appear in the correct matching district

because the orientation of the grain could be in any direction.

In fact, owing to a limited sampling angular interval and a

specific choice of rotating start, the boundary between the

correct matching district and the mismatching district is not as

sharp as shown in Fig. 5. For simplicity, we defined the degree

of the boundary angle � as the mid-value of the smallest angle

where the correctly matched Friedel pairs can be observed and

the largest angle where the mismatched Friedel pairs can be

observed. For a family of lattice planes with Bragg angle of

20�, the degree of the boundary angle � as a function of the

non-perpendicularity for different sampling angular intervals

is shown in Fig. 7.

Fig. 7 shows that the boundary angle increases rapidly when

the rotation axis inclines by about 0.1� and then gradually to

90�; the correct matching district will reduce and even disap-

pear. The smaller sampling angular interval corresponds to a

smaller non-perpendicularity limit where the correct matching

district disappears. However, the Friedel pairs from the

normal vectors of the lattice plane close to the XY plane is a

good starting point for geometry refinement due to its highest

correct matching possibility before the non-perpendicularity

of the rotation axis is determined.

5. Experiment and discussion

5.1. Experiment setup

The DCT experiment was performed at the imaging

beamline 4W1A of Beijing Synchrotron Radiation Facility

(BSRF). The sample was a pure aluminium cylinder with a

diameter of about 700 mm and a mean grain size of about

500 mm. The X-ray energy was about 20 keV, obtained by a

double Si (111) monochromator, and the field of view was

limited to 1.3 mm � 1.3 mm by slits. The two-dimensional

X-ray detector was a high-resolution X-ray imaging system

(M11427-42) with an ORCA-Flash4.0 scientific CMOS camera

(Hamamatsu Photonics) containing 2048 � 2048 pixels. The

pixel size was 6.5 mm � 6.5 mm, and the dynamic range was
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Figure 7
The boundary angle � between the correct matching district and
mismatching district as a function of non-perpendicularity of the rotation
axis for different sampling angular intervals. The Bragg angle is 20�.

Table 5
Correct matching proportion of Friedel pairs for different non-perpendicularities of the rotation axis, and different Bragg angles.

Perfect match for all orientations is represented as 1 and no match is represented as 0.

Correct matching proportion

Angular interval 0.02� Angular interval 0.04� Angular interval 0.06�

Non- perpendicularity Bragg angle 10� Bragg angle 20� Bragg angle 10� Bragg angle 20� Bragg angle 10� Bragg angle 20�

0.01� 0.2292 0.2216 0.5750 0.5366 0.7645 0.7320
0.02� 0.1245 0.1141 0.3567 0.3198 0.5143 0.5038
0.06� 0.0515 0.0471 0.1262 0.1245 0.2368 0.2190
0.1� 0.0323 0.0288 0.0759 0.0645 0.1201 0.1193
0.2� 0.0131 0.0096 0.0340 0.0305 0.0558 0.0523
0.7� 0 0 0 0 0.0061 0.0026
1.0� 0 0 0 0 0 0

Figure 6
Proportion of the correct matching district within the 4� solid angle as a
function of the non-perpendicularity of the rotation axis for different
sampling angular intervals. It is assumed that the quantity of grains is
sufficiently large so they are randomly oriented with respect to a given
lattice plane in the whole solid angle space. The sampling angular
intervals are 0.02�, 0.04� and 0.06�; the Bragg angle is 20�.



16-bit. The object was rotated in full 360�, and 6000 images

were acquired in a static scanning procedure with a step of

0.06� (3 s exposures for each image) in the experiment.

5.2. Experiment results

A total of 1624 diffraction spots below (400), related to 406

lattice planes, were found in the experiment data, excluding

those beyond the detector or diffractions that did not occur

because the normal of the lattice plane was too close to the

rotation axis. One image is shown in Fig. 8 as an example. The

analysis of the experiment data indicates that when the normal

vector of the lattice plane is close to the XY plane the Friedel

pairs match well the rotation angle difference of 180�, whereas

when the normal vector is close to the Z axis this difference

deviates from 180� and even becomes 0.9�. The correct

matching proportion of Friedel pairs is only 18.7%. This

means a notable perpendicularity deflection of the rotation

axis.

