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Phase-contrast X-ray imaging using a paper analyzer enables the visualization of

X-ray transparent biological structures using the refractive properties of the

sample. The technique measures the sample-induced distortions of a spatially

random reference pattern to retrieve quantitative sample information. This

phase-contrast method is promising for biomedical application due to both a

simple experimental set-up and a capability for real-time imaging. The authors

explore the experimental configuration required to achieve robustness and

accuracy in terms of (i) the paper analyzer feature size, (ii) the sample-to-

detector distance, and (iii) the exposure time. Results using a synchrotron source

confirm that the technique achieves accurate phase retrieval with a range of

paper analyzers and at exposures as short as 0.5 ms. These exposure times are

sufficiently short relative to characteristic physiological timescales to enable

real-time dynamic imaging of living samples. A theoretical guide to the choice of

sample-to-detector distance is also derived. While the measurements are specific

to the set-up, these guidelines, the example speckle images, the strategies for

analysis in the presence of noise and the experimental considerations and

discussion will be of value to those who wish to use the speckle-tracking paper

analyzer technique.

1. Introduction

Phase-contrast X-ray imaging (PCXI) allows soft tissue

discrimination of X-ray-transparent biological samples, with

contrast improvements and the additional possibility of

smaller radiation doses when compared with conventional

absorption-based imaging (Paganin et al., 2002; Zambelli et

al., 2010). As such, PCXI is increasingly used in biomedical

research and shows potential for future clinical application

(Castelli et al., 2011; Olivo & Castelli, 2014). However, many

existing phase-contrast methods require multiple exposures

for quantitative phase retrieval and thus do not permit the

quantitative imaging of dynamic samples. Propagation-based

phase-contrast imaging is a simple single-exposure method

suitable for live imaging, and provides useful edge enhance-

ment but has limited sensitivity to slowly varying phase

gradients (Gureyev et al., 2009). More sensitive techniques

include crystal analyzer-based (Davis et al., 1995; Ingal &

Beliaevskaya, 1999) and interferometric methods (Momose et

al., 2003; Pfeiffer et al., 2006). However, multiple images are

usually required for phase retrieval using these techniques.

Some quantitative information can be gained from a single

image, but this requires assumptions, for example regarding

sample composition (Paganin et al., 2002).
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Morgan et al. (2012) and Berujon et al. (2012) first described

a single-image ‘paper analyzer’ or speckle-tracking method

that is sensitive to slowly varying phase gradients and can

extract differential phase information in two directions from a

single exposure, combining them to give quantitative phase

depth. The technique uses the sample-induced distortion of a

spatially random reference pattern to extract this differential

phase contrast. A spatially random phase mask is responsible

for creating the detailed high-contrast reference pattern via

propagation-based phase contrast, making the technique

inexpensive and practical. The paper analyzer technique has

the set-up simplicity and speed of propagation-based PCXI, as

well as the imaging sensitivity to small transverse phase shifts

seen with crystal analyzer and interferometric methods. As

such, this method is effective for the imaging of dynamic

processes using short single-exposure times.

Whilst the paper analyzer technique has been demonstrated

with both sandpaper and biological filtering membrane as the

reference pattern (Berujon et al., 2012; Morgan et al., 2012), it

is unknown how sensitive the experimental set-up is to the

phase reference objects. Similarly, the choice of imaging

parameters required to achieve accurate phase retrieval is not

well defined. In this paper, we first study the effect of the

feature size of the phase mask on the achievable sample size

resolution and the accuracy of the image reconstruction.

Secondly, we look at the analysis of noisy images to push the

limits of exposure time to enable high-speed imaging of

dynamic processes. Finally, we consider the effect of sample-

to-detector distance on the reconstructed image quality. As

propagation distance increases we increase phase contrast and

the magnitude of the sample-induced transverse shift in the

reference pattern, at the expense of a loss in flux and

increasing artifacts from propagation-based fringes at the

edges of the sample. We formulate some general rules that can

be used to guide propagation distance selection.

2. PCXI using a paper analyzer

The simple experimental set-up is shown in Fig. 1. First, an

incident X-ray wave is distorted by the paper analyzer and

using propagation-based X-ray imaging produces a ‘reference’

speckle pattern around 1 m downstream of the sandpaper. The

sample is then introduced a few centimeters downstream of

the paper analyzer, which, with further propagation, produces

a slightly distorted ‘sample-and-reference’ speckle pattern as a

result of the phase changes induced by the differing refractive

indices and thickness of the sample. Local transverse shifts in

the spatially random speckles of the reference image occur

when the sample changes the local direction of propagation of

the X-ray wavefront, hence distorting the pattern observed

downstream at the detector.

