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An instrument allowing the quantitative analysis of X-ray pulsed wavefronts is

presented and its processing method explained. The system relies on the X-ray

speckle tracking principle to accurately measure the phase gradient of the X-ray

beam from which beam optical aberrations can be deduced. The key component

of this instrument, a semi-transparent scintillator emitting visible light while

transmitting X-rays, allows simultaneous recording of two speckle images at two

different propagation distances from the X-ray source. The speckle tracking

procedure for a reference-less metrology mode is described with a detailed

account on the advanced processing schemes used. A method to characterize

and compensate for the imaging detector distortion, whose principle is also

based on speckle, is included. The presented instrument is expected to find

interest at synchrotrons and at the new X-ray free-electron laser sources under

development worldwide where successful exploitation of beams relies on the

availability of an accurate wavefront metrology.

1. Introduction

At-wavelength metrology is gaining in importance at X-ray

large-scale facilities in order to take full advantage of the

beams delivered by high-brilliance sources (Berujon, 2013;

Sawhney et al., 2013). While such metrology is highly desirable

to optimize adaptive optics (Tyson, 2010), it finds also appli-

cations for monitoring and limiting the thermal effects on

optics in full operation. Within at-wavelength metrology, the

X-ray beam wavefront itself is recorded to deduce the shape

and defects of the optics (Born & Wolf, 2008; Wyant & Creath,

1992). Substantial resources were dedicated during the last

decade to reach this goal. Nowadays, several instruments or

methods are available for measuring the phase of an X-ray

beam. However, since most of them require several acquisi-

tions per wavefront reconstruction, their use becomes

confined to synchrotron sources for which the beam remains

stable over a time period much longer than the total data

acquisition time (Kewish et al., 2010; Brady & Fienup, 2006).

These metrology methods can also be sometimes tedious to

implement since they can require hundreds of images and low-

noise detectors. The context with X-ray free-electron laser

(X-FEL) sources is quite different as X-rays are emitted in the

form of pulses, each X-ray bunch presenting a wavefront

slightly different from the others. The need for a wavefront

metrology capable of analyzing each individual bunch makes

many online synchrotron metrology techniques inapplicable

to X-FEL sources.

The Hartman sensor is one of the few instruments capable

of measuring beam wavefronts from shot to shot. This device

has already been implemented at EUV FEL sources (Bache-

lard et al., 2011) and hard X-ray synchrotrons (Mercere et al.,
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2005) to evaluate the sphericity of wavefronts. Nevertheless,

this instrument suffers from a couple of drawbacks: (i) a

limited spatial resolution due to the minimum spacing and size

of the grid probing holes, and (ii) the need for a delicate

calibration to take into account and correct for the imper-

fections of the grid. The grating interferometer is another

device used for single-pulse metrology at X-FELs (Rutish-

auser et al., 2012; Kayser et al., 2014; Fukui et al., 2013). While

the Hartman instrument does not need coherence due to the

hole grid, the shearing interferometer is conversely taking

advantage of contrast brought by interference. This inter-

ferometer, close in principle to the Hartman sensor, presents

similar limitations, i.e. a trade-off must be made between

spatial resolution and sensitivity while the grating quality

may also affect the results. With both instruments the beam

wavefront gradient is derived from a method based on the

principle of wavefront modulation, the local propagation

direction of the X-rays being inferred from the distortion of

a reference pattern. This latter is generated either by the

probing grid of holes in the case of the Hartmann or by the

interferometer phase grating.

