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Formulae in the paper by Balyan (2015) [J. Synchrotron Rad. 22, 1410–1418] are

corrected.

The formulae (2) and (4) in the paper Balyan (2015) have the same

essential typographical error. The correct forms of these equations

are

rot rot ~~EE~EEþ
1

c2

@2 ~~EE~EE

@t2
¼ �

1

"0c2

@2 ~~PP~PP

@t2
ð2Þ

and

rot rot ~EEðr; !qÞ �
!2

q

c2
1þ �ð1Þðr; !qÞ
� �

~EEðr; !qÞ ¼
!2

q

"0c2
~PP

NL
ðr; !qÞ: ð4Þ

In the same paper, the formulae (17) and (19) are also incorrect. The

correct forms of these equations are

E ðiÞðx; 0Þ ¼ E
ðiÞ
0 expðik cos � ðiÞxÞ ð17Þ

and

E0ðx; 0Þ ¼ E
ðiÞ
0 expð�ik sin ���xÞ;

Ehðx;TÞ ¼ 0:
ð19Þ

These equations are used for derivation of the third-order nonlinear

Takagi’s equations.
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X-ray third-order nonlinear plane-wave
Bragg-case dynamical diffraction effects
in a perfect crystal
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Yerevan 0025, Armenia. *Correspondence e-mail: mbalyan@ysu.am

Two-wave symmetric Bragg-case dynamical diffraction of a plane X-ray wave

in a crystal with third-order nonlinear response to the electric field is

considered theoretically. For certain diffraction conditions for a non-absorbing

perfect semi-infinite crystal in the total reflection region an analytical solution

is found. For the width and for the center of the total reflection region

expressions on the intensity of the incidence wave are established. It is shown

that in the nonlinear case the total reflection region exists below a maximal

intensity of the incidence wave. With increasing intensity of the incidence wave

the total reflection region’s center moves to low angles and the width decreases.

Using numerical calculations for an absorbing semi-infinite crystal, the

behavior of the reflected wave as a function of the intensity of the incidence

wave and of the deviation parameter from the Bragg condition is analyzed. The

results of numerical calculations are compared with the obtained analytical

solution.

1. Introduction

The success of high-intensity X-ray synchrotron sources and

X-ray free-electron lasers (XFELs) has brought about theo-

retical and experimental investigations of nonlinear X-ray

diffraction and other nonlinear effects of X-ray interaction

with matter. X-ray dynamical diffraction is described by

Takagi’s equations (Takagi, 1969). Starting from the wave

equation for a monochromatic component and replacing the

linear susceptibility by a third-order nonlinear one, nonlinear

Takagi’s equations can also be obtained. Nazarkin et al. (2003),

using the cold collisionless plasma model, studied the linear

dynamical diffraction of the X-ray second-order harmonic

formed in a perfect crystal under two-wave diffraction

conditions. The backward influence of two Bragg-diffracted

waves on the amplitude of the incidence wave was not

considered. Tamasaku & Ishikawa (2007a,b), not using the

cold plasma model, investigated the kinematical diffraction of

an X-ray plane wave under second-order nonlinearity condi-

tions with parametric down-conversion of an X-ray photon

into an X-ray low-frequency photon and a UV photon. Conti

et al. (2008), using the third-order nonlinear cold plasma

model, investigated the direct propagation of an intense X-ray

beam. Other nonlinear X-ray effects (two-photon absorption

and so on) have been investigated as well (Tamasaku et al.,

2014; Doumi et al., 2011; Son et al., 2011, and references

therein).

For low-intensity X-ray incidence waves the electrons of

matter oscillate as linear oscillators; meanwhile, increasing
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intensity enforces electrons to oscillate as nonlinear oscilla-

tors. Thus, the nonlinear model of visible light optics can be

used for X-rays until the perturbation theory is valid. It should

also be mentioned that nonlinear effects can also be observed

for low-intensity waves, since the accumulation effect of

nonlinear polarization influences the propagation of the wave

a sufficient distance in a nonlinear media. In Balyan (2015) the

third-order nonlinear Takagi’s equations are obtained.

In this paper, third-order nonlinear Takagi’s equations are

written using the model of visible light optics, considering a

crystal as an isotropic media, as in the linear theory of

diffraction. Based on nonlinear Takagi’s equations, symmetric

Bragg-case third-order nonlinear dynamical diffraction of a

plane �-polarized monochromatic wave in a perfect crystal is

investigated theoretically. In the total reflection region an

analytical solution is obtained in a non-absorbing semi-infinite

crystal. The dependence of the center and of the width of the

total reflection region on the intensity of the incidence wave is

found. The results of numerical calculations of rocking curves,

provided for an absorbing crystal, are compared with the

findings of analytical solutions.

2. Third-order nonlinear Takagi’s equations

X-rays are mainly scattered by the bound electrons of each

atom in nonlinear media (James, 1950). The scattering on

valence electrons is small. The nonlinearity of the motion of

each bound electron may be considered both classically and

quantum-mechanically. The restoring force in the nonlinear

case has a nonlinear component (Boyd, 2003). The frequency

of the incidence radiation is larger than the maximal reso-

nance frequency of electrons. In a nonlinear non-magnetic

medium the electrical field and polarization have the forms

~~EE~EEðr; tÞ ¼
P

q

~EEðr; !qÞ expð�i!qtÞ;

~~PP~PPðr; tÞ ¼
P

q

~PPðr; !qÞ expð�i!qtÞ:
ð1Þ

Here !q are all possible frequencies (negative and positive)

in the nonlinear case. Since ~~EE~EE and ~~PP~PP are real, then
~EEðr; !qÞ = ~EE

�
ðr;�!qÞ and ~PPðr; !qÞ = ~PP

�
ðr;�!qÞ. The wave

equation for electrical field strength is (Boyd, 2003)

~~EE~EEþ
1

c2

@2 ~~EE~EE

@t2
¼ �

1

"0c2

@2 ~~PP~PP

@t2
: ð2Þ

Here c is the velocity of light in free space and "0 = 8.85 �

10�12 F m�1 is the permittivity of free space. It is convenient to

present the polarization as the sum of linear and nonlinear

components,

~PPðr; !qÞ ¼
~PP
ð1Þ
ðr; !qÞ þ

~PP
NL
ðr; !qÞ: ð3Þ

Here ~PP
ð1Þ
ðr; !qÞ = "0�

ð1Þðr; !qÞ
~EEðr; !qÞ is the part of the

polarization depending linearly on the strength of the elec-

trical field. The crystal, as in the linear theory, may be

considered as isotropic media and susceptibility �ð1Þðr; !qÞ is a

scalar. ~PP
NL
ðr; !qÞ is the nonlinear part of the polarization.