The predicted and actual diffraction angles (or image

numbers) for grain A in Fig. 9 are listed in Appendix A as an

example. This shows that, for the same Bragg angle, non-

perpendicularity of the rotation axis has greater effects on the

Friedel pairs with normal vector closer to the Z axis. For

example, the relevant rotation angles of the Friedel pair from

(�1–11) with the normal vector close to the XY plane are

117.78� and 297.78�, respectively, and the rotation angle

difference is 180�. On the other hand, the Friedel pair from

(1�11) with the normal vector close to the Z axis appears at

rotation angles of 17.04� and 197.58�, and the rotation angle

difference is 180.54�. The result also shows that non-perpen-

dicularity of the rotation axis has smaller effects on the Friedel

pairs at smaller Bragg angles. For instance, the rotation angle

corresponding to the (1�11) Friedel pair is 180.54�, while that

corresponding to the (2�22) Friedel pair is 180.66�. These

results are consistent with the analysis in x3.

The initial indexing was performed with diffraction spots

close to the XY plane using the method introduced by Ludwig

and co-workers (Ludwig et al., 2009b; Reischig et al., 2013).

The X-ray energy was modified to 20.04 keV, and then 2� can

be obtained with the modified energy. Combining with the

values of 2� and positions of Friedel pairs on the XY plane, the

sample-to-detector distance was obtained to be 8.67 �

0.01 mm. The normal vector of the diffractive lattice plane

close to the Z axis is deduced from an extinction–diffraction

spot pair (Johnson et al., 2008). Utilizing ! and ’ of a Friedel

pair close to the Z axis and the constraint jrj = 1, the rotation

axis was determined from equation (4) as r = (0.0018, 0.0357,

0.9994), and its deviation from the perpendicularity is 0.10�.

It should be indicated that an extinction–diffraction spot

pair is needed to confirm the initial normal vector close to the

Z axis for calculating the rotation axis orientation, and

matching and indexing other diffraction spots can be deduced

after the rotation axis is determined. However, choosing this

extinction–diffraction spot pair is expected to be more difficult

when a sample contains thousands of grains or has higher

levels of intragranular orientation spread. The normal vector

close to the Z axis can be acquired via combining the

diffraction spots close to the XY plane from the same grain if

they simultaneously appear on one image, and an alternative

approach called the forward modeling method (Suter et al.,

2006) is hoped to solve this problem.

In the experiment the smallest and largest Bragg angles of

the collected diffractions are 7.6� and 17.79�, corresponding

to (111) and (400), respectively. At a non-perpendicularity
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Figure 8
A typical image in a DCT experiment performed at beamline 4W1A,
BSRF. The X-ray energy was about 20 keV, and exposure time was 3 s.

Figure 9
Three-dimensional reconstruction of the aluminium sample with 13
grains. Some grains are not rendered in this view angle. The image
numbers corresponding to the diffractions from grain A are listed in
Appendix A. Color coding of the grains is based on the angle between its
normal vectors of (0 0 2) and the Z axis.



of 0.10�, the calculated boundary angles between correct

matching and mismatching regions of Friedel pairs of the two

families are 83.00� and 83.15� for a sampling angular interval

of 0.06�. Experiment results show that, for all the normal

vectors in the correct matching district, the angles between the

normal vectors and the Z axis are located in the range 83.23–

89.76�, consistent with the calculations.

Collected diffraction spots from the sample can be classified

into 13 groups based on 13 grains. All the positions and

corresponding rotation angles of the diffraction spots below

(400) were calculated using the refined geometric parameters

including the rotation axis. The mismatch in image numbers

between calculation and experiment is only within two images,

and 90.62% of the actual images are in complete agreement

with the calculation. If the rotation axis is taken as perfectly

aligned, the proportion of matching Friedel pairs is only

18.7%. The improvement of the correct matching and

indexing proportion of diffraction spots can improve the

calculation of diffracted beam paths and increase the number

of valid pairs for recovery of shape and location of grain. Thus,

the method presented above is applicable to the case of a non-

perpendicular rotation axis. The calculated image numbers for

diffractions from grain A are compared with the actual image

numbers in Appendix A.

Three-dimensional reconstruction of the sample was

performed using the ART method and the result is shown in

Fig. 9. The sample displayed has a length of about 1.2 mm and

a diameter of �700 mm. The largest grain is about 700 mm at

the bottom and the smallest one is about 200 mm as calculated

from the reconstruction.

5.3. Discussions

The experiment result shows that the correct matching

proportion of the actual image numbers to the calculated

image numbers is 90.62% instead of 100%. The main

mismatch comes from the Friedel pairs which are sensitive to

the non-perpendicularity of the rotation axis. It can be seen

from equation (4) that the orientation precision of the rotation

axis r corresponds to the precision of ! and orientation of

normal vector a. A smaller rotation angular interval of ! can

yield a more accurate rotation axis. However, the orientation

precision of the rotation axis is limited due to the limit in the

rotation angle step, leading to mismatches in the Friedel pairs

sensitive to the non-perpendicular rotation axis.