Herein, we propose an original device based on the X-ray

speckle tracking (XST) principle (Berujon et al., 2012; Morgan

et al., 2012) to enable the recovery of an X-ray wavefront from

two images acquired simultaneously. Previous work on XST

(Berujon et al., 2012) showed the way the X-ray beam absolute

wavefront could be obtained through the recording of images

of a scattering object at different propagation distances from

the source (see Fig. 1). Now, in addition to a scattering

membrane, the wavefront sensor instrument integrates a semi-

transparent scintillator, a key component able to emit visible

light whilst being partially transparent to X-rays. In this

manuscript, special care is given to the calibration and infor-

mation that can be mathematically derived. For instance, it

describes the way the detector distortion is taken into account

and corrected for and the way the speckle tracking imple-

mentation is enhanced. The instrument concept was experi-

mentally demonstrated at synchrotrons. In principle, the

transition to an X-FEL installation is quite straightforward

providing technological issues related to the acquisition of

simultaneous images can be solved. However, the instrument

configuration as presented in the following is limited to the

sensing of the wavefront when no sample is inserted into the

beam path. Modifications to the second detector of our

current instrument would be necessary to obtain a config-

uration where the beam wavefront is characterized before it is

impinged by a sample.

2. Instrument presentation

The XST principle is recalled in Fig. 1, where an X-ray beam

passes through a thin phase object with random scattering

grains and is then recorded at two different planes upon

propagation. Due to the partial coherence of the X-ray beam,

the waves scattered from the random phase object interfere

with the transmitted light to generate speckle, i.e. random

contrast features (Goodman, 2006). As the distortion of this

interference pattern in the near field region is solely depen-

dent on the wavefront propagation (Cerbino et al., 2008; Gatti

et al., 2008; Magatti et al., 2009), it is possible to deduce the

wavefront state by numerical processing of the images

(Berujon et al., 2012).

The instrument presented in this paper employs two

detectors collecting indirectly the visible light emitted through

X-ray illumination of scintillators placed in series at two

different propagation planes. Such a setup is comparable with

the one used for instance by Carnibella et al. (2012). In it, the

first scintillator traversed by the photons presents the parti-

cularity of being made of a thin low-absorbing material that

lets most of the beam pass through it. The visible light

generated by luminescence is then imaged on the CCD chip

through a microscope objective and a carbon glass mirror

orientated at 45� with respect to the probed beam direction

and transparent to X-rays. The second camera is of a more

traditional conception with a thick scintillator coupled to a

microscope objective system to fully absorb the X-ray beam.

The two cameras are triggered to acquire images of the beam

simultaneously at the two different propagation planes.

3. Method principle

3.1. Image acquisition and preprocessing

The XST method relies on the availability of high-spatial-

resolution hard X-ray imaging detectors. With the current

technology presented above, it is hence usual during experi-

ments to deal with noise due to, among other causes, the

electronics, scintillator defects or from stray light.

Pre-processing operation can, however, strongly reduce

their effects and optimize the signal-to-noise ratio of the

imaging system. For instance, to compensate for some of the

electronic noise, a darkfield correction can be applied to

minimize the background noise. For this, many images are

acquired with the detector shutter closed, averaged to a matrix

Idark and subtracted from the images recorded with the beam

on.

The non-homogeneous response of the scintillator can also

be compensated through flatfield correction; an average image

is generated from many acquisitions taken at various positions
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Figure 1
Speckle tracking principle in the absolute configuration.



of the membrane across the beam. This flatfield Iflat image is

then used for the normalization of the image recorded

intensity.

Therefore, the recorded image Irec undergoes the correction

Inorm ¼
Irec � Idark

Iflat � Idark

: ð1Þ

While not mandatory, this type of correction, largely used

among the X-ray imaging community, was proven to avoid

obvious artefacts from the scintillator structure and from

defective pixels. Fig. 2 shows an example of an image before

and after the correction has been applied.

3.2. Speckle subset tracking

The XST principle implemented in the ‘absolute mode’

configuration (Berujon et al., 2012) corresponds to the sketch

in Fig. 1: the two images of the scattering object contain high-

frequency features which are essentially an almost similar

speckle pattern. The speckle grains are used as markers, whose

shapes upon propagation can be thought of as needles, to infer

the trajectory of the rays from one image to the next. This

concept is realised by the search and identification of small

subsets of pixels from the first image into the second one using

a cross-correlation algorithm. The localization of the correla-

tion peak provides displacement vectors v between the images

for the ðx0; y0Þ centered subsets. Noting the distance between

the images d, the X-ray beam wavefront gradient is linked to v

through the equation of propagation in a homogeneous media

by (Berujon et al., 2012; Born & Wolf, 2008)

rWðx0; y0Þ ¼
spix

d
v; ð2Þ

where r is the del operator and spix is the detector effective

pixel size.