The transverse local shifts of the speckles in the reference

pattern are then determined at each position (x, y) using

a cross-correlation technique. An interrogation window is

placed around each pixel in the ‘sample-and-reference’ image

and is scanned to locate the same reference pattern at the

original position in the reference image. A variety of feature

tracking techniques have been developed, each with benefits

and limitations, as described by Lewis (1995). However, few

comparisons have been made between these. Normalized

cross-correlation is preferred in order to overcome the

variations in image intensity that occur across the interroga-

tion field, and cross-correlation is performed in the Fourier

domain for computational speed. Other techniques may pose

difficulties for use with highly speckled reference images, as

some require adequate low-frequency information or result in

errors in the presence of textured images (Lewis, 1995). The

cross-correlation analysis used in the experiments is described

in detail by Morgan et al. (2011a). The transverse shift,

Sðx; yÞ = ½Sxðx; yÞ; Syðx; yÞ�, required to locally align the

images, is resolved into x and y components Sx and Sy to give

two differential phase-contrast images. A typical experimental

result is shown in Fig. 2, where panel (a) shows the horizontal

components Sx of the shift, and panel (b) shows the vertical

components Sy of the shift at each location across the image.

Experimental details are discussed in x3.

Two sample phase gradients @’=@x and @’=@y are calculated

from the two shift images (Sx and Sy) and integrated according

to the Fourier derivative theorem (Kottler et al., 2007; de

Jonge et al., 2008) to give

’ðx; yÞ ¼ kF�1

 
F tan�1 Sxðx; yÞ

z

� �
þ i tan�1

Syðx; yÞ

z

� �� �
.

ikx � ky

� �!
; ð1Þ

where ’ðx; yÞ is the sample phase depth, for radiation with a

wavenumber k, and sample-to-detector distance z, where F

denotes the Fourier transform with respect to (x, y) and kx and

ky are the Fourier-space coordinates corresponding to (x, y).

The resulting phase depth map of the spheres is shown in

Fig. 2, where panel (d) shows the two-dimensional grayscale

map, and panel (e) shows the three-dimensional projected

phase depth. The projected thickness can be calculated from

the phase depth for a homogeneous sample of thickness

T(x, y) and complex refractive index decrement � [where

’ðx; yÞ = �k�Tðx; yÞ].
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Figure 1
Experimental set-up for quantitative single-exposure phase-contrast
imaging using a random phase mask. Here X-rays from a source pass
through a piece of sandpaper to produce a ‘reference’ speckle pattern.
The yellow dotted line represents an X-ray reaching the detector in the
absence of any sample. A sphere is introduced downstream of the
sandpaper and results in a change in the direction of propagation of the
X-ray wavefront, shifting the pattern downstream, as represented by the
yellow arrow. The transverse shift is represented here by Sx. The shift is
also resolved into the y component Sy .



Profiles of the retrieved sphere thickness taken using the

paper analyzer method were compared with a theoretical

projected thickness, using the normalized root-mean-square

(RMS) error as a measure of accuracy, defined as

RMS error ¼

P
m T m

T � T m
R

�� ��2P
m T m

T

�� ��2
 !1=2

: ð2Þ

Here, TT is the theoretical sample thickness, TR is the recon-

structed sample thickness, and m is the integer pixel co-ordi-

nate. A comparison between the profiles of a reconstructed

image and the theoretical image is shown in Fig. 2( f). The

RMS error was calculated for the entire profile, to encompass

both spheres and the vacuum space in between.

3. Experiment

We assessed the effect of changing imaging parameters,

including (i) the paper analyzer feature size, (ii) propagation

distance and (iii) exposure time. To do this we compared

images of both Perspex spheres of diameter 1.5 mm and glass

spheres with a specified diameter size range of 63–75 mm in

order to test the paper analyzer technique on materials of

different refractive indices, sizes and phase gradients (a

perfect sphere, according to the projection approximation,

provides phase gradients from zero to infinity in all direc-

tions). A simple phantom is also required in order to calculate

an accurate theoretical thickness to compare with the

experimental retrieved thickness.

Images were acquired at the biomedical imaging beamline

BL20XU at the SPring-8 synchrotron facility, Hyogo, Japan. A

crystal Si-111 monochromator was used to select X-rays at an

energy of 25 keV. The source-to-sample distance was 245 m

and the sample-to-detector distance was varied between 25 cm

and 100 cm. The paper random phase mask was placed 7 cm

before the sample. The detector system comprised a 2560 �

2160 pixel sCMOS camera (pco.Edge) and a YAG 30 mm-thick

phosphor with a 20� magnification lens to give an effective

pixel size of 0.29 mm.

