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Ring artifacts are a very common problem in tomographic reconstruction, and

numerous methods exist to either pre-process the sinogram or correct the

reconstructed slice. A novel approach to perform the correction as part of the

reconstruction process is presented. It is shown that for iterative techniques,

which amount to optimizing an objective function, the ring artifacts correction

can be easily integrated in the formalism, enabling simultaneous slice

reconstruction and ring artifacts correction. This method is tested and compared

with mainstream correction techniques for both simulated and experimental

data. Results show that the correction is efficient, especially for undersampled

datasets. This technique is included in the PyHST2 code which is used at the

European Synchrotron Radiation Facility for tomographic reconstruction.

1. Introduction

1.1. Rings artifacts in tomographic reconstruction

During a tomographic acquisition process, some flaws in the

experimental setup can lead to unwanted artifacts appearing

on the reconstructed slice. Ring-shaped features are a well

known example of such artifacts. Even after pre-processing

steps like flat-field correction and median filtering, these

artifacts can remain and are detrimental to the reconstruction

quality. Therefore, multiple techniques have been developed

to tackle this problem.

Generally speaking, ring artifacts have various possible

causes. The presence of defective pixels in the detector leads

to sharp artifacts, while dust on the scintillator crystal can form

large artifacts. Experimental flaws can also include vibration

of the monochromator or tilt of the rotation axis. In almost all

cases, the defects appear as lines in the sinogram since they are

independent of the projection angle. These spurious lines give

rise to ring-shaped artifacts in the reconstructed object.

1.2. Related work

Various techniques have been proposed in the literature to

reduce or suppress the rings artifacts. As reported by Rashid

et al. (2012), these techniques can be classified into two groups:

sinogram pre-processing and reconstructed images post-

processing. The pre-processing methods aim at detecting and

correcting the spurious lines in the sinogram before applying

the reconstruction process, thus, rings do not form if the

method succeeds. A recent work (Miqueles & Bermúdez,

2014) reports a compressed sensing approach for rings arti-

facts reduction using a Total Variation denoising of the sino-

gram before calling the reconstruction routine. It is a

generalization of Titarenko’s algorithm (Titarenko et al., 2010)
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which consists of a regularization of the sinogram. This can

also be classified in the sinogram pre-processing techniques.

On the other hand, post-processing techniques work

directly on the reconstructed image, trying to extract the

concentric circles and filter them. These methods often

perform a transformation into polar coordinates to transform

the concentric circles into straight lines (Prell et al., 2009).

A comprehensive comparison of ring artifact removal

methods can be found by Rashid et al. (2012). Although these

methods certainly provide satisfactory results in their limited

framework, the authors report that no existing method is

really suitable for correcting different types of rings, since they

always introduce other distortions. Thus, the ring removal

problem cannot be considered as solved and is subject to

continual efforts. In this paper, a new approach to correct the

ring artifacts in a compressed-sensing framework is presented.

In this technique, the correction is intrinsically part of the

reconstruction process, hence can be neither viewed as sino-

gram pre-processing nor slice post-processing. The basic idea

is to split the sinogram into two components, one containing

the genuine sinogram and the other containing the artifacts

component. This approach bears some similarities with a

recent work (Mohan et al., 2014) where the artifacts model is

also included in the objective function which is optimized in

a non-homogeneous iterative coordinate descent. However,

the aforementioned method uses a L2 minimization, while

compressed sensing methods typically use Total Variation or

L1 regularization, which is adapted for undersampled data.

2. Preamble

In this section, we introduce the principle and the formalism of

compressed sensing tomographic reconstruction. This form-

alism is extended in x3 for ring artifacts correction.

2.1. Compressed sensing tomographic reconstruction

Computed tomography aims at reconstructing an image x

from a set of projections y = PðxÞ. Here y denotes the acquired

sinogram, x is the slice to be reconstructed and P is the

projection operator (while its adjoint P � = P T is the back-

projection operator). The classical filtered back-projection

algorithm enables the image to be reconstructed, but the

number of projections should be of the same order of the

number of rows in the image to have an acceptable recon-

struction according to the Shannon–Nyquist sampling

theorem. This is often impracticable, and the subsampling

leads to artifacts in the reconstructed image.

Compressed sensing techniques exploit a priori knowledge

on the image, like its sparsity, in order to bypass this limitation.

Instead of computing a closed form solution like in the filtered

back-projection technique, tomographic reconstruction by

compressed sensing amounts to an optimization problem,

x̂x ¼ argmin
x

f ðy; xÞ þ gðxÞ; ð1Þ

where f ðy; xÞ is a fidelity term of x with respect to the acquired

data y [henceforth f ðy; xÞ is denoted f ðxÞ], and gðxÞ contains

a priori knowledge on the image. In general, the regularization

term gðxÞ makes the problem non-smooth, which precludes

from using usual gradient-like algorithms xnþ1 = xn �

�nrf ðxnÞ.