The numerical foundation of the XST technique relies on

the ability to track the subsets between images accurately. The

geometry and notations of the subset are displayed in Fig. 3.

When considering a small subset of pixels initially centered

around P0 = ðx0; y0Þ in the first image, its transformation upon

propagation to the second detector and now located around

Pt = ðx00; y00Þ can be described by (Pan et al., 2009)

x0 ¼ xþ �ðx0; y0Þ;

y0 ¼ yþ �ðx0; y0Þ:
ð3Þ

In this set of equations, the � and � functions mirror both the

displacement and distortion of the subset. For this subset

noted f in the first image, �0 and �0 are recovered by searching

the subset matching similar counterpart g in the second image

such that

ð�0; �0Þ ¼ arg max
ð�;�Þ

CNCð�; �Þ; ð4Þ

where CNC is the zero-normalized cross-correlation criterion

defining the similarity between two considered subsets by

CNCð�; �Þ ¼

P
k

f ðxk; ykÞ � f
� �

gðx0k; y0kÞ � g
� �

P
k

f ðxk; ykÞ � f
� �2P

k

gðx0k; y0kÞ � g
� �2

� �1=2
; ð5Þ

where

f ¼
1

N

X
k

f ðxk; ykÞ;

g ¼
1

N

X
k

gðx0k; y0kÞ;

ð6Þ

and k 2 ½½1;N��, N being the number of elements in the subset.

The subset size is usually chosen in the range 13� 13 pixels to

27 � 27 pixels which are sizes offering a good compromise

between precision, resolution and speed of calculation.

Instead of the zero-normalized cross-correlation criterion

of equation (5), another equivalent criterion sometimes

employed for subset tracking is the zero-normalized sum of

squared difference (Pan et al., 2009; Yoshizawa, 2009; Zanette

et al., 2014).

3.3. Rigid subset translation

As described in equation (2), the recovery of the wavefront

gradient is possible by simply calculating the pixel subset

displacements between the images (Berujon et al., 2012). Such

an approach considers only
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Figure 2
Sample image from the first detectors before (a) and after (b)
normalization.

Figure 3
Subset tracking geometry.



�0ðx0; y0Þ ¼ u; �0ðx0; y0Þ ¼ v; ð7Þ

where u and v are scalars. Using a so-called peak finder

algorithm, the localization of the maximum correlation

between the subset and the target images provides the coor-

dinates of the displacement vector vðx0; y0Þ = P0Pt = ðu; vÞ in

the basis transverse to the beam. The precision of the tracking

algorithms can be easily improved to reach a fraction of a pixel

by fitting the correlation peak neighbor pixels to a Gaussian or

polynomial surface (Pan et al., 2009).

3.4. Subset distortion

As pointed out in previous work (Berujon, 2013), the

advantage of considering the subsets distortion is twofold:

(i) it makes the tracking algorithm more robust and accurate,

and (ii) it brings additional information on the local higher

wavefront derivative orders. For instance, the local curvature

is accessible through the calculation of the second-order

subset distortion setting:

�0ðx0; y0Þ ¼ uþ
@u

@x
�xþ

@u

@y
�y;

�0ðx0; y0Þ ¼ vþ
@v

@x
�xþ

@v

@y
�y:

ð8Þ

In this set of equations, �x = xk � x0 and �y = yk � y0 are the

distances from the subset center P0 to a point of the subset pk

(see Fig. 3), and @u=@x, @u=@y, @v=@x and @v=@y are the first-

order distortion factors of the ðx0; y0Þ centered subset.