The sample comprised Goodfellows ME306810/3 PMMA

(Perspex) 1.5 mm spheres with a �5% tolerance in diameter,

and glass spheres with a specified diameter size range of 63–

75 mm. The sample was imaged using eight types of KMCA

silicon carbide electro-coated abrasive sandpaper with

different grain sizes as the paper analyzer. Two pieces of paper

were also used: a piece of paper towel and a piece of Reflex

Ultra White A4 Paper. Images were also recorded at exposure

times of 0.5 ms, 1 ms, 5 ms and 10 ms. In all cases the speckle

features were resolved by the detector, which is a limiting

factor since reconstruction is impossible if this criterion is not

met. We focused on increasing the analyzer feature size with

respect to the sample feature size.

When performing the cross-correlation computation, an

interrogation window (20 � 20 pixels) was stepped pixel by

pixel for a total shift of 10 pixels in both the horizontal and

vertical planes, in order to locate the sample-induced distor-

tions of the reference image. This interrogation window was

sufficiently large to always include a reference feature, but not

so large as to smooth out sample features. Ten pixels was the

maximum shift observed in the images. Image profiles were

aligned manually to perform RMS error evaluation. The

variation in RMS error was less than 0.2% for shifts of ten

pixels relative to the aligned position for the different paper

analyzers, and less than 1% for different exposure times and

propagation distances. This can be taken as an indication of

the magnitude of error bars on the plots below.

4. Results

4.1. Paper analyzer

A plot of the RMS error in the reconstructed sample

projected thickness for each of the different types of sand-

paper and two types of paper is shown in Fig. 3. The profiles

for each of the eight pieces of sandpaper showed good

correspondence with a normalized RMS error of less than 9%
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Figure 2
Differential shift images: (a) Sx(x, y) and (b) Sy(x, y). Here the sample
comprises both glass and Perspex spheres ranging from 63 mm to 1.5 mm
in diameter. The smallest feature size sandpaper is used in this figure, with
a grain size of 15.3 mm, and the sample-to-detector distance is set at
75 cm. These differential shift images are calculated from the transverse
shifts in speckle pattern that occur in the ‘reference and sample’ image
(c). The two differential shift images are then used to reconstruct a
projected phase depth of the sample (d) which can also be shown as a
three-dimensional surface plot (e). A comparison is made between the
reconstructed quantitative phase depth and the theoretical phase depth
by taking a profile of the reconstructed image ( f ).



for all papers tested. The lowest error was 5.6%, achieved with

the sandpaper of 58.5 mm feature size. This error is compar-

able with previous studies by Morgan et al. (2011a), which

obtained a normalized RMS error of 3.2% on the same 1.5 mm

Perspex spheres using a periodic grating in place of the

sandpaper. The vacuum error for the reconstruction was also

minimal, as seen in the profile of Fig. 2( f). Using sandpaper of

grain size 15.3 mm, the retrieved phase depth of the vacuum

had a mean error of 1.6 rad in the presence of 50 rad features.

Fig. 3 demonstrates that in our images the RMS error does

not change significantly with increasing grain size. This is

despite the average grain size ranging from 15 mm to 200 mm.

Images of four different pieces of sandpaper are shown in

Figs. 4(a)–(d).

The sandpaper image shows that all the pieces of sandpaper

had a similar high-frequency reference pattern in the back-

ground despite their differing average grain size. This is likely

due to the texture of the paper, which supports the sand grains,

as well as the glue that binds the grains onto the paper. To

confirm this observation we performed a rotationally averaged

autocorrelation on each of the sandpaper images, which is

shown in Fig. 5.

In spite of the great variation in grain sizes and contrast

across the sandpaper, the paper analyzer technique was able

to utilize the high-frequency background features as a refer-

ence pattern and reconstruct images with an approximately

uniform RMS error calculated for each of the different pieces

of sandpaper. This result is testament to the robustness of the

technique to a range of reference objects. Even the coarsest

sandpaper (Fig. 4d) with very strong propagation-based

fringes seen at the grain edges and varying contrast across

the reference image (inside/outside/at the edges of grains)