Inserting (1) and (3) into (2), one finds the wave equation for

each frequency,

~EEðr; !qÞ �
!2

q

c2
1þ �ð1Þðr; !qÞ
� �

~EEðr; !qÞ ¼
!2

q

"0c2
~PP

NL
ðr; !qÞ: ð4Þ

The third-order susceptibility fourth-rank tensor

�ð3Þijklð!q;!m; !n; !p; rÞ is introduced according to the relation

(Boyd, 2003)

~PPð3Þi ðr; !qÞ ¼ "0

X
ðmnpÞ

�ð3Þijklð!q;!m; !n; !p; rÞ

� ~EEjðr; !mÞ
~EEkðr; !nÞ

~EElðr; !pÞ; ð5Þ

where the summation is performed over all frequencies

!m; !n; !p so that !q = !m + !n + !p and over all dummy

indices j; k; l = 1,2,3 corresponding to Cartesian coordinates

x; y; z. Each term on the right-hand side of (5) corresponds to

a frequency mixing nonlinear process if at least two frequen-

cies are different. If all three frequencies are the same and one

of them is negative, the corresponding !q is the same. Such

terms in (5) describe the propagation of the wave in a

nonlinear media with self-induced refractive index. In a

perfect crystal both linear and nonlinear susceptibilities are

spatially periodic functions. So it may be expanded into a

Fourier series with respect to the reciprocal lattice vectors.

Accordingly, as in the linear theory, the electrical field may be

presented in the form

~EEðr; !qÞ ¼
P

g

~EEgðr; !qÞ exp ikgð!qÞr
� �

;

where ~EEgðr; !qÞ are slowly varying amplitudes and kgð!qÞ =

k0ð!qÞ + g, k0ð!qÞ are the wavevectors of transmitted waves

and g are reciprocal lattice vectors. If absorption is neglected,

k2
0ð!qÞ = ð!2

q=c2Þ½1þ �ð1Þ0 ð!qÞ�, where �ð1Þ0 ð!qÞ is the zero-order

Fourier component of linear susceptibility. The left-hand side

of (4) is the same as in the linear theory and it may be

presented in the same form as in the linear theory (Takagi,

1969). Consider the one-beam case of diffraction. Let the

incident wave frequency be !. In this case the third harmonic

3! is formed. For this process the terms with �ð3Þijkl0ð3!;!; !; !Þ
are responsible. Here the subscript 0 corresponds to the zero-

order Fourier component of the corresponding susceptibility.

In the general case the third-order nonlinear susceptibility

tensor has 81 elements. In an isotropic medium the number of

nonzero elements is 21. Three of them are independent and all

elements may be presented in the form

�ð3Þijkl ¼ �
ð3Þ
1122�ij�kl þ �

ð3Þ
1212�ik�jl þ �

ð3Þ
1221�il�jk; ð6Þ

where �ij is the Kronecker delta. In an isotropic medium,

�ð3Þ1122ð3!;!;!; !; rÞ ¼ �ð3Þ1212ð3!;!; !; !; rÞ

¼ �ð3Þ1221ð3!;!; !; !; rÞ

and thus
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�ð3Þijklð3!;!; !; !; rÞ ¼ �ð3Þ1122ð3!;!; !; !; rÞ

� ð�ij�kl þ �ik�jl þ �il�jkÞ: ð7Þ

Let the propagation direction of the incidence wave be

perpendicular to the entrance surface of the crystal (z direc-

tion). In the first approximation one may neglect the backward

influence of the third harmonic on the amplitude of the inci-

dence wave. According to (4), the wave equation for the third-

harmonic slowly varying amplitude will be

2i
d ~EE0ið3!Þ

dz
¼ � kð3!Þ�ð3Þijkl0ð3!;!; !; !Þ ~EE0jð!Þ ~EE0kð!Þ ~EE0lð!Þ

� exp i 3kð!Þ � kð3!Þ½ �z
� �

: ð8Þ

On the right-hand side we replaced k2ð3!Þ � ð3!Þ2=c2. If the

crystalline plate has thickness L, integration of (8) brings the

solution

~EE0ið3!Þ ¼ ikð3!Þ�ð3Þijkl0ð3!;!;!; !Þ ~EE0jð!Þ ~EE0kð!Þ ~EE0lð!Þ

� expði�kLÞ � 1½ �=ð2�kÞ; ð9Þ

where �k = 3kð!Þ � kð3!Þ is the so-called wavevector

mismatch. For the intensity from (9) we have

I0ið3!Þ ¼
�� ~EE0ið3!Þ

��2
¼ 0:25k2ð3!Þ

���ð3Þijkl0ð3!;!; !; !Þ ~EE0jð!Þ ~EE0kð!Þ ~EE0lð!Þ
��2L2

� sin2
ð�kL=2Þ=ð�kL=2Þ2: ð10Þ

Since �k � 3kð!Þj�ð1Þ0 ð!Þj=2, then from (10) it follows that the

third-harmonic intensity is small and practically vanishes when

L > 2=�k� 4=ð3kj�ð1Þ0 jÞ � 10 mm. The main nonlinear process,

for which the wavevector mismatch is zero, is the propagation

of the main frequency ! in a media with self-induced refrac-

tive index. This process is described by the term

�ð3Þijklð!;!; !;�!; rÞ. In an isotropic medium for this choice of

frequencies the susceptibility tensor has two independent

components and

�ð3Þijklð!;!; !;�!; rÞ ¼ �ð3Þ1122ð!;!; !;�!; rÞð�ij�kl þ �ik�jlÞ

þ �ð3Þ1221ð!;!; !;�!; rÞ �il�jk: ð11Þ

According to (5) one finds

~PPð3Þi ðr; !Þ ¼ 3"0�
ð3Þ
ijklð!;!; !;�!; rÞ ~EEjðr; !Þ ~EEkðr; !Þ ~EE

�
l ðr; !Þ:

