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The multilayer Laue lens (MLL) is essentially a linear zone plate with large

aspect ratio, which can theoretically focus hard X-rays to well below 1 nm with

high efficiency when ideal structures are used. However, the focusing

performance of a MLL depends heavily on the quality of the layers, especially

the layer placement error which always exists in real MLLs. Here, a dynamical

modeling approach, based on the coupled wave theory, is proposed to study the

focusing performance of a MLL with layer placement error. The result of

simulation shows that this method can be applied to various forms of layer

placement error.

1. Introduction

Hard X-ray microscopy has wide applications in many areas of

science such as life science, materials science, environmental

science and so on. Its spatial resolution depends mainly on the

numerical aperture of the focused beam. Up to now, various

types of X-ray focusing optics utilizing diffraction, reflection

and refraction have pushed the spatial resolution to a few tens

of nanometers (Schroer & Lengeler, 2005; Kang et al., 2006,

2008; Mimura et al., 2007, 2009; Yan et al., 2011; Koyama et al.,

2011; Braun et al., 2013; Huang et al., 2013). Theoretical

studies indicate that all of these types of focusing optics, such

as the adiabatic refractive lens (Schroer & Lengeler, 2005),

multilayer mirror (Mimura et al., 2009), zone plate and

multilayer Laue lens (MLL) (Kang et al., 2006; Yan et al.,

2007a), can focus hard X-rays to well below 10 nm. Among

these focusing optical elements, the MLL, a diffractive one, is

the most promising to deliver the true nanometer focus (Yan

et al., 2007a, 2010). The MLL is fabricated by multilayer

deposition onto a flat substrate followed by sectioning and

thinning (Liu et al., 2005; Kang et al., 2007), whose layers

thickness obeys the zone plate law

x 2
n ¼ n� f þ n2�2=4; ð1Þ

where xn is the position of the nth layer interface, � is the

wavelength and f is the focal length; the second term in

equation (1) can be omitted when xn << f. Because of the large

aspect ratio, the MLL can be treated as a series of local

volume gratings. The geometrical theory becomes invalid and

the dynamical diffraction theory, mainly including the coupled

wave theory (CWT) (Maser & Schmahl, 1992) and the Takagi–

Taupin description (TTD) of dynamical diffraction for volume

diffractive optics (Yan et al., 2007a), will be used to describe

the diffraction properties of the MLL. Currently, the MLL has

shown the highest one-dimensional spatial resolution of 11 nm

(Huang et al., 2013) and two-dimensional resolution of 25 nm
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� 27 nm (Yan et al., 2011). Theoretical calculations indicate

that the spatial resolution of flat MLLs and wedged MLLs can

be further improved to below 10 nm and 1 nm, respectively,

when ideal structures without imperfections are used.

However, there are different kinds of errors in the MLL

during deposition, such as the interface roughness, interface

diffusion, layer placement error and so on. The interface

roughness and interface diffusion have been studied by CWT

(Schneider, 1998) and TTD (Yan, 2009), usually resulting in a

reduction of the diffraction efficiency, but have little effect on

the resolution. The layer placement error is one of the most

serious errors introduced by deposition. A little change in

thickness of each layer may result in a significant deviation of

the structure from the zone plate law, which can cause phase

errors and distort the shape of the intensity profile on the focal

plane. Therefore, to reach diffraction-limited focusing, it is

important to understand the effect of the layer placement

error on the MLL’s focusing performance.

The layer placement error can be divided into three forms.

In the first form, the interface of each layer deviates from its

nominal position by a random error which follows a uniform

distribution. This is the simplest way to model the layer

placement error but may not be consistent with the deposition.

In addition, there is no correlation between interfaces. This

form of error is similar to the zone placement error in zone

plates, which has been studied by geometrical theory (Simpson

& Michette, 1983). For the MLL, it is necessary to study the

effect on focusing performance by dynamical diffraction

theory. In the second form, the thickness of each layer deviates

from their nominal thickness by a random error which follows

a Gaussian normal distribution with standard deviation � and

zero mean value. This is different from the first form. The

deviation of an interface from its nominal position is the

accumulation of thickness errors of all preceding layers, which

is similar to the random walk problem. The above two forms

can be considered as the high-frequency errors. In the third

form, because of the drift of the deposition rate, the spatial

frequency of the structure no longer follows a linear rela-

tionship with the position of layer xn but a second- or higher-

order polynomial (Yan et al., 2007b); this form of the layer

placement error can be considered as the low-frequency error.