Advances in convex analysis provide adapted methods,

based on proximal splitting methods (Combettes & Pesquet,

2009), which are a generalization of projected gradient. One

instance is the Iterative Shrinkage-Thresholding Scheme

(ISTA; see, for example, Daubechies et al., 2004). For a func-

tional split into a smooth term f and a non-smooth term g, the

first-order condition at an optimum x̂x reads

0 2 rf ðx̂xÞ þ @gðx̂xÞ;

0 2 rf ðx̂xÞ � x̂xþ x̂xþ @gðx̂xÞ;

ðIdþ @gÞðx̂xÞ 2 Id� rfð Þðx̂xÞ;

x̂x ¼ Idþ @gð Þ
�1 Id� rfð Þðx̂xÞ;

which suggests the use of a fixed point iterative scheme. Here

@g is the subgradient of g, and the operator ðIdþ @gÞ�1 is

called the proximal operator,

prox�g x̂xð Þ ¼ Idþ �@gð Þ
�1
ðx̂xÞ ¼ argmin

x

1

2�
x� x̂xk k

2
2 þ gðxÞ

� �
ð2Þ

so that one step of ISTA reads

xkþ1 ¼ proxg=L xk �
1

L
rf ðxkÞ

� �

where L is the Lipschitz constant of the gradient rf of the

fidelity term. Usually, the data fidelity term is an L2 norm, so

the calculation of the proximity operator of f is straightfor-

ward. On the other hand, the proximity operator prox�g of the

regularization term does not always have a closed form

expression.

2.2. Total variation regularization

Depending on the regularization term used in (1), the

reconstruction can yield very different results. If the regular-

ization term is null, the problems amount to a least-squares

reconstruction. This approach tends to blur the edges in the

reconstructed slice. A commonly used regularization term for

image denoising is the Total Variation which was introduced

by Rudin et al. (1992) as the Rudin–Osher–Fatemi model. This

prior has the property to preserve the image edges, which is

essential especially in tomographic reconstruction where the

object in the sample should be distinguishable. In a discrete

framework, the (isotropic) Total Variation (TV) is the L1

norm of the image gradient magnitude:

TV xð Þ ¼ rxk k1¼
X

i

ðr1xÞðiÞ2 þ ðr2xÞðiÞ2
� �1=2

: ð3Þ

Given an observed sinogram y, the Total Variation tomo-

graphy reconstruction problem aims at finding the regularized

image x satisfying
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argmin
x

1

2
y� Px
�� ��2

þ �TV xð Þ

� �
; ð4Þ

where � weights the regularization with respect to the data

fidelity term, and P is the projection matrix. If P is equal to the

identity matrix, the problem (4) is equivalent to the so-called

Total Variation denoising problem:

argmin
x

1

2
y� x
�� ��2

2
þ �TV xð Þ

� �
¼ prox�TV yð Þ: ð5Þ

Knowing the proximal map of the Total Variation regular-

ization term (see, for example, Michel et al., 2011), the

denoising problem can be solved by an iterative shrinkage-

thresholding scheme. Accelerated versions of ISTA, like the

Nesterov algorithm (Nesterov, 2007) or FISTA (Beck &

Teboulle, 2009), are particularly efficient for solving this

problem.

However, tomographic reconstruction is not a simple

denoising problem, since a projection matrix P appears in the

problem (4). Constructing a smooth dual of (4) would entail

inverting P TP which is an ill-posed problem. The Total

Variation tomographic reconstruction can be tackled with two

nested FISTA loops, each iteration being the solution of a

denoising subproblem (Beck & Teboulle, 2009),

denoise x�
1

L
P T Px� yð Þ

� �
: ð6Þ

Here L is the Lipschitz constant of rf ðxÞ = P TðPx� yÞ which

is calculated using the power method.

2.3. Dictionary Learning

Total Variation regularization performs well for piecewise-

constant images since edges and uniform regions are re-

inforced. However, for non-piecewise-constant images, the

cartoon effect might be prejudicial for the reconstruction

quality. Thus, another regularization technique has to be

considered for such images.