ð12Þ

Using (11) and (12) we find

~PP
ð3Þ
¼ "0 A ~EEð ~EE ~EE

�
Þ þ "0 B ~EE

�
ð ~EE ~EEÞ; ð13Þ

where A = 3�ð3Þ1122 þ 3�ð3Þ1221, B = 3�ð3Þ1221. According to the clas-

sical theory of polarization, �ð3Þ1122 = �ð3Þ1221 and A = 6�ð3Þ1122 (Boyd,

2003). The classical theory of polarization brings the following

expression,

�ð3Þijklð!;!;!;�!; rÞ ¼ �ð3Þð!; rÞ
ð�ij�kl þ �ik�jl þ �il�jkÞ

3
; ð14Þ

where, when the frequency of incident radiation is larger than

the resonance frequencies, �ð3Þð!; rÞ = nðrÞe4b=ð"0m3!8Þ > 0,

nðrÞ is the concentration of electrons, e and m are the electron

charge and mass, and b is a phenomenological constant to

which is proportional the third-order nonlinear restoring

force. Recall that the linear susceptibility �ð1Þð!; rÞ =

�nðrÞe2=ð"0m!2Þ. Formula (14) shows that the sign of the

third-order susceptibility is positive and so its phase is shifted

by � with respect to the linear susceptibility. According to the

quantum-mechanical theory of polarization due to two-

photon processes, �ð3Þ1122 6¼ �ð3Þ1221. The quantum-mechanical

calculation of third-order susceptibility, using the dipole

approximation, is given by Boyd [2003; formulas (4.312)–

(4.3.14)]. Using, in the formula of �ð3Þ1122 [formula (4.3.14) of

Boyd (2003)], only one-photon processes terms [the second

term in (4.3.14)] and taking into account that for X-rays the

frequency ! is larger than the resonance frequencies of elec-

trons (neglecting the resonance frequencies), the following

estimate, according to (14), may be obtained,

�ð3Þ �
nðrÞ e4a4

0

"0h- 3!3
; ð15Þ

and �ð3Þ1122 = �ð3Þ1221 � �
ð3Þ=3, A = 2�ð3Þ, B = A=2. In (14), a0 =

5.3 � 10�11 m is the Bohr radius. It is convenient to introduce

�ð3Þ = A + B. Using the approximation (14) we have �ð3Þ = 3�ð3Þ.
Using the values nðrÞ � 1028–1030 m�3 and ! � 1019 s�1,

from (15) the following estimate is obtained: �ð3Þð!; rÞ �

10�31–10�33 m2 V�2. For elements with low atomic number

Z < 10, Zambianchi (2003) obtained the estimate �ð3Þ �
2 � 10�40 m2 V�2. This estimate is less than that predicted in

this article by nine orders. Zambianchi (2003) concluded that

the nonlinear scattering by bound electrons is not essential.

Our estimate shows that this scattering may be essential. Let

us denote j�ð1Þj=�ð3Þ = E2
cr = Icr, where Ecr is the critical strength

of the electrical field for which the contribution of the

nonlinear part of scattering equals that of the linear one and

Icr is the corresponding intensity. Using (15) and �ð1Þð!; rÞ =

�nðrÞe2=ð"0m!2Þ we have Ecr = ½h- 3!=ðme2a4Þ�
1=2
� 1.2 �

1013 V m�1.

Now, using (4) and the same technique as in the linear case

(Takagi, 1969), the third-order nonlinear Takagi’s equations

may be obtained (Balyan, 2015). As may be shown, in the two-

wave diffraction case, if the incident beam is �- or �-polarized,

in the crystal the corresponding equations may be separated,

so that only �- or �-polarized waves in the crystal propagate,

respectively. But when the incidence beam has both �- and �-

polarized components, their equations may not be separated

due to nonlinear terms in the wave equation. Let us present

the fields in the form ~EEðr; !Þ = ~EE0ðr; !Þ exp½iK0ð!Þr� +
~EEhðr; !Þ exp½iKhð!Þr�. Here the wavevectors are chosen so that

they satisfy the exact Bragg condition K2
0 = K2

h = k2 = ð2�=�Þ2,

where � is the wavelength. As may be shown, using (4), the

third-order nonlinear Takagi’s equations for the two-beam

diffraction case and for �-polarization have the form
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2i

k

@E0

@s0

þ

h
�ð3Þ0

��E0

��2 þ ��Eh

��2� �

þ �ð3Þh E0E�h þ �
ð3Þ
�hh

E�0Eh

i
expð��x= cos 	ÞE0

þ

n
�ð1Þ�hh
þ

h
�ð3Þ0 E0E�h þ �

ð3Þ
�hh

��E0

��2 þ ��Eh

��2� �

þ �ð3Þ
2 �hh

E�0Eh

i
expð��x= cos 	Þ

o
Eh ¼ 0;

2i

k

@Eh

@sh

þ

h
�ð3Þ0

��E0

��2 þ ��Eh

��2� �

þ �ð3Þh E0E�h þ �
ð3Þ
�hh

E�0Eh

i
expð��x= cos 	ÞEh

þ

n
�ð1Þh þ

h
�ð3Þ0 E�0Eh þ �

ð3Þ
h

��E0

��2 þ ��Eh

��2� �

þ �ð3Þ2h E0E�h

i
expð��x= cos 	Þ

o
E0 ¼ 0;

ð16Þ

where E0;h = ~EE0;h exp½�ik�ð1Þ0 x=ð2 cos 	Þ�, � = k�ð1Þ0i is the

crystal linear absorption coefficient, the x axis is oriented

along the reflecting planes, the z axis is oriented anti-parallel

to the diffraction vector h inward the crystal, and s0 and sh are

coordinates along the propagation directions of the trans-

mitted and diffracted waves, respectively. Here, �ð1Þh is the

Fourier coefficient of linear susceptibility for diffraction vector

h, and �ð3Þ0;h;2h is the corresponding Fourier coefficient of the

third-order nonlinear part of the susceptibility.