achieved a reconstruction with only 7.6% error. This is in

contrast to grating interferometry and spatial harmonic

methods where grating imperfections can lead to artifacts or

loss of contrast (Bech et al., 2009; Olivo et al., 2009; Wen et al.,
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Figure 4
Cropped and magnified PCXI reference images of six different materials
used as a paper analyzer: (a) sandpaper of 15.3 mm feature size, (b)
sandpaper of 40.5 mm feature size, (c) sandpaper of 82 mm feature size,
(d) sandpaper of 201 mm feature size, (e) paper towel used as an analyzer,
( f ) Reflex Ultra White A4 Paper used as an analyzer. The sample-to-
detector distance was set at 75 cm. The visibility (calculated using
Michelson’s definition, after eliminating outliers, that is those pixels
occupying a gray level outside the central histogram peak, with the
central peak edges defined as where the number of pixels of that gray
level falls below 5 in the 2560 � 2160 image) for panels (a)–( f ) are 0.93,
0.97, 0.95, 0.96, 0.88 and 0.82, respectively. Measuring visibility using a
profile across the image (as performed with regular grid patterns) gives a
visibility of 0.55–0.60 for the sandpapers and 0.35–0.40 for the tissue
papers. A linear grayscale from 400 to 19000 is used for images (a)–(d),
and from 4000 to 11000 for images (e) and ( f ).

Figure 5
The rotationally averaged autocorrelation functions of the different
pieces of sandpaper are represented by different colored lines. The
legend lists the sandpaper grain size in micrometers corresponding to the
matching line color. The autocorrelation function is at a peak when there
is no displacement and the peak height is normalized to 1.

Figure 3
RMS error in recovered phase depth for eight pieces of sandpaper with
different grain sizes ranging from 15.3 mm to 201 mm (red dots), together
with a piece of paper towel or a piece of Reflex Ultra White A4 Paper
as the analyzer (blue dots). The sample-to-detector distance was set at
75 cm. As mentioned in x4.1, the variation in RMS error was less than
0.2% for shifts of ten pixels relative to the aligned position. The error bars
are less than 0.2% RMS error, which is smaller than the data points.



2010). Image reconstruction was performed using both a piece

of paper towel and a piece of printer paper as the analyzer,

with an RMS error of 6.9% and 7.9%, respectively, which

shows how simple and inexpensive the optics for this method

can be, particularly when using a highly coherent X-ray source.

Random phase objects will also avoid aliasing artefacts when

imaging periodic objects, in contrast to purpose-built periodic

grids. Moreover, there is a possibility that the image imper-

fections caused by rough or imperfect optical elements could

in fact be utilized in or as the speckled reference pattern,

turning what is ordinarily detrimental to an imaging system

into a constructive component of the imaging process. It is

recognized that a purpose-built analyzer has the advantage of

being able to analyze with maximum sensitivity in a particular

direction and can create reference patterns of optimized

visibility for reliable tracking of reference pattern shifts in the

presence of noise.

More detailed characterization of the speckle reference

patterns could calculate the characteristic length scale distri-

bution, in order to select an analyzer to provide the required

reconstructed image resolution. The angular accuracy is

limited by the detector pixel size and the sample-to-detector

distance (Morgan et al., 2013; Berujon et al., 2012), but can also

be degraded in the presence of noise and a low-visibility

reference pattern with slowly varying features. In general, the

main requirement for high-quality imaging is that the refer-

ence pattern is consistent across the image and that features

are high contrast, well-resolved and, in size, of the order of

resolution that is desired. If the reference pattern features are

too close to the detector pixel size, such that they cannot be

well resolved, this will result in poor reference pattern visi-

bility, and the features will be difficult to track in the presence

of noise.

4.2. Exposure time

We compared the reconstructed profiles from raw images

taken with four different exposure times of 0.5 ms, 1 ms, 5 ms

and 10 ms, using the smallest sized grain sandpaper (15.3 mm)

as the paper analyzer. Before image reconstruction, four

different pre-processing methods were applied to the raw

images in order to determine a suitable method for reducing

noise levels and thus improving the quality of the recon-

structed images at ultra-short exposure times. A plot of the

RMS errors in the phase retrieval as a function of exposure

time, on a single raw image and after each of the four pre-

processing methods, is shown in Fig. 6, and the five methods

are outlined in detail in the caption.

Using a single unfiltered image for analysis, the RMS error

of the reconstructed images decreased considerably with

increasing exposure time (from 46.3% at 0.5 ms to 15.2% at

10 ms). This was expected due to the decreased noise in

images with longer exposures. Averaging 20 images together

also decreases the detector noise due to random fluctuations.