Most natural images have an intrinsic sparsity which can be

recovered by an adapted transform or by building the best

sparsifying basis. The latter technique is called Dictionary

Learning (DL). Given a set of N acquired signals yp, a number

of Nc basis vectors (or atoms) uk are built. Each signal yp is

expressed as a linear combination ðwp;1; . . . ;wp;Nc
Þ of the Nc

atoms. Dictionary Learning is a joint optimization of the

atoms D and the coefficients wp under the constraint of

sparsity:

argmin
D;W

X
p

yp �Dwp

�� ��2
s:t: 8 p ; wp

�� ��
0
� S: ð7Þ

Here �k k0 denotes the zero norm counting the number of non-

zero components of a vector.

In image processing problems, the image x is divided into N

square patches of size m�m pixels. Every patch area of index

ðpÞ is expressed as a linear combination of the atoms uk:

patchðpÞ ¼
X

k

wk;puk: ð8Þ

That is, for pixel i of the image x:

xi ¼
X

k

wk;pi
’kði� rpi

Þ; ð9Þ

where pi denotes the patch containing the pixel i, and rpi
is the

center of this patch so that i� rpi
belongs to the patch support.

In equation (9), the atoms ’k are already known, which

corresponds to a dictionary learned off-line.

Dictionary Learning techniques have been proposed for

sparse representation in X-ray tomography reconstruction

(Liao & Sapiro, 2008; Xu et al., 2012). They turn out to be

especially efficient in achieving a good reconstruction quality

even when few projections are available. To prevent discon-

tinuities at the patch borders, a functional enabling the patches

to overlap is proposed in PyHST2 (Mirone et al., 2014). The

tomographic reconstruction problem is

argmin
W

y� PxðWÞ
�� ��2

þ �DL wk k1þ � � hðWÞ; ð10Þ

where W = ðwk;pÞ
0� p<N
0� k<Nc

is the matrix containing the patches

coefficients, and h is a term promoting coherence between the

patches over the overlaps. The slice xðWÞ is a linear combi-

nation of the patches coefficients W, so the optimization is

performed with respect to these coefficients.

In PyHST2, the optimization problem (10) is solved with

the FISTA algorithm. The dictionary D is learned off-line with

EK-SVD (Mazhar & Gader, 2008). It turned out that using the

same dictionary for all the tests and the experimental data led

to good reconstruction results, thus, the same dictionary was

used for all the tests.

3. Rings correction in compressed sensing
reconstruction

We now present how rings correction can be handled directly

in the reconstruction process by integrating additional vari-

ables in the functional to minimize. This approach is inde-

pendent of the regularization used and can therefore be

applied in various frameworks like Total Variation and

Dictionary Learning. Sinogram pre-processing techniques

modify the acquired data to filter the unwanted lines. This

filtering often introduces new artifacts. On the other hand,

image correction techniques can also add new artifacts when

circular features are detected as artifacts; and the forward and

backward Cartesian–polar coordinate transforms lead to a loss

of precision even with a bilinear interpolation. When the rings

correction is performed in the reconstruction process, the data

are not modified.

In our approach, the rings correction consists of splitting the

sinogram into two components: the ‘genuine’ sinogram and

the spurious straight lines giving rings after back-projection.

Although ring artifacts have various causes, they often appear

in the sinogram as lines which are almost constant along the

projection angle. Thus, a natural approach is to model the

rings by constant lines in the sinogram. In iterative techniques,

the rings correction can be handled by additional variables r in

the fidelity term f ðy; xÞ: rings variables are stacked in a vector
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and added to the sinogram for each projection. The fidelity

term for one projection reads

f ðx; rÞ ¼
1

2
y� ðPxþ rÞ
�� ��2

2
: ð11Þ

Here Px and r do not have the same dimensionality; Pxþ r

means that a vector of rings variables is added to each line of

the sinogram as illustrated in Fig. 1.

A recent work (Mohan et al., 2014) also implements this

approach in a maximum a posteriori (MAP) framework. More

specifically, equation (3) therein describes a similar decom-

position of the sinogram y� ðAxþ dÞ where y is the sinogram,

A the projection operator, x the slice and d the rings vector

(also constant along the projection angle).

We emphasize the fact that the sinogram decomposition

into a genuine sinogram Px and spurious rings r is not a pre-

processing technique; the rings removal is intrinsically part of

the reconstruction process. At each iteration, the image x and

the rings variables r are adapted to minimize the energy

Fðx; r).

This splitting is done in the reconstruction process, so the

two components are updated after each iteration. In the end,

only the valid sinogram component is kept while the rings

variables are discarded. We give two examples of frameworks

using this approach: Total Variation regularization and

Dictionary Learning reconstruction.

3.1. Rings correction in Total Variation framework

When the sparsity-inducing prior is the Total Variation, the

functional Fðx; rÞ is

Fðx; rÞ ¼ f ðx; rÞ þ �TV xð Þ þ �r rk k1 ; ð12Þ

� being a parameter weighting the relative importance of

spatial regularization, and �r being a penalization parameter

for the rings.