3. Analytical consideration

Let us consider the third-order nonlinear two-wave symmetric

Bragg-case dynamical diffraction of a �-polarized plane

monochromatic wave in a perfect crystal. On the entrance

surface z = 0 the electrical field of the incidence wave is

EðiÞðx; 0Þ ¼ E
ðiÞ
0 expðik sin 	ðiÞxÞ; ð17Þ

where E
ðiÞ
0 is the constant amplitude and 	ðiÞ is the angle

between the propagation direction of the incidence wave and

the reflecting planes (which are parallel to the entrance

surface). Let us denote �	 = 	ðiÞ � 	 as the deviation from the

exact Bragg angle 	. In the case of a plane wave and in a non-

absorbing crystal, the amplitudes E0 and Eh of the transmitted

and reflected waves, respectively, can be presented in the form

E0;h ¼ F0;hðzÞ expðipxÞ; ð18Þ

where p is a parameter and must be found from the boundary

conditions. The boundary conditions on the entrance (z = 0)

and exit (z = T) surfaces are the same as in the linear theory

(Authier, 2001; Pinsker, 1982),

E0ðx; 0Þ ¼ E
ðiÞ
0 expðik cos 	�	xÞ;

Ehðx;TÞ ¼ 0:
ð19Þ

From (17)–(19) it follows

F0ð0Þ ¼ E
ðiÞ
0 ; FhðTÞ ¼ 0;

p ¼ �k sin 	

	
�	 þ

�ð1Þ0

sin 2	



:

ð20Þ

Inserting (18) into nonlinear Takagi’s equations (16), the

propagation equations for F0;h can be written as

2ik sin 	
dF0

dz
� 2kp cos 	F0

þ k2 �ð3Þ0

��F0

��2 þ ��Fh

��2� �
þ �ð3Þh F0F�h þ �

ð3Þ
�hh

F�0 Fh

h i
F0

þ k2 �ð1Þ�hh
þ �ð3Þ0 F0F�h þ �

ð3Þ
�hh

��F0

��2 þ ��Fh

��2� �
þ �ð3Þ

2 �hh
F�0 Fh

h i
Fh ¼ 0;

ð21Þ

� 2ik sin 	
dFh

dz
� 2kp cos 	Fh

þ k2 �ð3Þ0

��F0

��2 þ ��Fh

��2� �
þ �ð3Þh F0F�h þ �

ð3Þ
�hh

F�0 Fh

h i
Fh

þ k2 �ð1Þh þ �
ð3Þ
0 F�0 Fh þ �

ð3Þ
h

��F0

��2 þ ��Fh

��2� �
þ �ð3Þ2h F0F�h

h i
F0 ¼ 0:

For an absorbing crystal, the susceptibility is a complex

quantity, the imaginary part of which is connected to

absorption in the crystal. In a non-absorbing crystal, both for

linear and nonlinear parts of the susceptibilities, the Fourier

coefficients for any vector of diffraction are complex conju-

gated with the Fourier coefficient for the diffraction vector of

the opposite sign, ��h = � �hh, ��h;2h = � �hh;2 �hh. In this case two inte-

grals of motion can be found. The first is obtained by multi-

plying the first and the second equations of (21) by F�0 and F�h ,

the first and the second equations of the complex conjugate

system of (21) by �F0 and �Fh and summing the obtained

four equations. The second is obtained by multiplying the first

and the second equations of (21) by dF�0 =dz and dF�h=dz,

respectively, the first and the second equations of the complex

conjugate of (21) by dF0=dz and dFh=dz, respectively, and

summing up the four obtained equations. The two integrals of

motions are

��F0ðzÞ
��2 � ��FhðzÞ

��2 ¼ constant ¼ C1 ;

� 2kp cos 	I þ 2k2 Re½�ð1Þh F0F�h �

þ k2 �
ð3Þ
0

2
I2 þ 2

��F0

��2��Fh

��2� �
þ 2k2 Re½�ð3Þh IF0F�h �

þ k2 Re½�ð3Þ2h F2
0 F�2h � ¼ constant ¼ C2:

ð22Þ

Here I = jF0j
2
þ jFhj

2.

Let us provide an analytical analysis of nonlinear diffraction

in a non-absorbing crystal, using propagation equations (21)

and integrals of motion (22). One can represent the solutions

in the complex form

F0;hðzÞ ¼ 
0;hðzÞ exp½i’0;hðzÞ�: ð23Þ

Inserting (23) into (21) and separating the real and imaginary

parts, one finds
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2k sin 	
d’0

dz
þ 2kp cos 	 � k2�ð3Þ0 
2

0 þ 2
2
h

� �
þ 2k2
h
0

���ð3Þh

�� cos
�
� þ �ð1Þh

�
� k2

����ð1Þh

��� ���ð3Þh

��I� cos
�
� þ �ð1Þh

� 
h


0

þ k2
���ð3Þ2h

��
2
h cos

�
2� þ �ð1Þ2h

�
¼ 0;

2k sin 	
d
0

dz
� k2
h

����ð1Þh

��� ���ð3Þh

��I� sin
�
� þ �ð1Þh

�
þ k2

���ð3Þ2h

��
0

2
h sin

�
2� þ �ð1Þ2h

�
¼ 0;

2k sin 	
d’h

dz
� 2kp cos 	 þ k2�ð3Þ0 2
2

0 þ 

2
h

� �
� 2k2

���ð3Þh

��
0
h cos
�
� þ �ð1Þh

�
þ k2

����ð1Þh

��� ���ð3Þh

��I� cos
�
� þ �ð1Þh

� 
0


h

� k2
���ð3Þ2h

��
2
0 cos

�
2� þ �ð1Þ2h

�
¼ 0;