Among the three forms of layer placement error, the low-

frequency error, the third form of the layer placement error,

has been studied by TTD (Yan et al., 2007b). It is shown that

the low-frequency error can result in significant broadening of

the focus. However, for the high-frequency errors, the first and

second form of the layer placement error, the TTD becomes

difficult to apply, for there is no obvious function which can

describe these errors. Another effective method which can

deal with the high-frequency errors is the beam propagation

method (BPM) (Van Roey et al., 1981). This method has been

widely used to study the performance of various optical

elements such as kinoform (Yan, 2010). However, it lacks real

physical interpretation and has the limitation of a paraxial

approximation and small numerical aperture (NA). From the

result of the BPM, one cannot see the picture of the dynamical

diffraction process in the MLL.

In this paper, based on the CWT, we propose a new dyna-

mical modeling approach to study the focusing performance of

the MLL with layer placement error. In the following sections,

first we describe our method in detail. Then we apply it to low-

and high-frequency layer placement errors, and compare the

simulation results with TTD and BPM, respectively. Finally we

discuss the physical interpretation of high-frequency error

effects on focusing performance. It is shown that our method

can not only be applied to various forms of layer placement

error but can also give a clear physical interpretation.

2. Theory

According to the zone plate law, the thickness of the nth layer

is approximately equal to

�xn ¼ xn � xn�1 � �f=2xn ð2Þ

which changes slowly with the position of the layer, especially

when the layer number n is large. For this reason, the CWT has

assumed that the MLL can be divided into a series of small

areas; each small area can be considered as a local grating

whose grating constant � is equal to the average d spacing in

this area, d = xn� xn–2, and the diffraction property of the area

is the same as an infinite grating with the same grating

constant � (Schneider, 1997, 1998; Maser & Schmahl, 1992).

However, there is always a small difference among the d

spacings in the small area; therefore, the diffraction properties

of the layers at different positions in this small area should

also be slightly different from each other. Based on this, we

further assume that the MLL is composed of a series of local

gratings; each local grating consists of only two adjacent layers

and its diffraction property is the same as an infinite grating

whose grating constant � is equal to the thickness of two

adjacent layers, � = xn� xn–2. With this assumption, the effects

of the layer placement error on the focusing performance can

be easily analyzed when the layer placement error is not too

large and the local periodicity is not obviously broken.

From Maxwell equations, the electric field variation of a

monochromatic X-ray wave in an infinite grating can be

described by the scalar wave equation

r
2EðrÞ þ k2

½1þ �ðrÞ�EðrÞ ¼ 0 ð3Þ

where E(r) is the electric field vector, k = 2�/� and �(r) is the

susceptibility function of the grating. When a plane wave with

wavevector q0 impinges on the grating, a series of diffracted

waves would be excited by the incident wave; their relation-

ships can be expressed as

qh ¼ q0 þ hG; ð4Þ

where qh is the wavevector of the hth-order diffracted wave,

G is the grating vector, G = (2�/�)ex, ex is a unit vector

perpendicular to the lattice planes. Thus, like the Bloch

wavefunction in periodic structures, we can assume that a trial

solution to the electric field E(r) in the grating can be written

as the sum of the incident wave and all the diffracted waves,
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EðrÞ ¼
X1