These coefficients can be calculated by Newton-based

minimization of the functional

CNCð�; �Þ ¼ CNC u; v;
@u

@x
;
@u

@y
;
@v

@x
;
@v

@y

� �
:

Such an optimization algorithm has a radius of convergence of

the order of a pixel, implying the need for a first calculation

step to extract the pixel accurate rigid subset motion. To

achieve a subpixel accuracy within this kind of algorithm, the

second image is interpolated and the correlation coefficient

CNC calculated using an updated target subset defined by � and

� (Bruck et al., 1989; Vendroux & Knauss, 1998).

The coefficients @u=@x and @v=@y correspond to the

magnification Mðx0; y0Þ = 1þ d=R between the reference and

the matching target subset. Optically, the local wavefront

curvatures in the detector basis is hence

�x ¼
1

Rx

¼
ð@u=@xÞ � 1

d
; �y ¼

1

Ry

¼
ð@v=@yÞ � 1

d
: ð9Þ

Similarly, it can be shown that the cross terms ð@u=@yÞ and

ð@v=@xÞ are linked to the subset rigid body rotation �ðx0;y0Þ
by

� ¼
1

2

@u

@y
�
@v

@x

� �
; ð10Þ

which is valid for small angles (Vendroux & Knauss, 1998).

4. Detector characterization and distortion correction

As the optics used within the imaging detector to obtain a high

resolving power is not aberration free, the recorded images

become distorted. Fig. 4 shows, for instance, the strong

contribution of the detector in the measurement of the

wavefront error when the distortion is not corrected for.

One common way of retrieving the optical distortion of an

imaging system is to image a reference grid with well known

characteristics and compare it with the expected pattern. Such

a calibration is effective in imaging experiments since it

concurrently corrects for the distortions induced by both the

visible microscope objective and the X-ray beam aberration.

Here, because the X-ray wavefront aberration is the object of

investigation, we only aim at correcting the detector distor-

tion.

Unlike in methods usually employed for lens correction, we

did not make any assumption on the distortion or use a

distortion model for modal reconstruction (Brown, 1971),

employing instead a zonal reconstruction. The proposed

approach is based on a principle of rigid-body speckle trans-

lation, similar in some aspects to the method described by

Yoneyama et al. (2006), which consists of imaging a static

speckle pattern whilst moving the detector transversally in the

beam propagation direction.

Let us write the real coordinates of an ideal distortion-free

image point ðxr; yrÞ as a function of its distorted counterpart

ðxd; ydÞ:

xr ¼ xd þ fxðxd; ydÞ;

yr ¼ yd þ fyðxd; ydÞ;
ð11Þ

where ð fx; fyÞ = f is a pair of functions describing the amounts

of distortion in the detector basis ðex; eyÞ.

Hence, when translating the detector by the amount hx =

hex and tracking the speckle subsets between the images, the

calculated displacement vectors are equal to
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Figure 4
Wavefront error calculated without (a) and with (b) correction for the
detector distortion.



vxy:ex ¼
1

spix

�
hþ fxðxd þ h; ydÞ � fxðxd; ydÞ

�
;

vxy:ey ¼
1

spix

fyðxd þ h; ydÞ � fyðxd; ydÞ
� �

;

ð12Þ

and, equivalently, when applying a displacement hy = hey,

v 0xy:ex ¼
1

spix

�
fxðxd þ h; ydÞ � fxðxd; ydÞ

�
;

v 0xy:ey ¼
1

spix

hþ fyðxd; yd þ hÞ � fyðxd; ydÞ
� �

:

ð13Þ

Since we can set the average of the function ð fx; fyÞ to 0 (no

image translation), the effective detector pixel size spix can

be taken as spix = h=hjvxyjiðx;yÞ where h. . .i denotes the mean

operator. Moreover, from the equation sets (12) and (13), we

can write the approximate directional derivatives of ð fx; fyÞ:

rx fxðx; yÞ ¼
@fx

@x

����
ðx;yÞ

¼
vxy:ex � hjvxyji

hjvxyji
;

rx fyðx; yÞ ¼
@fy

@x

����
ðx;yÞ

¼
vxy:ex

hjvxyji
;

ry fxðx; yÞ ¼
@fx

@y

����
ðx;yÞ

¼
v 0xy:ex

hjv 0xyji
;

ry fyðx; yÞ ¼
@fy

@y

����
ðx;yÞ

¼
v 0xy:ey � hjv

0
xyji

hjv 0xyji
:

ð14Þ

The calculated functions for our first detector are shown in

Fig. 5. As mentioned previously, whilst some authors calcu-

lated and used only two of these maps to recover the lens

distortion parameters of a standard model (Yoneyama et al.,

2006; Pan et al., 2013), we use instead all of the gradients maps

to reconstruct the distortion functions. The next step is hence

to numerically integrate the pairs of gradient maps

ðrx fx;ry fxÞ and ðrx fy;ry fyÞ. This is done by matrix inversion

to find the intermediate function ð f 0x ; f 0y Þ by least-square

minimization of the functionals (Harker & O’Leary, 2008),

J1 ¼

ZZ
@f 0x
@x
� rx fx

� �2

þ
@f 0x
@y
� ry fx

� �2

dx dy;

J2 ¼

ZZ
@f 0y
@x
� rx fy

� �2

þ
@f 0y
@y
� ry fy

� �2

dx dy:

ð15Þ

Finally the integration constants are set so that h fxi = 0, h fyi =

0, i.e. fxðx; yÞ = f 0x ðx; yÞ � h f 0x ðx; yÞi and fyðx; yÞ = f 0y ðx; yÞ �

h f 0y ðx; yÞi. The functions ð fx; fyÞ, displayed in Fig. 6, were used

to undistort the recorded image from the detector by bi-cubic

interpolation.

The approximate directional derivatives in equation (14)

are obtained by forward difference. In practice, to increase the

precision of the method, we used the central difference (Riley

et al., 2006). Noting v1!2ðx; yÞ the displacement vector calcu-

lated taking the reference subset in image 1 and target subset

in image 2 and v2!1ðx; yÞ its reciprocal obtained searching the

subset from image 2 into image 1, we derived the central

vector value vxy = (1/2)[v1!2ðx; yÞ � v2!1ðx; yÞ].

The proposed method permits us to isolate the detector

distortion and correct the images for it, thus leaving the X-ray

beam aberration untouched. Correcting for the optical aber-

rations of both the beam and the detector, as it can be of

interest for imaging purposes, would require scanning the

position of the scattering object rather than the detector

position.

5. Experiment

The experimental setup sketched in Fig. 7 was tested at the

former ESRF beamline ID22-NI on the 6 GeV storage ring of

the ESRF (Martinez-Criado et al., 2012). An undulator was

tuned to produce a peak of photons at an energy of 29 keV. At

a distance of 64 m from the source, a Kirkpatrick–Baez (KB)

bender system focused the beam by the combination of a

180 mm focal length vertical focusing mirror and a 83 mm

focal length horizontal focusing mirror (Barrett et al., 2011).
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Figure 5
Directional derivative components of fx and fy: (a) rx fx, (b) ry fx, (c)
rx fy and (d) ry fy. The scale is dimensionless as it corresponds to a
variation of pixel size per pixel.

Figure 6
Detector distortion in the (a) x and (b) y direction.



The combined energy resolution of the undulator harmonic

with the multilayer coating on the KB mirrors provided a total

energy selectivity of �1.5%. The aperture of the KB system

was defined by a pair of slits opened to 260 mm vertically and

160 mm horizontally. The size of the source was defined in the

vertical direction to �20 mm by the synchrotron source and in

the horizontal direction 25 mm by a pair of slits generating a

virtual source. With such a source and KB optics configura-

tion, a focused beam of �50 nm � 50 nm could be expected.