2k sin 	
d
h

dz
� k2
0

����ð1Þh

��� ���ð3Þh

��I� sin
�
� þ �ð1Þh

�
þ k2

���ð3Þ2h

��
2
0
h sin

�
2� þ �ð1Þ2h

�
¼ 0:

ð24Þ

In (24), �ðzÞ = ’0ðzÞ � ’hðzÞ, �
ð1Þ
h and �ð1Þ2h are the phases of �ð1Þh

and �ð1Þ2h , respectively. In (24), we take into account that the

phases of �ð3Þh and �ð3Þ2h are shifted relative to the phases of �ð1Þh

and �ð1Þ2h , respectively, by �. Inserting (23) into (22), the inte-

grals of motion can be rewritten in the form


2
0 � 


2
h ¼ C1 ;

ð25Þ

� 2kp cos 	I þ 2k2
����ð1Þh

��� I
���ð3Þh

���
0
h cos
�
� þ �ð1Þh

�

þ k2 �
ð3Þ
0

2
I2 þ 2
0

2
h
2

� �
� k2

���ð3Þ2h

��
0
2
h

2 cos
�
2� þ �ð1Þ2h

�
¼ C2:

Using boundary conditions (20), it is not difficult to show that

0 	 C1 < I ðiÞ ¼
��EðiÞ0

��2;

C2 ¼ �2pk cos 	C1 þ k2 �
ð3Þ
0

2
C2

1:

ð26Þ

Further analytical consideration can be made for forbidden

reflection 2h. In this case, using the second equations of (25)

and (26), one finds

cosð� þ �ð1Þh Þ ¼

�
4p cos 	 � 3k 
2

0�
ð3Þ
0

�

h

2k
����ð1Þh

��� I
���ð3Þh

���
0

: ð27Þ

From (27),

sin
�
� þ �ð1Þh

�
¼ 
 1� cos2

ð� þ �ð1Þh Þ

h i1=2

¼




4k2
����ð1Þh

��� I
���ð3Þh

���2

2

0 �
�
4p cos 	 � 3k 
2

0�
ð3Þ
0

�2

2

h

h i1=2

2k
����ð1Þh

��� I
���ð3Þh

���
0

:

ð28Þ

Inserting (28) into (24) brings

4 sin 	
d
0

dz
�

h


0

h
4k2
����ð1Þh

��� I
���ð3Þh

���2

2

0

�
�
4p cos 	 � 3k 
2

0�
ð3Þ
0

�2

2

h

i1=2

¼ 0;

4 sin 	
d
h

dz
�

h
4k2
����ð1Þh

��� I
���ð3Þh

���2

2

0

�
�
4p cos 	 � 3k 
2

0�
ð3Þ
0

�2

2

h

i1=2

¼ 0:

ð29Þ

Using in (29) the first integral of motion (25) one obtains

separate equations for 
0;h,

4 sin 	 
0

d
0

dz
�
�

2

0 � C1

�1=2

h
4k2
����ð1Þh

��� ð2
2
0 � C1Þ

���ð3Þh

���2

2

0

�
�
4p cos 	 � 3k
2

0�
ð3Þ
0

�2�



2

0
� C1

�i1=2

¼ 0;

4 sin 	
d
h

dz
�

h
4k2
����ð1Þh

��� ð2
2
h þ C1Þ

���ð3Þh

���2�



2

h
þ C1

�

�
�
4p cos 	 � 3kð
2

h þ C1Þ�
ð3Þ
0

�2

2

h

i1=2

¼ 0:

ð30Þ

The solutions of (30) can be presented via elliptic functions,

but it is necessary to have analytic expressions of roots of

expressions in square-roots of (30). This fact makes further

analytical consideration very difficult. Further analytical

consideration can be made in the total reflection region.

According to the first integral of motions (25), in this case C1 =

0 and, according to (26), C2 = 0 as well. Besides, the two

equations of (30) become identical. Both equations, after

multiplying by 
0;h, can be rewritten as

2 sin 	
d
2

0;h

dz
þ 
2

0;h

h
4k2
����ð1Þh

��� 2
2
0;h

���ð3Þh

���2

�
�
4p cos 	 � 3k
2

0;h�
ð3Þ
0

�2
i1=2

¼ 0: ð31Þ

We take the sign ‘+’ since in the total reflection region the

amplitudes must decrease in the crystal. A real solution can

take place if the expressions in the square-roots are positive.

This requirement is compatible with boundary conditions on

the exit and entrance surfaces if
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4
��p�� cos 	 < 2k

���ð1Þh

��;
2k
���ð1Þh

��� 4p cos 	 þ
�
3k�ð3Þ0 � 4k

���ð3Þh

���I ðiÞh i

� 2k
���ð1Þh

��þ 4p cos 	 �
�
3k�ð3Þ0 þ 4k

���ð3Þh

���I ðiÞh i
> 0:

ð32Þ

From the first equation of (32) it follows that 2kj�ð1Þh j 


4p cos 	 > 0, which is the condition of total reflection in linear

theory. If 3�ð3Þ0 > 4j�ð3Þh j, which usually occurs, the condition of

total reflection, according to (32), is

�2k
���ð1Þh

��þ k
�
3�ð3Þ0 þ 4

���ð3Þh

��� I ðiÞ < 4p cos 	 < 2k
���ð1Þh

��: ð33Þ

As follows from (33), the centre of the total reflection region is

not at p = 0, as in the linear theory, but is

pc ¼
k
�
3�ð3Þ0 þ 4

���ð3Þh

���I ðiÞ
8 cos 	

ð34Þ

and is a function of the intensity of the incidence wave.