h¼�1

EhðrÞ expðiqh � rÞ

¼
X1

h¼�1

EhðrÞ exp iðq0 � rþ hG � rÞ
� �

; ð5Þ

where Eh(r) is the complex amplitude of the hth-order

diffracted wave. Because of the periodicity of the grating

structures, the susceptibility function �(x) can be easily

expanded into a Fourier series based on grating vector G,

�ðxÞ ¼
X1

h¼�1

�h exp½i’hðxÞ�

¼
X1

h¼�1

�h expði2�hx=�Þ

¼
X1

h¼�1

�h expðihG � rÞ: ð6Þ

The coefficient �h is given by

�h ¼
1

�

Zxn�1

xn�2

�A expð�i2�hx=�Þ dx

þ
1

�

Zxn

xn�1

�BðxÞ expð�i2�hx=�Þ dx ð7Þ

where xn is the position of the nth layer interface, �A and �B

are the susceptibility of the (n � 1)th layer and the nth layer,

respectively. We note that the phase function ’h is equal to

hG �r in equation (6), so the trial solution in equation (5) can

be rewritten as

EðrÞ ¼
X1

h¼�1

EhðrÞ exp iðq0 � rþ ’hÞ
� �

: ð8Þ

Substituting equations (6) and (8) into (3), and neglecting the

second-order derivatives on Eh(r), a set of differential equa-

tions can be obtained (Yan, 2009),

2i

k
rEh

q0

q0

�� ��þ r’h

k

 !
þ �hðrÞEh þ

X
l

�h�lEl cos#hl ¼ 0;

h; l ¼ 0;�1;�2;�3; . . . ;

ð9Þ

where #hl is the angle between the polarization directions of

two wave components, Eh and El, �h(r) is the deviation

function which quantifies the violation of the Bragg condition,

�hðrÞ ¼ i
r2’h

k2
� 2

q0

q0

�� ��r’h

k
�
r’h

k

� �2

: ð10Þ

In the derivation of equation (9), the second-order derivatives

on Eh(r) is neglected, which means that the reflected wave at

the boundary to the MLL is neglected, as stated by Yan et al.

(2007a) and like assumptions made in conventional first-order

coupled wave theory (Erko et al., 2008). In our situation, the

MLL structure has 4 nm outmost layer thickness corre-

sponding to the optimal slant angle of 4.85 mrad (89.72	 of the

incident angle). Under this condition, it is easy to find out that

the reflectivity of the X-rays for tungsten is well below 10�9.

Thus, the reflectivity is indeed negligible. Further, we point out

that, even for a limiting outmost layer thickness of 1 nm, the

slant angle is about 0.025 rad (88.57	of the incident angle) and

the corresponding reflectivity is still well below 10�9 and is

negligible. Therefore, in our situation, it is acceptable to

neglect the second derivative of the equations.

In the grating, the complex amplitude only depends on the

penetration depth z, Eh(r) = Eh(z), which means @Eh /@x = 0.

According to equation (6), r’h = 2�h/�ex. In addition, for

simplicity, � polarization is assumed, corresponding to

cos#hl = 1. Substituting these expressions into (9) and (10),

they can be further simplified,

2i cos �

k

@Eh

@z
þ �hEh þ

X
l

�h�l El ¼ 0;

�h ¼ �2
h� sin �

�
�

h�

�

� �2

;

h; l ¼ 0;�1;�2;�3; . . . ;

ð11Þ

where � is the angle of incidence. Equation (11) is essentially

the same as the Takagi–Taupin equations for strained single

crystals where Eh(r) and �(r) depend only on one coordinate

(Takagi, 1962).

Using the above equations, the complex amplitude of each

two adjacent layers on the exit surface can be easily obtained.

Then the diffracted wavefront from the entire MLL structure

can be constructed by superposing the complex amplitude of

each two adjacent layers. The wavefront of an arbitrary point

on the exit surface of the MLL can be expressed as

EðxÞ ¼
X

h

EhðxÞ exp i
2�x sin �

�
þ

2�hx

�

� �� �
ð12Þ

where x is an arbitrary point on the exit surface of the MLL,

xn–2 < x < xn, � = xn � xn–2, Eh(x) is the hth-order complex

amplitude of the two adjacent layers, the (n � 1)th and nth

layer. The intensity distribution at any point in the focal plane

can be calculated by using the Fresnel–Kirchhoff integral

(Born & Wolf, 1999); usually only the �1-order diffracted

waves, E�1(x)exp[i(2�xsin�/� � 2�x/�)], are used. Then

according to the intensity distribution, the effects of the layer

placement error on the focusing performance can be obtained.