However, at an exposure of 0.5 ms, averaging 20 images

resulted in the largest RMS error of 59.7%. At very short

exposure times, dark current dominates the image. We esti-

mate that the 0.5 ms exposure image is in fact only 31% X-ray

signal and 69% dark current, found by plotting the number of

counts against exposure time for all images. Averaging these

short exposure images decreases the amount of noise present,

leaving not only a stronger X-ray signal but also a stronger

image of the structured component of the dark current. When

this structured dark current makes up a larger proportion of

the image than the X-ray signal, the speckle-tracking analysis

‘tracks’ the position of the dark current instead of the X-ray

signal, biasing the detected ‘shift’ towards zero and decreasing

the quality of the reconstructed image. These errors can be

seen in Fig. 7, which shows the differential vertical shift Sy

obtained (a) when using the average of 20 images at 0.5 ms

exposure for analysis, and (b) when using the single image at

0.5 ms exposure, respectively. Note that the high-frequency

noise seen in Fig. 7(b) is damped during the integration when

reconstructing the projected sample thickness. In Fig. 7(a) the

speckle-tracking process biases towards no shift (gray) since

the dominant dark current and hot pixels do not shift and

therefore the process fails to detect the vertical gradient across

the spheres. The high-frequency low-count noise in the single

exposure is of a similar frequency to the dark current and hot

pixels and hence can help to ‘drown out’ the structure inherent

in the detector images. We attempted to ‘correct’ for the dark

current by subtracting an averaged dark-current image from

both the reference speckle image and the sample-and-refer-

ence speckle image. While subtracting the dark current from

either one of these images reduced the problem of the bias

towards zero shift, if the dark current image was subtracted

from both these images this actually increased the similarity of

the two images (particularly given that the dark-current signal
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Figure 6
Comparison of RMS error values for different exposure times of 0.5 ms,
1 ms, 5 ms and 10 ms, and different pre-processing methods. 1 image: a
single image taken at each exposure time was left unprocessed and the
phase depth was reconstructed; 20 images: the average of 20 images taken
with the same exposure time; Median filter 1: a median filter with a radius
of 10 pixels was first applied to the single raw image; Median filter 2: a
median filter with a radius of 5 pixels was first applied to the single raw
image; Mean filter: a mean filter with a radius of 5 pixels was first applied
to the single raw image. Note that the reference image was taken with a
100 ms exposure time for all reconstructions; given a high signal-to-noise
ratio reference is best practice and not difficult to acquire experimentally.
The error bars are less than 0.5% RMS error, which is smaller than the
data points.



occupied more gray levels than the speckle signal), and

increased the problem of a bias towards zero shift. A similar

effect is seen with a flat-field correction. Filtering out high-

frequency noise (by median-filtering any pixels that were

greater than two standard deviations from the gray-level value

of their neighbors) was more effective at removing dark

current and hot pixel structure without introducing similarities

between the speckle reference and the sample-and-reference

speckle images. Fig. 7(c) shows our best differential phase

reconstruction at 0.5 ms, the result of comparing a single

sample-and-reference speckle image (with high-frequency

noise filtering but no dark-current subtraction) to a 20-image-

averaged reference speckle image, that has undergone both

dark-current subtraction and high-frequency noise filtering.

The Median filter 1, Median filter 2 and Mean filter all

resulted in consistently low RMS errors for each of the

reconstructed images. At 0.5 ms exposure we obtained an

RMS error of only 14.5% using the Median filter 1, which is

comparable with the most accurate reconstruction with an

RMS error of 12.2% achieved with an exposure of 10 ms (20

times longer). Overall, the Median filter 1 (10 pixel radius)

produced the most accurate reconstructions. The significant

decrease in RMS error associated with applying the Median

filter 1 is promising in terms of achieving high-quality images

with greatly reduced exposure time and radiation dose. Note

that if the reference pattern contained higher-frequency

signals and/or the propagation distance was shorter, the filter

width may need to be decreased in order to preserve the

position and visibility of the shifted reference features.

Previous experiments using the paper analyzer method

(Morgan et al., 2012) were able to visualize samples with an

exposure time of 150 ms. We have demonstrated accurate

phase retrieval with exposures as short as 0.5 ms. These

exposure times are sufficiently short, relative to characteristic

physiological timescales, to enable real-time imaging of

dynamic samples. Real-time imaging enables us to visualize

changes in physiological systems, and a future application

of the paper analyzer technique is the in vivo imaging of

function.

4.3. Propagation distance

The accuracy of the reconstructed phase depth was eval-

uated at propagation distances of 25 cm, 50 cm, 75 cm and

100 cm and the reconstruction of the small Perspex spheres

was compared with the larger glass sphere at each of these

propagation distances. To evaluate the effect of propagation

on the detection of different phase gradients across the sphere

the RMS error value for the thickness profile near the edge of

the Perspex sphere was compared with the thickness profile in

the bulk of the sphere. The very edges of the sphere (where

the sphere meets air) were excluded from this RMS error

calculation as they have considerably larger error values due

to propagation-based fringes that affect the reconstruction

process. We sought to eliminate this error in order to more

fairly compare reconstructions from the large phase gradients

towards the edge of the sphere with the smaller phase gradi-

ents in the bulk of the sphere. Each of these plots is shown

in Fig. 8.