According to (33), the width of the total reflection region is

�p ¼
4k
���ð1Þh

��� k
�
3�ð3Þ0 þ 4

���ð3Þh

��� I ðiÞ

4 cos 	
: ð35Þ

The width of the nonlinear total reflection region is less than

that in linear theory and is a function of the intensity of

the incidence wave. According to (35), the width of the total

reflection region is equal to zero for the intensity IðiÞmax when

4j�ð1Þh j = ð3�ð3Þ0 + 4j�ð3Þh jÞ I
ðiÞ

max. For intensities I ðiÞ > IðiÞmax, when

4j�ð1Þh j < ð3�ð3Þ0 + 4j�ð3Þh jÞ I
ðiÞ, the total reflection region in

nonlinear theory is absent. Let us introduce the deviation

parameter y = sin 2	ð�	 þ �ð1Þ0 = sin 2	Þ=j�ð1Þh j (for a non-

absorbing crystal it is a real quantity). Using the definition of p

[see (20)], from (33)–(35) it is not difficult to find the total

reflection region condition, the total reflection centre coordi-

nate and the width of the total reflection region in terms of the

parameter y,

� 1< y< 1 �

�
3�ð3Þ0 þ 4

���ð3Þh

��� I ðiÞ

2
���ð1Þh

�� ;

yc ¼ �

�
3�ð3Þ0 þ 4

���ð3Þh

��� I ðiÞ

4
���ð1Þh

�� ;

�y ¼ 2�

�
3�ð3Þ0 þ 4

���ð3Þh

��� I ðiÞ

2
���ð1Þh

�� :

ð36Þ

As may be seen from (36), the left bound ymin =�1 of the total

reflection region is the same as in the linear theory and does

not depend on the intensity of the incidence wave. The right

bound ymax = 1 � ð3�ð3Þ0 + 4j�ð3Þh jÞ I
ðiÞ=ð2j�ð1Þh jÞ is a function of

the intensity of the incidence wave and linearly decreases with

increasing intensity. The centre yc is shifted to the direction of

negative y (to the direction of low angles). The width �y =

ymax � ymin is less than in the linear theory and decreases with

increasing intensity. As mentioned above, for I ðiÞ > IðiÞmax there

is no total reflection region in the nonlinear theory. These

rocking-curve behaviors may be explained on the basis of the

propagation equations (29). As may be seen from (29), instead

of the deviation parameter p an effective self-induced

nonlinear deviation parameter peff = p � 3k 
2
0�
ð3Þ
0 =ð4 cos 	Þ

appears and �ð1Þh is replaced by a self-induced effective one

�heff = j�ð1Þh j � 2
2
0;hj�

ð3Þ
h j. This means that during propagation

the beam changes its deviation from the Bragg exact direction

depending on the intensity. The ‘�’ sign is due to the relative

phase shift by � linear and nonlinear parts of the susceptibility

(phase mismatch of the linear and nonlinear parts). As seen

from the definition of p [formula (20)], �	 is replaced by an

effective one, �	eff = �	 þ 3
2
0�
ð3Þ
0 =ð2 sin 2	Þ. Thus for positive

�	 + �ð1Þ0r = sin 2	 (i.e. for positive yr), the effective deviation

parameter increases and the beam reflection reduces; mean-

while, for negative �	 + �ð1Þ0r = sin 2	 the absolute value of the

effective deviation parameter may decrease and the beam

reflection is not disturbed. The expression for �heff shows that

the increasing intensity brings about a decreasing of the

scattering in the diffraction direction. These features alter-

natively may be explained considering constant �	 but

effective self-induced �0eff = �ð1Þ0 + 3 
2
0�
ð3Þ
0 =2 and �heff = j�ð1Þh j �

2
2
0;hj�

ð3Þ
h j. It is interesting that �heff = 0 when j�ð1Þh j = 2
2

0;hj�
ð3Þ
h j.

Let us solve propagation equation (31) for the reflected

wave in the total reflection region. It is not difficult to see thatZ
d
2

0;h


2
0;h a
4

h þ b
2
0;h þ c1

� �1=2
¼ �

z

2 sin 	
þ constant; ð37Þ

where

a ¼ k2
�
16
���ð3Þh

��2 � 9�ð3Þ 20

�
;

b ¼� 4k2
���ð1Þh

���3y�ð3Þ0 þ 4
���ð3Þh

���;
c1 ¼ 4k2

���ð1Þh

��2�1� y2
�
:

ð38Þ

According to the first condition of (36), c1 > 0. Using a tabular

integral (Prudnikov et al., 1986), from (37) one finds

ln

��2c1 þ b
2
h þ 2 c1ða


4
h þ b
2

h þ c1Þ
� �1=2��

C3

2
h

¼

ffiffiffiffi
c1

p
z

2 sin 	
; ð39Þ

where C3 is a constant. As may be seen, the solution (39) in the

total reflection region is possible only for a semi-infinite

crystal, since 
2
h = 0 when z = T. Using the boundary condition

on the entrance surface 
2
hð0Þ = I ðiÞ, from (39) one finds C3 =

|2c1 + bI ðiÞ + 2[c1ðaI ðiÞ 2 + bI ðiÞ + c1Þ�
1=2
j=I ðiÞ. From (39) we have

the following solution as well,


2
h ¼ 


4C3c1 exp
ffiffiffiffi
c1

p
z=2 sin 	

� �

C3 exp

ffiffiffiffi
c1

p
z=2 sin 	

� �
� b

� �2
� 4c1a

: ð40Þ

Since 3�ð3Þ0 > 4j�ð3Þh j and from definition of a [see (38)] it follows

that a < 0. Therefore in (40) the ‘+’ sign must be taken and

finally we find


2
h ¼

4C3c1 exp �z=�ð Þ

C3 � b exp �z=�ð Þ
� �2

� 4ac1 exp �2z=�ð Þ
; ð41Þ

where � = 2 sin 	=
ffiffiffiffi
c1

p
coincides with the extinction depth in

linear theory (Authier, 2001). As seen from (41), for z=� � 1

the intensity of the reflected wave exponentially tends to zero,
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2
h ¼

4c1 exp �z=�ð Þ

C3

: ð42Þ

Since C1 = 0, from (9) the same dependence (25) of 
2
0 on z

follows. Note that c1 is the same both in linear and nonlinear

theories and in the linear theory a = b = 0. By taking a = b = 0

in (41) one obtains the solution of the linear theory (Authier,

2001).