A biological filter made of cellulose acetate with a nominal

pore size of 0.45 mm was placed at 285 mm downstream of the

mirror focus. Both detectors composing the system were CCD-

based FReLoN cameras (Fast REad out LOw Noise), relying

on indirect illumination of a scintillator through Olympus

visible-light microscope optics. Their equivalent pixel sizes

were s1 = 0.681 mm and s2 = 0.756 mm for the upstream and

downstream detectors, respectively. The two scintillators were

produced by liquid phase epitaxy; the first one had a 26 mm-

thick crystalline layer of LuAG:Ce as active material and the

scintillator of the second detector used a 24 mm-thick layer

of LSO:Tb. The first scintillator had a theoretical absorption

of about 23% and the second one of �30%. The higher

absorption and then efficiency of the second scintillator was

used to compensate for the beam divergence and then lower

photon flux at the second detector position. The first detector

was mounted on a stage fixed along the ez axis at R1 ’ 885 mm

from the focal plane of the KB optics and motorized to move

within the ðex; eyÞ plane, while the second detector could be

translated along the beam axis ez. Data recorded at two

detector interdistances, d = 255 mm and d = 510 mm, allowed

us to compare these two metrology data sets between them

and to compare the single-pulse metrology with that

employing only one detector. In the latter approach, the

wavefront is derived from the analysis of two images recorded

sequentially by the same (second) moving detector (Berujon

et al., 2012).

Dark images and flat images were generated for both

detectors from image stacks as explained and shown in x3.1.

The alignment of the two detectors was made so that both of

their fields of view intercept the central part of the expanding

beam. However, a fine adjustment is not necessary since an

offset between the alignment axis of the two detectors would

translate in the measurement of an additional optical tilt

component. Such optical aberration is not a proper wavefront

error and can be easily removed numerically.

5.1. Effect of the X-ray transparent mirror and scintillator

The effect of the X-ray transparent mirror and first detector

scintillator on the X-ray beam was first observed. Fig. 8 shows

their combined effect on the images as recorded by the second

detector after a normalization. As one can see, micro phase

contrast features are observable over the full field of view.

Judging by their small size and relative low contrast, they are

most likely due to inhomogeneities caused by the scintillator

and the polishing of mirror substrates.

Images acquired during a scan of the first detector across

the beam whilst the second one was kept static were used to

estimate the phase effect of the transparent detector on the

X-ray beam. Speckle tracking was performed between the

images taken with the second detector. The displacement

vectors calculated across the field of view showed that the

phase effect of the X-ray transparent mirror and scintillator is

negligible on the low- and mid-spatial frequencies of the beam

wavefront. Indeed, the displacement vector field was shown to

be �ðvÞ > 0.03 pixel over the full field of view, corresponding to

the noise level expected for the method (Berujon et al., 2012).

This corroborates the conclusion that optical windows and

transmission homogeneous objects generate very little phase

shift as compared with reflective optics, although tending to

affect the beam coherence through bulk scattering as observed

in Fig. 8 (Berujon, 2013).

5.2. Wavefront sensing and reconstruction

After detector calibration, pairs of images were acquired

simultaneously with the two detectors. Images from each

detector were then applied appropriate normalization and

distortion correction. Square subsets of size 21� 21 pixels and
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Figure 8
Effect of the semi-transparent mirror and first detector scintillator on the
X-ray beam as seen by the second detector.

Figure 7
Setup of the experiment. The key element of the system, represented in
light blue, is a carbon glass mirror reflecting the visible light emitted by
the scintillator and letting the X-rays pass through. The distances z =
285 mm and R1 = 885 mm were fixed, whereas the distance d was first set
to d = 255 mm and later to d = 510 mm.



centered on each pixel of the first image were searched across

the image from the second detectors.

At a distance d = 255 mm, the expected magnification of the

speckle pattern from one detector to the other was M ’ 1.16

considering setup geometry and detector pixel size difference,

and of M ’ 1.42 for a distance d = 510 mm. Upon propagation

with magnification factors close to unity, as in our case when

d = 255 mm, the numerical algorithm can easily deal with the

corresponding insignificant speckle pattern distortion upon

propagation. Conversely, higher magnification factors and

hence larger pattern distortions can compromise the cross-

correlation calculation of equation (5), affecting therefore the

ability of the algorithm to match subsets between the images.