While sinogram pre-processing techniques filter the lines

parallel to the projection angle, this approach forces the

sinogram to be decomposed as a sinogram Px and rings vari-

ables r. The sparsity constraint �r rk k1 forces the rings variables

to have only a few not null components, since the L1 norm is a

good approximation of the sparsity-inducing L0 norm.

The minimum of Fðx; rÞ is found with the Total Variation

regularization solver presented in x2.2. This iterative algo-

rithm has a step size � = 1/L where L is the Lipschitz constant

of the gradient rf .

This constant is an upper bound of the largest eigenvalue of

the Hessian r2f . Since the gradient is now taken with respect

to both image and rings variables, the Hessian is

r
2
x;r f ¼

r 2
x f r 2

r;x f

r 2
x;r f r 2

r f

� �
¼

P TP P T

P Id

� �
; ð13Þ

its largest eigenvalue is calculated using the power method.

Once the Lipschitz constant L is obtained, one iteration of

the FISTA denoising algorithm needs to compute

vkþ1 ¼ proxg=L vk�1 �
1

L
rf ðvk�1Þ

� �

¼ argmin
z

1

2
z� vk�1 �

1

L
rf ðvk�1Þ

� �����
����

2

2

(

þ
1

L
�TV zxð Þ þ

1

L
�r zr

�� ��
1

�
: ð14Þ

Here v denotes the augmented vector

v ¼
x

r

	 


containing both image and rings variables, and zx (respectively

zr) is the part of vector z containing image (respectively rings)

variables. Since the squared L2 norm is separable, the prox-

imal operator (14) can be written

vkþ1 ¼ argmin
z

(
1

2
x� xk�1 �

1

L
rf ðxk�1Þ

� �����
����

2

2

þ
1

L
�TV zxð Þ þ

1

2
r� rk�1 �

1

L
rf ðrk�1Þ

� �����
����

2

2

þ
1

L
�r zr

�� ��
1

)

¼ prox�TV=L xk�1 �
1

L
rx f ðxk�1Þ

� �

� prox�r �k k1=L rk�1 �
1

L
rr f ðrk�1Þ

� �
: ð15Þ

In short, the proximal operator is separable with respect to the

image and rings variables. This is convenient because rings and

image variables can be updated by solving two separate

subproblems in a FISTA iteration.

The first term in (15) is the denoising problem (5). The

second term is the proximity operator of the L1 norm, which

has a closed-form expression called the soft thresholding

operator,
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Figure 1
Principle of the rings separation. � is the projection angle and s is the
detector bin index. The vertical orange and green lines represent spurious
lines giving rise to ring artifacts. The decomposition Pxþ r forces the ring
values to be captured in the vector r (independent of the projection
angle). In the end, only the part without the rings r is returned.



prox� �k k1
uð Þ ¼ max juj � � ; 0ð Þ � sign uð Þ elementwise:

ð16Þ

3.2. Rings correction in Dictionary Learning framework

Similarly to Total Variation (x3.1), the proximal operator is

separable with respect to patch variables W and rings variables

r. The problem (10) becomes

argmin
W

y� ½PxðWÞ þ r	
�� ��2

2
þ �DL wk k1þ �r rk k1þ � � hðWÞ:

ð17Þ

On the other hand, in this case, the non-smooth term is only

the L1 norm which has a closed-form proximal operator (16).

Thus, the denoising problem is straightforward, and only one

FISTA loop is required.

3.3. Preconditioning the optimization problem

For iterative techniques, a crucial parameter acting on the

convergence rate is the condition number of the objective

function. When possible, a preconditioner is used to fasten the

convergence rate (Benzi, 2002). In both cases of Total Varia-

tion (x3.1) and Dictionary Learning (x3.2), the optimization

process can be speeded up by a preconditioner. It is well

known that in the back-projected slices the low spatial

frequencies are overrepresented with respect to high

frequencies. In our case, this leads to an ill-conditioned

reconstruction problem. Therefore, a ramp filter is applied in

the Fourier domain to give the proper weight to low and high

frequencies.

The filtering is done before back-projection in every itera-

tion, using a discretized version of the high-pass ramp filter

(Murrell, 1996) which does not set to zero the zero frequency

component. If there is only one iteration, the optimization

then reduces to the standard filtered back-projection. This

multiplication by a ramp filter can be seen as a preconditioner

transforming an ellipsoidal (ill-posed) problem into a sphe-

rical problem, thus fastening the rate of convergence.