Fig. 1 [according to (36)] depicts the dependence of the left

(curve 1) and right (curve 2) bounds ymin;max of the total

reflection region on the intensity of the incidence wave

according to nonlinear theory. Curve 3 is the right bound

according to linear theory (the left bounds both in linear and

nonlinear theories are the same and do not depend on the

intensity of the incidence wave). For the nonlinear part the

relations �ð3Þ0 = 3j�ð1Þ0 j=Icr, �
ð3Þ
h = 3j�ð1Þh j=Icr are used. Accord-

ingly, the intensities are given in units Icr=3. The necessary

values of the linear part of the susceptibility are taken from

Pinsker (1982) for reflection Si(111) [for which the reflection

Si(222) is forbidden]. The radiation wavelength is � = 0.71 Å

(17.46 keV). The left bounds ymin = �1 both in linear and

nonlinear theories do not depend on the intensity and are the

same; the right bound ymax in linear theory also does not

depend on the intensity but the right bound in nonlinear

theory linearly decreases with increasing intensity. For the

value of the intensity I ðiÞ = I ðiÞmax � 0.42, the right and left

bounds in nonlinear theory coincide and the width of the total

reflection region equals zero. For the intensities I ðiÞ > I ðiÞmax

there is no total reflection region. In Fig. 2, according to (36),

the dependence of the total reflection region width on the

intensity of the incidence wave is presented. The width is

negative for I ðiÞ > I ðiÞmax and equal to zero for I ðiÞ = I ðiÞmax: Based

on (36), Fig. 3 presents the dependence of the centre of the

total reflection region on the intensity of the incidence wave

for 0 < I ðiÞ 	 I ðiÞmax. Using (41), in Fig. 4 the dependence of


2
h=I ðiÞ on z for I ðiÞ = 0.2, 0.4 (curves 2 and 3, respectively) are

presented. The same dependence in linear theory (curve 1) is

presented as well. Each of these curves are presented for the

corresponding values yc and ycð0:2Þ = �0.48, ycð0:4Þ = �0.96,

and in linear theory yc = 0. The depth is given in units of �0 =

sin 	=ðkj�ð1Þh jÞ, which is the extinction depth in linear theory

at the centre of the total reflection region (Authier, 2001).

For large depths, according to (42), the extinction depth

�ð�0:48Þ=�0 = 1.14 for I ðiÞ = 0.2 and �ð�0:96Þ=�0 = 3.57 for

I ðiÞ = 0.4; meanwhile �0 = 0.75 mm.
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Figure 1
Dependences of the left and right bounds ymin and ymax of the total
reflection regions of linear and nonlinear diffractions on the intensity of
the incidence wave I ðiÞ according to formula (36) (non-absorbing crystal).
1: the left bounds of the rocking curves according to linear and nonlinear
theories are the same; 2: the right bound according to nonlinear theory;
3: the right bound according to linear theory. The dashed line part of
curve 2 corresponds to intensities for which the total reflection region
does not exist.

Figure 2
Dependence of the width �y of the total reflection region on the intensity
I ðiÞ of the incidence wave in nonlinear theory according to formula (36)
(non-absorbing crystal). The dashed line part of the curve 2 corresponds
to intensities for which the total reflection region does not exist.

Figure 3
Dependence of the centre yc of the total reflection region on the intensity
of the incidence wave I ðiÞ in nonlinear theory according to formula (36)
(non-absorbing crystal).

Figure 4
Dependence of the intensity of the reflected wave 
2

h=I ðiÞ on depth z in
linear (curve 1) and nonlinear theories (curve 2, I ðiÞ = 0.2; curve 3, I ðiÞ =
0.4) according to formula (41) (non-absorbing crystal).



4. Results of numerical calculations

Despite the analytical consideration being possible only for

certain conditions of diffraction, the main features of

nonlinear diffraction are investigated. For the general case,

numerical calculations must be provided. For obtaining

rocking curves in the general case, the numerical method of

‘shooting’ can be used to solve equations (21) or (29) as a

boundary value problem. But, as the calculations show, in

the nonlinear case this method does not provide solutions

of equations (21) or (29). In the nonlinear case it is more

convenient to use numerical calculations of nonlinear Takagi’s

equations (16). The use of nonlinear Takagi’s equations

requires consideration of an incidence wave with spatially

restricted size in the diffraction plane (an incidence beam). As

shown by the calculations, for obtaining the rocking curve of

plane wave linear theory, Takagi’s linear equations must be

numerically solved for a beam with size along the entrance

surface of more than 20 linear extinction lengths. This is due to

diffraction effects at the edges of the beam, which are not

essential for a beam with a width which is sufficiently large

compared with the linear extinction length. If the rocking

curve is created using 40 points in the region �2 	 yr 	 2

(yr ¼ Re½y�) in the nonlinear case, this requires very large

computational time. This is why below are presented the

results of numerical calculations of nonlinear Takagi’s equa-

tions for a beam with a width of 5 linear extinction lengths

along the entrance surface. For comparison will be presented

the rocking curve of linear plane-wave theory (Authier, 2001)

and numerically calculated rocking curve according to linear

theory for a beam of the same width. The nonlinear Takagi’s

equations can be solved numerically using the well known, in

linear theory, half-step algorithm (Authier, 2001; Epelboin,

1977). In the nonlinear case, however, the susceptibility

Fourier coefficients effectively are functions of the amplitudes

of the waves, and in the nonlinear case, using the same algo-

rithm for obtaining the amplitudes at the exit of any layer, the

calculated values of amplitudes on the entrance surface of the

same layer can be used for calculation of effective Fourier

coefficients of nonlinear theory.