Although it is difficult for the rotation axis to be perfectly

perpendicular to the incident X-ray direction in practice,

Friedel pairs may match well in the situation of small non-

perpendicularity of the rotation axis with relative large toler-

ance interval. The misalignment of the rotation axis could be

ignored in such cases. However, the peak of diffraction

intensity may be missed with relatively large sampling angular

intervals. A smaller sampling angular interval should lead to

more precise searching of the intensity peak which can be used

to determine the diffraction geometry with higher precision

and consequently improve the reconstructive precision of

grains.

When a polycrystalline sample contains of the order of 102–

103 grains, diffraction spots will significantly increase, and

some spots from other grains may appear in the 180� offset

image due to misalignment, probably leading to errors in

matching Friedel pairs. On the other hand, given the limited

detector size, diffraction spots from different (hkl) families in

a large number of grains may not be sufficiently separated on

the detector. Both of the problems can be expected to cause

difficulties in the initial selection of a Friedel pair close to the

XY plane, so the tolerance for the pair selection has to be

reduced to ensure correct pairing, and grains can only be

partially indexed and reconstructed in the 3D grain map.

Three-dimensional reconstruction of grains using the ART

method is based on the paths of the diffracted beam.

Refinement of the experimental geometry and determination

of the rotation axis could improve the orientation precision of

the diffraction beam for higher precision in determining the

shapes and locations of the reconstructed grains. However,

with this method it is difficult to eliminate the effect of energy

dispersion and beam divergence; on the other hand, the data

processing method presented here mainly depends on the

precise determination of Friedel pairs. Combining with the

forward modeling method (Suter et al., 2006) promises to

overcome these problems to improve the precision of the

geometry refinement and grain reconstruction.

It should be noted that analysis in this work is focused on

the rotation axis inclination on the XZ plane. In fact, the

inclination may also occur in the YZ plane. The angle between

the X-ray incident direction and the rotation axis maintains

90� when the rotation axis inclines on the YZ plane, so it has

no effect on the discrepancy of the rotation angle between the

two diffractions in a Friedel pair, and only positions of

diffraction spots on a two-dimensional detector will be

changed. It is essentially the ordinary DCT geometric setup.

The significant effects are caused by the rotation axis inclined

on the XZ plane as discussed above.

6. Conclusion

We have presented detailed analysis of the characteristics of

Friedel pairs in the condition that the rotation axis of a sample

is not exactly perpendicular to the X-ray incident direction

regarding DCT. The Friedel pairs close to the XY plane are

insensitive to the non-perpendicularity of the rotation axis,

and can be used as a good starting point to refine the sample-

to-detector distance and X-ray energy; the Friedel pairs close

to the Z axis are sensitive to this non-perpendicularity, and can

be used to determine the rotation axis orientation. The correct

matching proportion of Friedel pairs decreases with increasing

non-perpendicularity of the rotation axis, and this reduction

may undermine matching and indexing of diffraction spots

based on Friedel pairs. Precise determination of the rotation

axis orientation can increase the correct matching and

indexing proportions of diffraction spots, and thus improves

the reconstruction precision of grains. The experiment on an

aluminium polycrystalline sample was performed at BSRF

with a non-perpendicular angle of 0.10�. If the rotation axis is

research papers

J. Synchrotron Rad. (2015). 22, 1062–1071 Qiru Yi et al. � Friedel pairs and diffraction contrast tomography 1069



taken as perfectly aligned, the proportion of matching Friedel

pairs is only 18.7%. However, the calculation of diffraction

spots collectable from the sample with determined rotation

axis showed high correspondence with the experiment data

with up to about 90.62% correct proportion. This method was

successfully applied to 3D reconstruction of the sample,

demonstrating that the method is applicable to DCT suffering

from misalignment of the rotation axis.

APPENDIX A
A comparison between the predicted and actual image

numbers for diffractions from grain A is given in Table 6.
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Table 6
Comparison between the predicted (P) and actual (A) image numbers for
diffractions from grain A.