The fidelity term f then becomes

f ðx; rÞ ¼ C y� Px� rð Þ
�� ��2

2
ð18Þ

where C is the preconditioner. The gradient is

rx;r f ¼
CPð Þ

T
ðPx� yþ rÞ

CTðPx� yþ rÞ

� �
: ð19Þ

Here the operator CPð Þ
T = P TCT is the filtered back-projec-

tion; so the preconditioner is identified with the high-pass

filtering process. We notice that the gradient with respect to

the rings variables should also be filtered.

4. Results

We present here some results for both simulated and real data,

and compare our method with two mainstream techniques of

rings correction: sinogram pre-processing based on wavelet-

Fourier de-striping (Münch et al., 2009) and image correction

using polar coordinates transformation (Prell et al., 2009). We

also present the results on simulated compressed sensing data,

on which our method is well adapted on the contrary to

filtered back-projection.

4.1. Simulated data

We use the standard test image ‘Lena’ containing both

smooth components and texture details, making it more

challenging to reconstruct than usual phantoms like the

Shepp–Logan phantom. For all these tests except the test on

simulated compressed sensing data (Fig. 5), the image size is

512 � 512 pixels, and 800 projections were used for the

reconstructions.

The tests are divided into increasing levels of difficulty for

rings removal methods. In the first test, constant lines are

added in the sinogram. These lines, independent of the

projection angle, give rise to rings artifacts in the recon-

structed slice. Since the spurious lines have a constant value,

they should be well handled by pre-processing techniques.

In the second test, lines with variable intensity are added to

the sinogram. This makes the correction more difficult for pre-

processing techniques, especially if the lines have sharp

variations (i.e. high-frequencies components).

In the third test, ring-shaped features are added in the

phantom before adding spurious lines in the sinogram. This

case is more challenging because correction methods should

not remove any feature coming from the phantom (they

belong to the ‘true’ image), while actually removing rings

coming from the sinogram (they come from a flaw in the

experimental setup).

The reference sinogram pre-processing technique is the

wavelet-Fourier filtering (Münch et al., 2009). This method

first computes the wavelet decomposition at a level L of the

sinogram. The vertical detail coefficients Vi at level i 2 ½½1;L		

emphasize the spurious lines that give rise to rings artifacts. In

these coefficients, a spurious line is nearly constant along the

projection angle; thus it has only low frequencies in the

Fourier domain. Filtering these few low frequencies in the

Fourier domain enables the line to be suppressed after taking

the inverse Fourier transform. The filter used is a high-pass

Gaussian filter whose standard deviation � tunes the band-

width. Then, the sinogram is reconstructed from these filtered

wavelet coefficients. The Matlab implementation of this

method is provided in the author’s article. In the tests, �
denotes the standard deviation of the Gaussian filter and L is

the number of levels of the wavelet decomposition.

The image correction technique used here is Rings

Correction in Polar Coordinates (RCP) (Prell et al., 2009). It

transforms the image into polar coordinates and performs a

low-pass filtering in the radial direction. The filtered image is

then subtracted from the original image, and a threshold is

applied to ignore non-artifact structures. The result is filtered

in the azimuthal direction. After a transformation into

Cartesian coordinates, the image should only contain rings

artifacts; these are subtracted from the original image. A C++
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implementation is given by Blair (2014). In the tests, the

thresholding parameters are set so that all the image pixels can

be considered as possibly part of an artifact. The important

remaining parameters are the maximum ring width W, and the

maximum angular arc �0 we expect the rings to have.

Fig. 2 shows the results for the first test case. The rings are

reduced by the sinogram pre-processing technique (Fig. 2c),

but they do not totally disappear. Besides, additional artifacts

appear after the correction. The RCP performs slightly better

(Fig. 2e); a strong artifact is added to the right but the result

is qualitatively better. The Total Variation regularization

entirely removes the rings (Fig. 2g). It can be seen (Fig. 2h)

that other rings were actually added to the slice, but their

amplitude is very small according to the scale (color bar), so

they are not detrimental to the reconstruction quality. The

Dictionary Learning reconstruction (Fig. 2i) removes the

rings, but the difference image (Fig. 2j) shows that the slice is

slightly blurred: the very fine details are smoothed.