To overcome this issue encountered for instance when d =

510 mm, the second image was undersampled by cubic bilinear

interpolation in order to obtain M ’ 1 after processing.

The vectors v were hence calculated for each pixel of each

set of images. As the pixel size differed for the two detectors,

the wavefront gradient calculation had to account for this

distinctive feature.

If we consider the case 8P0ðx0; y0Þ; ðu; vÞ = (0, 0), we have

the theoretical magnification M = s2=s1 and radius of curvature

Rth = d=ðs2=s1 � 1Þ, which, in our particular case, is equal to

2.315 m. Considering the linear contribution of the small

angles, the calculated wavefront gradients had to be adjusted

by the offset ðx; yÞ=Rth,

@W

@x
ðx; yÞ ¼

s2vxy:ex

d
þ

x

Rth

;

@W

@y
ðx; yÞ ¼

s2vxy:ey

d
þ

y

Rth

:

ð16Þ

Or, equivalently, one can use a corrected displacement vector

vcðx; yÞ obtained using the definition of Rth,

vcðx; yÞ ¼ vyx þ
x

ds2

ðs2 � s1Þ:ex þ
y

ds2

ðs2 � s1Þ:ey ð17Þ

and rWðx; yÞ ¼ s2vcðx; yÞ=d.

The wavefront recovery was performed by two-dimensional

numerical integration of the phase gradient maps using the

numerical recipe described by Harker & O’Leary (2008) based

on least-square minimization. An example of wavefront

surface reconstruction at the plane R1 is shown in Fig. 9 for a

millimeter square aperture. The wavefront radii of curvature

were calculated by fitting the wavefront gradients to linear

planes or alternatively the wavefront to an ellipsoid. The

extracted values, R1v = 886.8 mm and R1h = 887.3 mm, are

consistent with the hand-measured values.

6. Results and analysis

6.1. Wavefront and wavefront gradient error

The wavefront error was calculated by subtracting the best

ellipsoid from the reconstructed wavefront and similarly the

wavefront gradient error was obtained by removal of the best-

fitted plane.

The wavefront gradient errors and wavefront error of the

measured beam are displayed in Fig. 10 for detector inter-

distances of d = 255 mm and d = 510 mm. Therein, the field of
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Figure 9
Wavefront reconstruction of the X-ray beam at the propagation plane R1

from the mirror focus.

Figure 10
Horizontal (a) and vertical (b) wavefront gradient error maps measured
for d = 255 mm. (c, d) Similar measurements at d = 510 mm. (e, f )
Corresponding wavefront errors of the beam.



view displayed in the figure corresponds to the common beam

area intercepted by the second detector at these two positions

d. As a matter of fact, as the beam divergence beyond the focal

plane is relatively important, moving the second detector

further downstream from the focus reduces the ratio of the

beam imaged with respect to the total transverse beam area.

The first observation from Fig. 10 is that the metrology

measurements performed at two detector interdistances are in

good agreement as we find features of comparable shape and

amplitude. The main error components on the wavefront

gradients are observable orthogonally to the gradient direc-

tions. This effect, equivalent to a 45� astigmatism (Wyant &

Creath, 1992), may be due to small sagittal focusing effects or

orthogonal misalignment of the two mirrors composing the

KB optical system. We note that the pencil beam technique

widely employed to optimize mirror focusing is unable to

observe such an effect since the slope measured is averaged

along the mirrors’ tangential focusing length. This aberration

is also seen in the wavefront error shown in Figs. 10(e) and

10( f). The standard deviation of the wavefront gradients are

of �ðrvWÞ = 0.70 mrad vertically and �ðrhWÞ = 0.43 mrad

horizontally. However, the sensitivity of the system was not

optimal due to the fixed position of the first detector. When

going further away from the focal point, the wavefront

gradient amplitude diminishes as the radius of curvature

becomes larger, making our approach less sensitive to the

variation of the involved deflection angles.