In Fig. 5 the numerically calculated rocking curves for a

semi-infinite absorbing crystal depending on the parameter

yr = Re½y� = sin 2	ð�	 þ �ð1Þ0r = sin 2	Þ=j�ð1Þh j for the same

wavelength and reflection as in x3 are presented. Since we

consider a beam with a restricted size (5 linear extinction

lengths) in the diffraction plane, the rocking curve is the

dependence of the integral reflection coefficient,

RhðyrÞ ¼

Ra1

�a1

expð��0x= cos 	Þ Ihðx; 0; yrÞ dx

2a1I i
; ð43Þ

on yr. Here, Ihðx; 0; yrÞ = jEhðx; 0; yrj
2, �0 = ��L, � = k�ð1Þ0i is

the linear absorption coefficient, �L = � cos 	=j�ð1Þhr j is the

extinction length of linear theory, 2a1 is the size of the beam

along the entrance surface of the crystal, and the coordinate x

along the entrance surface of the crystal is given in units

of extinction length of linear theory. The values of Fourier

coefficients of linear theory are taken from Pinsker (1982); for

the real parts of Fourier coefficients of nonlinear susceptibility

the relations �ð3Þ0r = 3j�ð1Þ0r j=Icr, �
ð3Þ
hr = 3j�ð1Þhr j=Icr are used and for

the imaginary parts of the third-order nonlinear susceptibility

�ð3Þ0;hi=�
ð3Þ
0;hr = 0.01 values are taken, which are almost equal to

the same ratio of the linear part. Curve 1 is the rocking curve

of the exact plane-wave linear theory (Authier, 2001; Pinsker,

1982). Curve 2 is the numerically calculated linear theory

rocking curve for the beam with width 5 extinction lengths of

the linear theory. Rocking curves 3–9 correspond to numer-

ical-calculated nonlinear rocking curves for intensity values

0.1�0.7 with 0.1 step. The behaviours of the nonlinear rocking

curves correspond to predictions of analytical consideration

[formula (36)]. With increasing intensity the total reflection

regions are shifted to the direction of negative yr and the size

of the total reflection region decreases. For intensities above

0.42 the total reflection region does not exist. The intensities of

the rocking curves decrease with increasing intensity of the

incidence beam. For the intensities for which the total reflec-

tion region exists, this is due to the restricted size of the

incidence wave. As can be seen from Fig. 5, the slopes of the

rocking curves in one side from the centre of the total

reflection region and on the opposite side have different

behaviours. In the linear case they have almost the same

behaviour (the absorption is sufficiently low). The slope from

the positive side of yr due to the effective susceptibility

behaviour is more sensitive to nonlinearity and restricted size

of the incidence beam. In Fig. 6 the dependence of the

intensity

I 0hð0; z; yrÞ ¼ Ihð0; z; yrÞ = I i ð44Þ

of the reflected wave at the centre of the reflected beam (x = 0)

on z for I i = 0.4 and for three values yr = �1.5 (curve 1), yr =

ycð0:4Þ = �0.959 (curve 2) and yr = 1.5 (curve 3) are shown.

The depth is given in units of �L tan 	. As may be seen for

ycð0:4Þ, the behaviour of the intensity as a function of z is close
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Figure 5
Numerically calculated rocking curves RhðyrÞ [formula (43)] on deviation
parameter yr for various values of the intensity of the incidence wave I ðiÞ =
0.1–0.7 with step 0.1 (curves 3–9, respectively) according to nonlinear
theory (the width of the beam is 5 linear extinction lengths). The rocking
curve of linear theory (numerical calculation) for a beam of the same
width (curve 2) and the rocking curve according to standard plane wave
linear dynamical diffraction theory (curve 1) are shown as well.
Absorbing crystal.



to that predicted by analytical consideration (see Fig. 4). For

yr = �1.5 the intensity dependence is close to the intensity

dependence at the centre of the reflection region. For yr = 1.5

the intensity due to nonlinearity shows a different behaviour.

The corresponding numerical calculations, performed for

the reflection Si(220) [for which the reflection Si(440) is not

forbidden] and for the same wavelength, do not depict any

essential differences than is predicted by analytical consid-

eration.

It should be mentioned that since the intensities are given in

units of Icr=3, i.e. are sufficiently less than the critical intensity,

the perturbation nonlinear scattering theory on bound elec-

trons is valid. Consequently, radiation and temperature

damage may be ignored.

5. Conclusions

Bragg-case symmetrical two-wave third-order nonlinear

dynamical diffraction of a monochromatic �-polarized plane

wave in a perfect crystal is considered theoretically. In the

total reflection region for the special case of a forbidden 2h

reflection an analytical solution in a semi-infinite non-

absorbing crystal is found. Expressions for the total reflec-

tions’ size and of the centre as a function of the intensity of the

incidence wave are obtained. The centre of the total reflection

region shifts to low incidence angles and the size of the total

reflection region decreases with increasing intensity of the

incidence wave. It was shown that in the nonlinear case the

total reflection region exists for intensities below a certain

maximal value. For the general case the results of numerical

calculations of nonlinear Takagi’s equations in a semi-infinite

absorbing perfect crystal are presented. The numerically

obtained rocking curves behaviours confirm the predictions

of the analytical consideration. A different behaviour of the

opposite slopes (with respect to the centre) of the rocking

curves is noticed. The same conclusion is true for intensity

dependence on depth. The numerical calculations do not

show any essential differences between forbidden 2h and

not forbidden 2h reflections. The obtained behaviours of

nonlinear diffraction are sufficiently sensitive to the intensity,

which is given in units of Icr=3. Consequently temperature and

radiation damage may be ignored and the perturbation theory

is valid.

Further developments of nonlinear dynamical diffraction

can be investigation of the diffraction of spatially inhomoge-

neous beams (Gaussian beam etc.), nonlinear diffraction in

deformed crystals (particularly bent crystals), asymmetric

nonlinear diffraction and other nonlinear dynamical diffrac-

tion effects as well. The experiments can be performed using

X-ray sources of synchrotron radiation and XFELs.
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Figure 6
Dependence of the intensity I 0hð0; z; yrÞ of the reflected wave [formula
(44)] on depth z according to nonlinear theory for various values of yr: yr =
�1.5 (curve 1), yr = ycð0:4Þ = �0.959 (curve 2) and yr = 1.5 (curve 3).
Absorbing crystal; the width of the beam is 5 linear extinction lengths.
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