The above method is very suitable for the second and third

form of the layer placement error. However, for the first form

of the layer placement error, because of the relative larger

destruction of the local periodicity (see the following section),

we cannot directly decompose the MLL into a series of local

gratings according to the actual interfaces of the layers. In this

form of error, only the interfaces of the layers deviate from the

nominal position, while the mass center of each layer does not

deviate from the nominal position too much. Thus there will

be no accumulated error and the overall structure of the MLL

will not deviate from the zone plate law. Therefore, we can

treat this form of the layer placement error as a small

perturbation, and assume that the MLL can be decomposed
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into a series of local gratings according to the nominal posi-

tions of the interfaces of the layers, whose grating constant �0

can be expressed as

�0 ¼ x 0n � x 0n�2; ð13Þ

where x 0n is the nominal position of the interface of the nth

layer. Then we can still use the above method to study the

effect of the first form of the layer placement error, except that

equations (6), (7) and (12) are changed into the following

equations, respectively,

�ðxÞ ¼
X1

h¼�1

�h expði2�hx=�0Þ; ð14Þ

�h ¼
1

�0

Zx 0n
x 0

n�2

�ðxÞ exp �i2�hx=�0ð Þ dx; ð15Þ

EðxÞ ¼
X

h

EhðxÞ exp i
2�x sin �

�
þ

2�hx

� 0

� �� �
; ð16Þ

where �(x) in equation (15) is the actual susceptibility of

material in position x.

3. Simulation

In order to verify the reliability of our approach, the obtained

results are compared with those calculated from the TTD and

BPM. Here a flat MLL (WSi2/Si) with the following para-

meters is considered: a focal length of 4 mm at 12 keV, an

outermost layer thickness of 4 nm and an innermost layer

thickness of 20 nm which correspond to a lens aperture size of

about 41 mm, a tilted angle of 4.85 mrad and a section depth of

5 mm which are used to reduce the dynamical diffraction effect

and achieve a diffraction-limited 10 nm focus.

3.1. Ideal structures

The TTD, BPM and our approach are used to calculate the

focusing performance of the MLL with ideal structure.

Fig. 1(a) shows the �1-order local diffraction intensities

calculated by TTD and our approach, Fig. 1(b) shows an

enlarged image of the region around xn = 30.3 mm. Due to our

assumption, the local diffraction intensity calculated by our

approach is a constant over the two adjacent layers. Because

of the different sampling points on the exit surface in these

three methods, for convenience the obtained intensity profiles

on the best focal plane will be compared with each other. Fig. 2

shows the intensity profiles on the best focal plane calculated

by TTD, BPM and our approach. To evaluate the difference

among the intensity profiles, the R-factor in crystallography is

used, which is defined as

R ¼

P
n

jE 0ð�xnÞj
2
� jEð�xnÞj

2
�� ��

P
n

jE 0ð�xnÞj
2 ; ð17Þ

where E(�xn) is the complex amplitude calculated by our

approach, E 0(�xn) is the complex amplitude calculated by the

TTD or BPM, �xn is the nth sampling point on the focal plane.

Because most of the intensity is diffracted into a very small

region on the best focal plane, only the sampling points where

E 0(�xn) > 0:1E 0max are used in equation (17); E 0max is the

maximum of E 0ð�xnÞ. In crystallography, an R-factor of less
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Figure 1
(a) The local �1-order diffraction intensity at the exit surface of the
MLL. The black line is calculated by the TTD method. The red line is
calculated by our approach. (b) Enlarged image of local diffraction
intensity around xn = 30.3 mm.

Figure 2
Intensity profiles on the best focal plane calculated by TTD, BPM and our
approach.



than 15% usually indicates good agreement between two data

sets (Neutze et al., 2000; McRee, 1999; Drenth, 2007). As

shown in Figs. 1 and 2, the results obtained by our approach

agree very well with those calculated by TTD and BPM. The

R-factor of the intensity profiles compared with that calcu-

lated by TTD and BPM is 0.1% and 0.2%, respectively.