The rotation angle interval is 0.06�. The rotation angle is image number �
0.06�. In the experiment, the first six families [(111) to (004)] of the sample can
be observed on the detector. We have 124 diffraction spots [diffraction of
(202) does not occur] and a maximum of 62 Friedel pairs. Only eight actual
images have a mismatch to the prediction (marked in bold). About 93.55% of
the actual images are accurately consistent with the calculation. The four
image numbers correspond to diffraction spots A, B, C and D as mentioned in
x3. �! is used to represent the difference between !C� !A and 180�, and � is
the angle between the normal vector and the Z axis. The table shows that, for
the same Bragg angle, the smaller value of �, meaning that the normal vector is
closer to the Z axis, corresponds to a greater absolute value of �!. The result
also shows that non-perpendicularity of the rotation axis has smaller effects on
the Friedel pairs corresponding to smaller Bragg angles. For the Friedel pairs
located in the correct matching district, the minimum of � is 83.23� and the
maximum of � is 88.66�, which is consistent with the calculations.

Image number

Plane index � (�) A B C D �! (�) � (�)

(1 �1 1) 7.604 P: 0284 2649 3293 5641 0.54 25.43
A: 0284 2649 3293 5641

(1 1 1) 7.604 P: 0207 2856 3204 5859 �0.18 45.15
A: 0207 2856 3204 5859

(1 �1 �1) 7.604 P: 0805 1061 3805 4061 0 83.23
A: 0805 1061 3805 4061

(�1 �1 1) 7.604 P: 1963 2217 4963 5217 0 85.41
A: 1963 2217 4963 5217

(2 0 0) 8.793 P: 1498 1915 4502 4918 0.24 44.53
A: 1498 1915 4502 4918

(0 0 2) 8.793 P: 1127 1527 4123 4523 �0.18 47.16
A: 1126 1527 4123 4523

(0 �2 0) 8.793 P: 0158 2859 3159 5859 0.06 80.14
A: 0158 2859 3159 5859

(2 0 2) 12.486 P: No diffraction 9.97
A: No diffraction

(2 �2 0) 12.486 P: 0396 0943 3399 3946 0.18 51.30
A: 0396 0943 3399 3946

(0 �2 2) 12.486 P: 2064 2599 5061 5596 �0.18 52.99
A: 2064 2599 5061 5596

(2 2 0) 12.486 P: 2259 2705 5260 5706 0.06 67.49
A: 2259 2705 5260 5706
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(2 0 �2) 12.486 P: 1305 1721 4305 4721 0 88.66
A: 1305 1721 4305 4721

(3 �1 1) 14.678 P: 0621 1840 3630 4849 0.54 25.64
A: 0621 1840 3630 4850

(1 �1 3) 14.678 P: 1217 2327 4209 5319 �0.48 28.15
A: 1217 2327 4209 5319

(3 1 1) 14.678 P: 1924 2724 4928 5729 0.24 37.04
A: 1924 2724 4928 5729

Table 6 (continued)

Image number

Plane index � (�) A B C D �! (�) � (�)

(1 1 3) 14.678 P: 0352 1124 3348 4119 �0.24 38.89
A: 0352 1124 3348 4119

(1 �3 1) 14.678 P: 0304 2691 3307 5688 0.18 54.91
A: 0304 2691 3307 5688

(3 �1 �1) 14.678 P: 0997 1563 3999 4565 0.12 60.57
A: 0997 1563 3999 4565

(�1 �1 3) 14.678 P: 1464 2017 4462 5015 �0.12 63.15
A: 1464 2017 4462 5015

(3 1 �1) 14.678 P: 1653 2182 4655 5183 0.12 67.16
A: 1655 2182 4656 5183

(�1 1 3) 14.678 P: 0854 1375 3853 4374 �0.06 69.60
A: 0854 1375 3853 4374

(1 3 1) 14.678 P: 0270 2765 3269 5766 �0.06 74.63
A: 0270 2765 3269 5766

(1 3 �1) 14.678 P: 0188 0687 3189 3688 0.06 80.51
A: 0188 0687 3189 3688

(�1 �3 1) 14.678 P: 2333 2830 5332 5829 �0.06 81.66
A: 2333 2830 5332 5829

(2 �2 2) 15.346 P: 0652 2282 3663 5271 0.66 25.43
A: 0653 2282 3664 5271

(2 2 2) 15.346 P: 0387 2676 3383 5680 �0.24 45.15
A: 0387 2676 3383 5680

(2 �2 �2) 15.346 P: 0675 1191 3675 4191 0 83.23
A: 0675 1191 3675 4191

(�2 �2 2) 15.346 P: 1833 2347 4833 5347 0 85.41
A: 1833 2347 4833 5347

(4 0 0) 17.794 P: 1280 2133 4283 5137 0.18 44.53
A: 1280 2133 4283 5137

(0 0 4) 17.794 P: 0918 1736 3914 4733 �0.24 47.16
A: 0918 1736 3914 4733

(0 �4 0) 17.794 P: 0312 2706 3312 5705 0 80.14
A: 0312 2706 3312 5705
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