Overall the profile error decreased with an increase in the

propagation distance, with considerable improvement in

reconstruction from 29.8% error at 25 cm to 10.7% error at

100 cm. This result is expected, as the transverse shift induced

by the sample will increase with propagation and therefore be

more easily detected (Bennett et al., 2010; Morgan et al., 2012).

Whilst the reconstruction of the large spheres improved

with increasing distance, the reconstruction of the small

spheres did not and had poor correspondence with all RMS

errors above 50%. The propagation-based phase-contrast

fringes from the edges of the small spheres are comparable in

size with the spheres themselves and so affect the quality of

the reconstruction, seen in Figs. 2(a) and 2(b). The fringes
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Figure 7
Differential shift images: (a) Sy(x, y) with the average of 20 images at 0.5 ms exposure used for analysis, and (b) Sy(x, y) with a single image at 0.5 ms
exposure used for analysis. The differential shift image obtained using the average of 20 images, as shown in (a), fails to detect the vertical gradient across
the spheres because of a stationary and structured dark current, resulting in the visibly uniform gray appearance. In spite of the high-frequency noise
seen in (b), the differential shift image obtained using a single image shows the change in gradient across the spheres. When these images are integrated
to give the total thickness, (b) gives a considerably more accurate reconstruction. Our best differential phase reconstruction at 0.5 ms is shown in (c),
which was reconstructed using a single sample-and-reference image with only high-frequency noise filtering, to a 20-image-averaged reference speckle
image with both dark-current subtraction and high-frequency noise filtering.



impact significantly on the ability to track the sample-induced

shifts in the reference image and subsequently lead to poor

edge reconstruction, which is visualized in Fig. 2( f) with the

comparison of the theoretical profile with the reconstructed

profile. These errors represent a significant proportion of the

total thickness at the edge of the sphere, and thus result in high

RMS error values. Morgan et al. (2012) proposed the potential

for more advanced phase extraction techniques, which could

use the reconstructed spheres to estimate propagation-based

fringes and then subtract these before performing the cross-

correlation analysis, thus minimizing the impact of edge arti-

facts. Future work could also look at combining contrast

mechanisms using the ideas presented by Pavlov and collea-

gues for unifying analyzer-based PCXI with propagation-

based PCXI (Pavlov et al., 2004, 2005). It is also possible that

the spatial resolution of the technique is limiting the accuracy

of these smaller sample features, an issue encountered in all

imaging modalities. In previous studies using this technique,

the reconstruction of a 3 mm cylinder produced an RMS error

of 1.8% (Morgan et al., 2011b), whereas the reconstruction of

a 1.5 mm sphere resulted in an error of 3.2% (Morgan et al.,

2011a). The paper analyzer technique trades spatial resolution

for increased speed of imaging and sensitivity to slowly

varying phase gradients. Whilst the quantitative analysis of the

small glass spheres in our study was not very accurate, images

were still qualitatively good and closely resembled the sample.

This reaffirmed that the phase reconstruction technique is best

suited to slowly varying samples that do not provide significant

edge enhancement.

As with our previous observations, the reconstruction of

both the low-gradient and high-gradient regions of the larger

sphere improved with increasing sample-to-detector propa-

gation. There were two main findings from this comparison.

Firstly, the low-gradient region of the sphere had a more

accurate reconstruction than the high-gradient region of the

sphere at all propagation distances excepting 25 cm. This first

observation is somewhat unexpected. Although the paper

analyzer technique measures the first derivative of the phase

and is therefore more sensitive to slowly varying phase

gradients than propagation-based methods (Morgan et al.,

2012), we would still expect the strong diffraction that occurs

towards the edge of samples to create a transverse shift that

was more easily detectable, and hence the high-gradient

region would be more accurately reconstructed. A possible

explanation for this is again the normalized RMS error

calculation. The thickness of the sphere is greatest in the

center of the sphere and so any errors in the measured

gradient here make a comparatively small contribution to the

total thickness. We also know that the propagation-based

fringes that occur at the edges of samples can lead to poor

reconstruction and this could explain the high error values

calculated for the edges of the 1.5 mm sphere. The less accu-

rate reconstruction at 25 cm could result from the weak phase

gradients towards the center of the sphere, which would cause

only a small transverse shift at such a short propagation

distance. Because the image we evaluate is reconstructed using

integration, each pixel in the reconstructed image uses infor-

mation from surrounding pixels in the gradient image. Hence,

the errors in the low-gradient regions of the thickness image

come from errors in both the high- and low-gradient regions of

the gradient image.