Fig. 3 shows the results for the second test case. The sino-

gram filtering adds many spurious rings (Fig. 3c). The RCP

technique removes most of the rings, but small rings details

remain. The difference image (Fig. 3f) shows some artifacts

which may be the result of the different transformations

between Cartesian and polar coordinates. The Total Variation

regularization (Fig. 3g) entirely removes the rings artifacts; the

result is qualitatively very close to the original phantom. On

the other hand, the Dictionary Learning reconstruction does

not manage to perfectly correct the slice: a remaining ring can

be seen on Lena’s cheek (Figs. 3i and 3j). A solution can be to

increase the value of the parameter � [i.e. �DL in equation

(10)], but it would lead to a more blurry image. This suggests

that the Total Variation is more suited than Dictionary
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Figure 2
First test case. (a) Original phantom. (b) Result of filtered back-projection after adding constant lines in the sinogram. (c) Image back-projected after
applying the Munch et al. de-striper algorithm with � = 3.5, L = 2 and the ‘Daubechies 15’ wavelet. (d) Difference between the phantom and the corrected
image. The PSNR is 26.6. (e) Result of the correction with the RCP technique with W = 10 and �0 = 10. ( f ) Difference between the phantom and the
corrected image. The PSNR is 29.6. (g) Result of the reconstruction using the Total Variation regularization, with parameters � = 0.5, �r = 0.05. (h)
Difference between the phantom and the corrected image. The PSNR is 39.0. (i) Result of the reconstruction using the Dictionary Learning technique
with � = 0.3, �r = 0.5, � = 1. ( j) Difference between the phantom and the reconstructed image. The PSNR is 29.2.



Learning to correct the rings on a image containing many

texture components.

Fig. 4 shows the results for the third test case. Here two

features are added to the original phantom (Fig. 4a): a black

disk and a circular ‘ring’. These features are part of the

phantom; they should not be filtered by rings correction

techniques. Lines added to the sinogram are not constant

along the projection angle, and their width can be several

pixels. This leads to a back-projected image (Fig. 4b) with

large rings. The RCP technique (Fig. 4e) is more efficient than

the sinogram pre-processing (Fig. 4c).

The Total Variation (Fig. 4g) removes the rings, but also

nearly removes the circular feature of the phantom (Fig. 4a),

which gives the blue circle in the difference image (Fig. 4h).

The black disk is well preserved.

The Dictionary Learning technique (Fig. 4i) does not give as

good results as the Total Variation regularization. The black

disk is blurred, and the rings are not entirely corrected.

In practice, compressed sensing is especially interesting

when it comes to reconstructing a volume from few projec-

tions. In the previous test cases, the 512� 512 image needed

ð�=2Þ512 ’ 800 projections to be accurately reconstructed

with the filtered back-projection. Fig. 5 shows the result of the

third test case with 80 projections instead of 800. Filtered

back-projection (Fig. 5a) leads to star artifacts due to the data

undersampling. The reconstruction is much more satisfactory

with Dictionary Learning or TV regularization. In these

iterative methods, the ring artifacts correction can be turned

off (Fig. 5b) or on by simply adjusting one parameter. In all

cases, the black disk is preserved and the ring artifacts

correction did not suffer from the small number of projections.

One can notice that, in this case, DL produces smoother

results than TV, but does not entirely remove the rings

(Fig. 5c) while TV is able to entirely remove the rings (Fig. 5d).

A plot of the rings variables during the Total Variation

reconstruction shows that the rings are actually captured by
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Figure 3
Second test case.(a) Original phantom. (b) Result of filtered back-projection after adding lines of variable width and intensity in the sinogram. (c) Image
back-projected after applying the Munch et al. de-striper algorithm, with � = 1.5, L = 2 and the ‘Daubechies 15’ wavelet. (d) Difference between the
phantom and the corrected image. The PSNR is 29.2. (e) Result of the correction using the RCP technique with W = 10 and �0 = 10. ( f ) Difference
between the phantom and the corrected image. The PSNR is 25.1. (g) Result of the reconstruction using the Total Variation regularization, with
parameters � = 0.5, �r = 0.05. (h) Difference between the phantom and the corrected image. The PSNR is 39.4. (i) Result of the reconstruction using the
Dictionary Learning technique with � = 0.7, �r = 0.5, � = 1. (j) Difference between the phantom and the reconstructed image. The PSNR is 30.6.



the ring vector r. The six peaks representing the detected lines

in the sinogram are clearly visible in Fig. 6.

Beside the visual aspect of the corrected image, we use

the peak signal to noise ratio (PSNR) as a measure of the

correction quality. Although PSNR gives a score of the overall

similarity between the corrected image and the original

phantom, it is inconsistent with the eye perception of quality.

For example, RCP performed better than sinogram filtering

in these tests, but had the lowest PSNR for cases 2 and 3. The

structural similarity index gives the same kind of results. The

reasons for this inconsistence can be the following. The Munch

filter has a blurring effect, since it modifies the wavelet detail

coefficients, which is detrimental to the overall image quality.

However, the blurring effect is averaged in the MSE/SSIM

(mean squared error/structural similarity) calculation. On the

other hand, the polar filter does less blurring, but there are

strong local errors, leading to a high MSE. Quantitative

quality assessment is a difficult issue in tomographic recon-

struction, and to our knowledge no satisfactory metric adapted

to tomographic reconstruction has been proposed yet.