3.2. First form of the layer placement error

Just as the error analysis in zone plate manufacturing

(Simpson & Michette, 1983), we assume the first form of error

is the independent layer position error. The parameter " =

�/�xn is used to characterize the magnitude of the error,

where �xn is the thickness of the outmost layer, and � indi-

cates that the actual position of layer xn follows a uniform

distribution in [x 0n � �, x 0n þ �], x 0n is the nominal position of

the layer. This is a relatively simple model and the indepen-

dent random variable here is the layer position. Each position

could be viewed as being independent of each other. This

model suggests that during fabrication there is no layer posi-

tion error stacking which is in contrast with the next section.

Figs. 3(a) and 3(b) show isophotes near the focus and the

intensity profiles on the best focal plane calculated by BPM

and our approach, respectively, when " = 0.4. Fig. 4 shows the

R-factor as a function of ". It can be observed that the intensity

profiles calculated by our approach and the BPM are almost

the same even if the magnitude of error is relatively large.

3.3. Second form of the layer placement error

The second form of the layer placement error is assumed

to be a Gaussian thickness random error. As mentioned

previously, each layer thickness is the addition of the nominal

thickness and a random error following a Gaussian distribu-

tion which means that each layer thickness is considered to be

an independent random variable. Thus, the actual position of

each layer is the addition of the nominal position and the

accumulated preceding thickness errors.

In the following a statistical description of the Gaussian

thickness random error is given. Although the independent

random variable in this form is the layer thickness, we are still

interested in the layer position. As mentioned above, xn

represents the layer position of the nth layer. Let �dn be the

thickness error of the nth layer. Then �dn is the independent

random variable of the Gaussian distribution. h�dni = 0,
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Figure 3
(a) Top: the isophotes near the focus calculated by BPM when " = 0.4,
where �z and �x are parallel and transverse to the incident beam.
Bottom: the isophotes near the focus calculated by our approach when " =
0.4. (b) The intensity profiles on the best focal plane calculated by BPM
and our approach when " = 0.4. The black line is calculated by BPM. The
red line is calculated by our approach.

Figure 4
R-factor versus the parameter ". The R-factor shows that these two
methods are in good agreement with each other.



h�d 2
n i = �2. Here h . . . i represents the mean value. The nth

layer position could be calculated as

xn ¼ x 01 þ ðx
0
2 � x 01Þ þ�d1 þ ðx

0
3 � x 02Þ

þ�d2 þ . . .þ ðx 0n � x 0n�1Þ þ�dn

¼ x 0n þ�d1 þ�d2 þ . . .þ�dn: ð18Þ

x 01 is the initial layer position of the innermost zone; the

corresponding layer number is n0. x 0n still corresponds to the

nominal layer position. According to the �dn characteristics,

we have h�xni = 0 and h�x 2
n i = n�2, where �xn = xn� x 0n is the

deviation from its nominal position x 0n. Further, the summa-

tion of n Gaussian independent variables is also Gaussian and

its mean value is 0 and standard deviation �n is n1/2�. This

means that, although the layer position of the (n + n0)th layer

has the mean value of its nominal position, its standard

deviation is proportional to the square root of its layer number

minus the initial layer number. Recall that the MLL structure

discussed here is 4 nm to its outmost layer thickness and 20 nm

to its innermost layer thickness. The corresponding layer

number is about 260 to 6400. The outmost layer error standard

deviation could be up to about 80�. When assuming that the

MLL is located at its ideal position, the stacked layer error

accumulates with an increase in the layer number. This

corresponds to a phase deviation and is discussed in detail in

x4. Fig. 5 illustrates that, even at the same � (� = 0.2 nm), the

final MLL performance could be very different. Due to the

tremendous uncertainty of this error, a statistical evaluation of

the final performance has to be conducted. The criteria given

in x3.4 are obtained through superposition of various figures at

the focal plane. Figs. 6(a) and 6(b) show isophotes near the
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Figure 5
(a), (b), (c), (d) are the isophotes near the focus along the propagation
direction under the same conditions (� = 0.2 nm).

Figure 6
(a) Top: the isophotes near the focus calculated by BPM when � = 0.2 nm,
where �z and �x are parallel and transverse to the incident beam.
Bottom: the isophotes near the focus calculated by our approach when � =
0.2 nm. (b) The intensity profiles on the best focal plane calculated by
BPM and our approach when � = 0.2 nm. The black line is calculated by
BPM. The red line is calculated by our approach.



focus and intensity profiles on the best focal plane calculated

by BPM and our approach when � = 0.2 nm, where � is the

standard deviation of the Gaussian normal distribution. Fig. 7

shows the R-factor as a function of �. It can be observed that

the intensity profiles calculated by our approach and the BPM

are almost the same even if � = 0.5 nm.