Secondly, the accuracy of the reconstructed projected

thickness of the bulk of the sphere improved more dramati-

cally with increased sample-to-detector distance, which was to

be expected. The paper analyzer technique is more sensitive to

weak phase gradients at longer sample-to-detector distances

because the magnitude of the transverse reference pattern

shift will increase with propagation and thus be more easily

detected (Morgan et al., 2012). Comparatively, the high-

gradient region of the spheres will refract the X-rays more

strongly and thus create a transverse shift that is more easily

detected at shorter propagation distances (Morgan et al.,

2012).

Selection of a suitable propagation distance is important

when considering biomedical applications, which may require

visualization of particular features of a specimen. We desire a

sample-to-detector distance long enough to create phase

contrast so that we can detect the sample-induced transverse

research papers

J. Synchrotron Rad. (2015). 22, 1279–1288 Isobel A. Aloisio et al. � Rapid speckle-tracking phase-contrast X-ray imaging 1285

Figure 8
Comparison of the RMS error values at different sample-to-detector
propagation distances. (a) RMS error (%) expressed at sample-to-
detector distances of 25, 50, 75 and 100 cm. A comparison is made
between the error of the whole profile as seen in red, the error of the large
Perspex sphere as seen in green, and the error of the small glass spheres
as seen in blue. (b) RMS error (%) expressed at the same sample-to-
detector distances. A comparison is made between the reconstruction
near the edge of the large Perspex sphere and the bulk of the Perspex
sphere. The error bars are less than 1% RMS error, which is smaller than
the data points and so are not shown.



shift, whilst also maintaining a high flux so that we can image

moving structures with short exposure times, and decrease the

radiation dose (Wu & Liu, 2003). An increased propagation

distance also leads to increased edge artifacts, disrupting the

phase retrieval. Our experiment was limited because we only

imaged up to a propagation distance of 100 cm and did not

reach a maximum distance at which the accuracy of the

technique decreased, as was seen in Morgan et al. (2013) with

a phase grid. We, therefore, consider theoretically the factors

that affect the optimal propagation distance. These consid-

erations also mean the results are more generally applicable.

5. Theoretical propagation distance calculations

Our first consideration is the optimal distance for detecting

transverse shift S(x, y). As propagation distance increases, the

transverse shift S(x, y) will increase. The maximum propaga-

tion distance, z, beyond which the transverse shift can no

longer be definitely tracked, will occur when the shift S(x, y)

is equal to the speckle feature size, L. We will consider this

problem in one dimension, x. We know that tan � = Sx =z.

Rearranging this, and using the small-angle approximation

(tan � ’ � for small �) we arrive at

zmaximum shift ’ L=�: ð3Þ

Fig. 9 shows a sample feature of size T, approximated as a

sphere of diameter T, from which the average phase gradient

can be calculated as

@’

@x

����
���� ’ Tk�

T=2
¼ 2k�: ð4Þ

It holds that for radiation with a wavenumber k, and a sample

with phase depth ’ðx; yÞ, the sample will diffract the incident

beam by angle �x according to

�x

�� �� ¼ 1

k

@�

@x

����
����: ð5Þ

Substituting (5) into (4) we arrive at

2� ’ �j j: ð6Þ

We then substitute this into (3) to give our final result,

zmaximum shift ’
L

�
�

L

2�
: ð7Þ

Equation (7) shows that the maximum propagation distance is

directly proportional to the speckle feature size and inversely

proportional to the refractive index decrement, �, of the

sample. For our experimental conditions, an analyzer produ-

cing a reference pattern with feature size 15 mm and sample �
value of 3.5 � 10�7, we can increase the propagation distance

to 21.4 m. However, this propagation distance is unrealistic as

there would be a significant drop in flux (particularly without

a vacuum tube) as well as poor reconstruction due to propa-

gation-based fringes at the edges of the sample (Gureyev et al.,

2009). We also note that this maximum distance is calculated

for the ‘average’ gradient of the sample feature [as seen in

equation (4)]. If we were to instead reconstruct a different

component of the sample sphere (for example, imaging the

steeper-than-average part of the large sphere) where the

gradient is steeper, the maximum distance would be shorter.

Using this method, one can calculate the propagation distance

at which any part of the sample will be unable to be accurately

reconstructed. For example, at 10% of the thickness from the

edge of the sample the phase change is given by

�’ ¼ k� ðT=2Þ2 � ð0:9T=2Þ2
	 
1=2

¼ 0:218k�T: ð8Þ

The phase gradient can then be calculated using

@’

@x
¼

0:218k�T

ðT=10Þ
¼ 2:18k�: ð9Þ

Using (7), the maximum propagation distance can be calcu-

lated,

zmaximum shift ’ L=2:18�: ð10Þ

This is equal to 19.7 m in our case. It is important to note that

equation (7) also demonstrates that the maximum propaga-

tion distance is not dependent upon the sample feature size, T,

or directly dependent on the wavelength of the radiation, �,

simplifying the propagation distance problem.