For these tests, the sinogram pre-processing technique did

not yield good results. This can be due to the fact that the

sinogram lines were captured by the wavelet approximation

coefficients rather than by the detail coefficients, making the

filtering ineffective. By trying with lines of smallest amplitude,

the wavelet-Fourier method actually worked without adding

large artifacts in the reconstructed image.

4.2. Experimental data

We give here some results for reconstructions performed on

real data. The samples were kindly provided by the ESRF

beamline ID19.

4.2.1. Syntactic foam. The reconstruction technique was

used on a syntactic foam sample. The slice was 2048� 2048

pixels, and 2449 projections were used. In this case, the rings
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Figure 4
Third test case. (a) Original phantom. (b) Result of filtered back-projection after adding lines of variable width and intensity in the sinogram. (c) Image
back-projected after applying the Munch et al. de-striper algorithm, with � = 2.5, L = 5 and the ‘Daubechies 20’ wavelet. (d) Difference between the
phantom and the corrected image. The PSNR is 23.2. (e) Result of the correction using the RCP technique, with W = 10 and �0 = 10. ( f ) Difference
between the phantom and the corrected image. The PSNR is 21.2. (g) Result of the reconstruction using the Total Variation regularization, with
parameters � = 0.5, �r = 0.05. (h) Difference between the phantom and the corrected image. The PSNR is 29.9. (i) Result of the reconstruction using
the Dictionary Learning technique with parameters � = 0.05, �r = 3� 10�3, � = 10. (j) Difference between the reconstruction and the phantom. The
PSNR is 28.3.



are ‘large’ to the extent that the radius difference between the

exterior and the interior of the ring is several pixels. This

means that the spurious lines in the sinogram have several

pixels of width along the detector bins axis, forming ‘bands’.

However, the intensities of the lines forming a band has too

many variations to be efficiently filtered by sinogram pre-

processing techniques. This case is also difficult for slice-

correction algorithms which detect circular features, since

the sample itself has circular features which should not be

removed. The RCP technique (Fig. 7b), however, only detects

circular features whose center is the image center. The Total

Variation technique (Fig. 7c) removes most of the rings, but a

relatively high � had to be chosen, which led to a somewhat

blurred result. The Dictionary Learning technique (Fig. 7d)

performs a better correction. Note that the dictionary has

been learned offline on the Lena image, and yet provided a

satisfactory reconstruction.

4.2.2. Rhynie chert. We applied the reconstruction on a

rhynie chert sample. The slice was 2048� 2048 pixels, and

2000 projections were used. This situation is almost the

opposite of the previous case: the rings artifacts have a small

intensity in the reconstructed slice, and the sample borders

form a nearly circular polygonal shape. These borders have a

huge amplitude with respect to the rest of the sample, and the

transition between the border and the interior/exterior is very

sharp. Thus, slice correction techniques would try to remove

the borders before any other feature in the slice depending on

the thresholding parameters.

We realised that the rings correction was difficult for the

Total Variation reconstruction: the procedure added rings

tangent to one of the slice borders. It turned out that the

problem was due to the rotation center for (back)projection

being improperly set, leading to accumulating errors in

the iterative reconstruction. Indeed, Total Variation and

Dictionary Learning reconstruction require to compute the
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Figure 5
Reconstruction of the third case phantom (Fig. 4a) with 80 projections
instead of 800. (a) Result of the reconstruction using the filtered back-
projection. (b) Result of the reconstruction using the Dictionary Learning
technique, without rings correction, with parameters � = 0.05, � = 10. (c)
Result of the reconstruction using the Dictionary Learning with rings
correction, with parameters � = 0.05, �r = 3� 10�3, � = 10. (d) Result
of the reconstruction using the Total Variation regularization with
parameters � = 1, �r = 0.05.

Figure 6
Vector of rings variables for the second test case (Fig. 3b). The horizontal
axis goes from zero to the number of bins of the detector; that is, in this
simulated case, 512 for the 512� 512 test image.

Figure 7
Syntactic foam sample tomography acquired at ESRF ID19, with energy
of 19 keV and pixel size of 0.28 mm. (a) Filtered back-projection. (b)
Correction with RCP technique, using the parameters W = 60 and �0 = 60.
(c) Reconstruction with Total Variation technique, using the parameters
� = 0.35 and �r = 1� 10�6. (d) Reconstruction with Dictionary Learning
technique, using the parameters �r = 0.1, �DL = 0.035 and � = 20.



projection for the functional, and the back-projection for the

functional gradient. If the rotation center for these operations

is not the same as the one used for actually rotating the

sample, slight errors appear in the (back)projection; these

errors accumulate with the number of iterations and take the

form of circular features (Fig. 8c).