3.4. Third form of the layer placement error

For the third form of the layer placement error, the spatial

frequency of the structure 1/d can be express as a second- or

higher-order polynomial (Yan et al., 2007b). Fig. 8(a) shows

the intensity isophote patterns calculated near the focus by

TTD and our approach when 1/d = �0.023x 2
n + 5.7xn � 8.7;

Fig. 8(b) shows the intensity profiles on the best focal plane.

The R-factor of the intensity profile compared with that

calculated by TTD is 0.34%, which means that these two

methods are in good agreement with each other.

3.5. Strehl ratio for the high-frequency error

Further, Figs. 9(a) and 9(b) show the Strehl ratio, defined as

the ratio of the peak intensity in the best focal plane of the

MLL with the layer placement error to that of the MLL with

ideal structure (Born & Wolf, 1999), for the first and the

second layer placement error, respectively. Fig. 9(a) indicates

that in the first form of the layer placement error situation,

without correlation between each layer, the Strehl ratio stays

relatively high even to large ". In contrast, Fig. 9(b) shows that

in the second form of the layer placement error situation, the

Strehl ratio drops quickly as � increases. Note that in Fig. 8(b),

� > 0.05 nm leads to a dramatically decrease of the Strehl

ratio. By convention, for the diffraction limit, the Strehl limit is

set to 0.8. This gives accuracy requirements of about " 
 0.4

and � 
 0.05 nm, respectively.

The intensity profiles at the best focal plane for different

parameters are also given in Figs. 10(a) and 10(b). For

comparison, the peaks are shifted to the same position. These

figures again illustrate the peak intensity variation with the

parameters " and � changing. For the first form of the MLL

layer placement, even to " = 0.4, which corresponds to the

uniform deviation of the layer position between �1.6 nm and

1.6 nm, the diffraction pattern is conserved to some extent. In

contrast, for the second form of the MLL layer placement, � =
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Figure 7
R-factor versus the standard deviation �. The R-factor shows that these
two methods are in good agreement with each other

Figure 8
(a) Top: the isophotes near the focus calculated by TTD when 1/d =
�0.023x 2

n + 5.7xn � 8.7, where �z and �x are parallel and transverse to
the incident beam. Bottom: the isophotes near the focus calculated by our
approach when 1/d =�0.023x 2

n + 5.7xn� 8.7. (b) The intensity profiles on
the best focal plane calculated by TTD and our approach when 1/d =
�0.023x 2

n + 5.7xn� 8.7. From the figure, we can see that our approach and
TTD yield exactly the same result.



0.1 nm leads to a drastically decreasing maximum intensity

while generating strong side peaks.

4. Discussion

From the simulation results shown in the previous sections,

one observes that for the first form of the layer placement

error the main effect is the decrease in peak intensity while

keeping the focus size. The second form of the layer placement

error would result in the reduction of the peak intensities and

generation of very strong side peaks, thereby destroying the

focus. The third form of the layer placement error, which leads

to significant broadening of the focus and apparent redundant

fringes, has been discussed elsewhere (Yan et al., 2007b). This

section only focuses on the two high-frequency errors.

The intensity distribution near the �1-order focus is

generated by the propagation of the�1-order diffracted wave,

E�1(r)exp[i(q0�r + ’�1)]. Figs. 11(a) and 11(b) give the phase

deviation of the �1-order diffracted wave with the two high-

frequency placement errors from a perfect converging sphe-

rical wave at the exit surface of the MLL. Also, the phase

deviation of the MLL with ideal structures is plotted as a

comparison. Compared with these two figures, it shows that

the first form of the error conserves the phase relations to

some extent, while the second form of the error violates the

phase relations drastically and the phase deviation varies

rapidly over � radians in most regions. That means, in the first

form of the placement error situation, the destruction of

focusing is not severe compared with the ideal MLL, which

has been stated in the previous section. On the other hand,

from Figs. 6(a) and 6(b) one can easily see the destruction of

focusing in the second form of the layer placement error

situation. This corresponds to the phase deviation of the

�1-order diffracted wave at the exit surface of the MLL in

Fig. 11(b).