Our second consideration is the effect on image recon-

struction of propagation-based fringes created by sharp

sample edges. If the fringe size becomes too large compared

with the feature size of the speckle, the reconstruction of the

sample edges will be poor. The fringe width corresponds to the

width of the first Fresnel zone F, given by (Gureyev et al.,

2009)

F ¼ R 0�ð Þ
1=2

where R 0 ¼
R1R2

R1 þ R2

: ð11Þ

Here, R1 is the source-to-sample distance and R2 is the sample-

to-detector distance.
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Figure 9
Calculating the average phase gradient of a sphere. Arrow A depicts an
X-ray passing through a sample sphere of thickness T. Arrow B depicts an
X-ray passing through a vacuum on the edge of the sphere. The phase
gradient of the curve connecting points A and C is approximated by the
gradient of the dotted line. The distance between A and B along the x-axis
can be described as the change in distance between A and B, which is
equal to T/2. This distance is equal to distance BC. The change in phase
between points A and B is described as �’. The phase change incurred by
the sample by point A = �k�T where � is the refractive index decrement
corresponding to the refractive index n = 1 � �. The phase change
incurred by the sample by point B = 0. The phase difference, �’, between
A and B is �Tk�.



Rearranging (11) to give sample-to-detector distance R2 in

terms of R1, fringe width F and wavelength �,

R2 ¼
R1F 2

�R1 � F 2
: ð12Þ

We then let fringe width F equal a fraction of the speckle

feature size L, so that F = L/a. The result is the maximum

distance as defined by the sample edge fringes, given by

zmaximum fringe ¼
R1ðL=aÞ

2

�R1 � ðL=aÞ
2 : ð13Þ

Taking into consideration our experimental parameters of a

source-to-sample distance of 245 m, a wavelength of 0.5 �

10�10 m and � = 3.5 � 10�7, we plot both the shift-associated

maximum distance in equation (7) and the fringe width-

associated maximum distance in equation (13) as a function of

the speckle feature size L. The result is shown in Fig. 10. The

limiting fringe width-associated sample-to-detector distance is

plotted for fringe width equal to one fifth of, one tenth of, one

twentieth of and equal to the speckle feature size. It can be

seen that the limit to the sample-to-detector distance is far

more sensitive to the increasing width of the propagation-

based fringes than the transverse feature shift induced by the

sample. In fact, at increasing propagation distances, the fringe

width will equal the speckle feature size well before the shift-

associated maximum distance is reached.

There are additional factors that affect the ideal propaga-

tion distance and achievable spatial resolution that we did not

consider in our experimental or theoretical studies. These

include the detector pixel size (Gureyev et al., 2009; Wen et al.,

2010), the given flux at different propagation distances (Wu

& Liu, 2007), and the point spread function of the imaging

system (Gureyev et al., 2009). The first two factors did not

affect our experiments, as our effective pixel size of 0.29 mm

was well below the speckle feature size and also small enough

to detect weak phase gradients, and the bright synchrotron

source had sufficient flux at all propagation distances used.

However, these factors are important when considering the

implementation of the technique in a clinical setting, espe-

cially if the sample is weakly diffracting or we are using a low-

brilliance conventional X-ray source, as recently demon-

strated by Zanette et al. (2014).

6. Conclusions

Phase-contrast X-ray imaging using a random phase mask or

paper analyzer has been successfully applied to the quantita-

tive phase retrieval of X-ray transparent samples. In parti-

cular, the technique shows promise for the imaging of dynamic

samples due to its ability to accurately reconstruct images with

short single-exposure times and a simple experimental set-up.

However, whilst we have demonstrated the robustness of the

paper analyzer method to noisy images, the next challenge is

to realise dynamic imaging with these short exposure times

using a conventional X-ray source, which has significantly

reduced flux when compared with synchrotron X-rays. With

the aid of pre-processing filters our experiments reduced

exposure times by three orders of magnitude from previous

work, suggesting that even with reduced flux the paper

analyzer technique may still achieve accurate reconstruction

with quite short exposure times. We were able to achieve

accurate phase retrieval with an exposure of only 0.5 ms.

Moreover, with the development of compact table-top

synchrotron sources (Hirai et al., 2006; Bech et al., 2009), laser

wakefield accelerators (Schlenvoigt et al., 2008; Fourmaux

et al., 2011) and liquid-metal-jet sources (Hemberg, 2004;

Tuohimaa et al., 2007), achieving short exposure times in a

clinical setting is plausible.
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