After setting the correct rotation center, we were able to

remove the ring artifacts (Fig. 8d), especially the one near the

center of Fig. 8(a). In this case, the RCP technique performed

quite well (Fig. 8b).

4.3. Execution time and convergence rate

In this section we measure the execution time required

to obtain an acceptable reconstruction. All the tests are

performed on a machine with an Intel Xeon CPU E5-1607 v2

@ 3.00 GHz processor and a GeForce GTX 750 Ti graphic

card.

We measured that the execution time is the same with rings

correction and without rings correction: including the ring

artifacts correction in the functional has no additional cost in

the reconstruction. The execution time is proportional to the

number of projections, as can be guessed with Fig. 9, since

more data have to be processed by the operators.

The values of the objective function as a function of the

number of iterations is an illustration of the convergence rate.

For Total Variation reconstruction, the objective function

is given by equation (12); it includes both the fidelity term

(Euclidean distance) and the regularization term (L1 norm of

the image gradient). For Dictionary Learning, it is given by

equation (17).

Fig. 10 shows the evolution of the objective function

[equation (12)] as a function of the number of iterations. With

rings correction, the reconstruction process needs more

iterations to converge. For simulated and real data, it turned

out that a satisfactory reconstruction can be achieved with less

than 1000 iterations without rings correction. When the rings

correction is activated, it takes about 2000 iteration to

correctly remove the ring artifacts.

Thus, while the rings correction has no additional cost per

iteration, it takes nevertheless more iterations to converge to

an image with removed ring artifacts. The ‘energy transfer’

between the fidelity term ky� ðPxþ rÞk2
2 and the L1 norm of

the rings krk1 is actually quite slow. Using another optimiza-

tion algorithm might accelerate the convergence of the joint

optimization with respect to x and r.

The convergence rate also slightly depends on the number

of projections. Fig. 10 shows that the reconstruction process

converges in 500 iterations (400 with rings correction) for 200

projections, when it takes about 2000 iterations (1500 without

rings correction) for 800 projections. This is due to the fact

that the weight of the fidelity term virtually increases as the

number of projections increases. To counter-weight this, one

has to increase the penalty term � of the regularization, which

makes the energy transfer between the fidelity term and the

ring variables a little faster.

The reconstruction parameters like the Total Variation

penalization and rings correction weight depend on the data.

For most data in parallel geometry, the same parameters can

be used for all the slices. Thus, one single slice can be used

for the parameters optimization. The parameters are chosen

manually to have a good reconstruction quality. An approach

towards automatic parameters optimization might be the L-
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Figure 8
Rhynie chert sample tomography acquired at ESRF ID19, with energy
of 17.6 keV and pixel size of 1.52 mm. (a) Filtered back-projection with
the correct rotation axis. (b) Correction with the RCP technique, using
the parameters W = 10 and �0 = 10. (c) Reconstruction with the Total
Variation regularization using the incorrect rotation axis. (d) Reconstruc-
tion with the Total Variation regularization using the correct rotation axis.
The parameters were � = 3� 10�3 and �r = 3� 10�4.

Figure 9
Execution time as a function of the number of projections for 1000
iterations. The image used is the 512� 512 test image ‘Lena’ corrupted
with the rings presented in the second test case.



curve method (Hansen & O’Leary, 1993), which is not used

here.

5. Conclusions

We have presented a new way to correct the rings artifacts that

appear in tomographic reconstruction. This technique fits well

in the scope of compressed sensing tomographic reconstruc-

tion, since it is especially adapted when the number of

projections is limited. Including the rings artifacts correction

in the iterative reconstruction process has shown to be effi-

cient while requiring no extra pre- or post-processing steps.

Besides, additional artifacts are less likely to appear thanks

to the regularization. This method can be adapted to any

compressed sensing approach, since the only things to do

are modifying the functional and the iterative correction step

accordingly.

In a further work, we would like to improve the conver-

gence rate of the rings correction in order to make the method

more attractive, for example using other optimization algo-

rithms. We also would like to extend this method to lines that

are not constant along the projection angle in the sinogram, in

order to cover more general and difficult cases.
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Figure 10
Energy as a function of the number of iterations for the Total Variation
tomographic reconstruction. The energy is normalized by the energy of
the last iteration in order to have the same scale in the two cases. The
image used is the 512� 512 test image ‘Lena’ corrupted with the rings
presented in the second test case. (a) Evolution of energy with 800
projections. (b) Evolution of energy with 200 projections.
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