Figs. 12(a) and 12(b) further show the phase errors of the

�1-order diffracted wave calculated by two independent
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Figure 10
(a) Intensity profiles on the best focal plane at different ". (b) Intensity
profiles on the best focal plane at different �.

Figure 9
(a) The Strehl ratio decreases as " increases. " is defined to characterize
the magnitude of the first form of the error. (b) The Strehl ratio decreases
as � increases. � is the standard deviation of the Gaussian normal
distribution. The red line sets the Strehl limit to 0.8.



methods. The phase error deviation from ideal structures can

be directly calculated by the actual layer position and equals

��d/�xn, where �d is the displacement of the nth layer and

�xn is the nominal thickness of the nth layer (Huang et al.,

2013). The phase error can also be obtained by calculating the

phase difference between two �1-order diffracted waves, one

with the layer placement error and the other with the ideal

structure. As shown in Fig. 12, these two independent phase

error calculations agree with each other. Thus this indicates

that the phase deviation of the diffracted wave is caused by the

layer placement error. Knowing this, we can further explain

the different effects of the two forms of layer placement error

on focusing performance. According to this assumption, the

first form of the layer placement error considers the layer

positions while the second form of the layer placement error

considers the layer thickness to be the independent random

variables. In the first form of the layer placement error, there

is no correlation between interfaces, while in the second form

the interface is the accumulation of all preceding layer

thicknesses, which could lead to a vast deviation of the actual

positions of the layers from the nominal positions in most

regions of the MLL. The accumulated errors lead to an

obvious destruction of focusing.

5. Conclusion

From basic Maxwell equations, based on the CWT and some

new assumptions, we derive a dynamical modeling approach

to calculate the focusing performance of the MLL with ideal

structures and layer placement errors. This means that for a

MLL with ideal structures or the second or third form of the

layer placement error, the MLL could be seen as a series of

local gratings, each of which consists of only two adjacent

layers, when the local periodicity is not obviously broken; for

the MLL with the first form of the layer placement error, the

error can be seen as a small perturbation. Agreement with the

TTD method shows the validity of our approach. Then we

extend our approach to three forms of the layer placement

error and analyze the effects of these errors on the focusing

performance. Agreement with the BPM method in high-

frequency errors and the TTD method in low-frequency error

shows that our method could be used in various situations.

Apart from that, from the deduction of the theory, our

approach shows a more physical meaning than simple

numerical methods like BPM. Also we discuss the physical

interpretation of the effects of the two forms of high-

frequency error on the focusing performance. We point out

that the phase deviation of the diffracted wave is caused by the

layer placement error. Due to the accumulation of all
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Figure 12
(a) Phase errors of the�1-order diffracted wave with the first form of the
layer placement error, " = 0.4. (b) Phase errors of the �1-order diffracted
wave with the second form of the layer placement error, � = 0.2 nm. The
black line is the result obtained from the analytical expression ��d/�xn.
The red line is obtained by calculating the phase difference between two
�1-order diffracted waves, one with the layer placement error and the
other with the ideal structure. Note that the phase deviation is presented
as mod 2� in this figure in contrast to previous figures.

Figure 11
(a) Phase deviations of the�1-order diffracted wave with the first form of
the layer placement error and ideal structures from a perfect converging
spherical wave at the exit surface of the MLL. The black line corresponds
to the ideal structures and the red line corresponds to the situation " = 0.4.
(b) Phase deviations of the �1-order diffracted wave with the second
form of the layer placement error and ideal structures from a perfect
converging spherical wave. The black line corresponds to the ideal
structures and the red line correspond to the situation � = 0.2 nm.



preceding layer errors, the second form of the layer displa-

cement error, the layer thickness error, affects the focusing

performance a lot while the first form of the layer placement

error, the layer position error, has less effect. We believe that

our approach can help in analyzing the effect of the layer

placement error on the focusing performance, obtaining

intolerable levels of layer placement error and depositing a

more accurate MLL.
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