6.2. Subset distortion calculation

The subset distortion was calculated following the method

explained in x3.4. A first calculation step of the displacement

vector field was performed considering only the rigid trans-

lation. Later the subset distortion algorithm was applied, the

outcome of the first step being used as an initial guess for the

Newton minimization algorithm. The interpolation of the

target subset performed with a factor of 100 provides an

expected accuracy for the displacement vector better than

0.03 pixel (Yoshizawa, 2009). Fig. 11 shows in (a) the corre-

lation factor calculated at each position, in (b) a display of the

subset’s rigid body rotation and in (c) and (d) the local vertical

and horizontal radii of curvature, respectively. Considering

our metrology instrument setup and the quality of the optics

employed, the local radii of curvature and small rotation are in

good agreement with the experimental geometry and quality

of the optics.

6.3. Sensitivity and robustness

The correlation factor CNC was on average �0.70 when

considering only the rigid subset motion by peak finding

algorithm and �0.89 when taking into account the subset

distortion as described in x3.4. Despite not being a precise

criterion for accuracy, this factor demonstrates that the

calculation of the first-order subset distortion improves

noticeably the robustness of the method. As a comment, in

digital image correlation, the sharpness of the correlation peak

and the peak to average correlation value are sometimes

employed as reliability markers of the calculation quality. Yet,

this factor can be also affected by diverse parameters such as

the size and sharpness of the speckle grains. In the presented

instrument, the characteristic features of the X-ray trans-

parent mirror need to be carefully defined so as not to degrade

the beam coherence or to affect the speckle pattern.

We investigated the minimum counting statistics required

by the algorithm to render accurate metrology information. A

series of acquisitions were performed while decreasing the

exposure time on the two detectors until reaching the failure

of the method. Images with counts as low as 200 (SNR ’ 2)

were successfully processed by the cross-correlation algo-

rithm, demonstrating a good robustness to Poisson noise.

The device sensitivity relates to the smallest measurable

angle at the location of the first detector scintillator. It can be

estimated with �min = �ðvÞ=d where the measurement accuracy

on the vector v is a function of the cross-correlation algorithm,

the image noise and the speckle pattern quality. Previous

works showed that its accuracy could be easily pushed to

<0.03 pixel (Pan et al., 2009). Naturally, the instrument

sensitivity is also inversely proportional to the distance d.

Therefore, a large propagation distance is expected to increase

the device sensitivity, while, in practice, this gain is moderated

by the beam partial coherence and relative magnification
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Figure 11
(a) Correlation factor between reference and target subsets. (b) Rigid
subset rotation in degrees. (c) Vertical and (d) horizontal local radii of
curvature.



between the images, thus limiting the maximum propagating

distance usable.

7. Conclusion

An instrument was developed to analyze quantitatively the

wavefront of a beam from a single pulse without the need of a

previous reference. The presented method offers high spatial

resolution and sensitivity on the wavefront gradient

measurement: whilst the resolution is of a few pixels, the

angular sensitivity can be easily pushed down to <100 nrad.

Moreover, we presented a way of characterizing and

correcting for the distortion when performing speckle tracking

with imaging detectors and we gave insights on means of

developing this technique principle further. Thus, despite

requiring significant computing resources, the integration of

the subset distortion in the processing was demonstrated as an

efficient way to boost the robustness and capabilities of the

method. For the clarity of the demonstration, this paper was

purposely limited to the measurement of typical incident

wavefronts in the absence of a sample in the beam. However,

several modifications of the instrument can be envisaged to

allow the presence of a sample, for instance for imaging that

would benefit from the presence of a wavefront sensor. The

main modification will consist of fitting the second detector

with a semi-transparent scintillator. The proposed instrument

will open new opportunities in the exploration of the wave-

front of X-ray pulses provided by the new X-FEL sources.
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