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X-ray diffraction, possibly time-resolved during growth or annealing, is an

important technique for the investigation of polytypism in free-standing

nanowires. A major advantage of the X-ray diffraction approach for adequately

chosen beam conditions is its high statistical significance in comparison with

transmission electron microscopy. In this manuscript the interpretation of such

X-ray intensity distribution is discussed, and is shown to be non-trivial and

non-unique given measurements of the [111]c or [333]c reflection of polytypic

nanowires grown in the (111)c direction. In particular, the diffracted intensity

distributions for several statistical distributions of the polytypes inside the

nanowires are simulated and compared. As an example, polytypic GaAs

nanowires are employed, grown on a Si-(111) substrate with an interplanar

spacing of the Ga (or As) planes in the wurtzite arrangement that is 0.7%

larger than in the zinc blende arrangement along the (111)c direction. Most

importantly, ambiguities of high experimental relevance in the case of strongly

fluctuating length of the defect-free polytype segments in the nanowires are

demonstrated. As a consequence of these ambiguities, a large set of deviations

from the widely used Markov model for the stacking sequences of the nanowires

cannot be detected in the X-ray diffraction data. Thus, the results here are of

high relevance for the proper interpretation of such data.

1. Introduction

The formation of microstructures and nanostructures is a

complicated microscopic process. In order to improve the

understanding of the involved dynamical processes during

growth, time-resolved in situ investigations during the growth

proved highly valuable in many cases. Nowadays, adequate

instrumentation capable of performing various well estab-

lished post-growth ex situ methods time-resolved and in situ is

available, ranging from environmental transmission electron

microscopy (eTEM) (Moseler et al., 2010; Gamalski et al.,

2011, 2012; Zheng et al., 2013) to growth chambers suited for

time-resolved in situ X-ray investigations during sputtering

(Kaufholz et al., 2015) or molecular beam epitaxy (Schroth et

al., 2012, 2015; Biermanns et al., 2014; Krogstrup et al., 2012;

Slobodskyy et al., 2012).

Nevertheless, such time-resolved in situ measurements are

still challenging. Typically, restrictions of the in situ instru-

mentation, compared with respective ex situ measurements,

must be taken into account. In the case of X-ray investigations,

three restrictions of high relevance are: (i) geometrical

limitations which stem from the size and position of the inci-

dence and exit windows of the growth environment for the
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X-ray beam, (ii) limitations in the flexibility and precision in

moving the sample (inside the growth chamber or the growth

chamber itself) and (iii) the incident X-ray flux. Despite these

challenges, time-resolved in situ X-ray measurements of the

[111]c reflection of strongly polytypic GaAs nanowires have

been performed and evaluated in the framework of a Markov

model (Schroth et al., 2015). The index in our notation for

Bragg reflections (such as [111]c) and crystallographic direc-

tions indicates whether the given numbers are based on a

cubic crystallographic basis (index c) or a hexagonal crystal-

lographic basis (index h). More details are given in x2.3 [see, in

particular, equation (17)].

Although the focus of this manuscript is the investigation of

the wurtzite zinc blende polytypism by measuring the [hhh]c

reflections (h 2 N), we emphasize that many other aspects of

nanowire growth can be studied by time-resolved in situ X-ray

diffraction experiments [e.g. scaling laws linking radial and

axial nanowire growth (Dubrovskii et al., 2012) by employing

the Plancherel theorem].

We point out that such X-ray diffraction measurements are

complementary to transmission electron microscopy investi-

gations (TEM) of polytypism (Johansson et al., 2006; Moseler

et al., 2010; Gamalski et al., 2011, 2012): whereas the latter

produces direct space images of a limited field of view for a

low number of wires up to atomic resolution, X-ray diffraction

is a probe of reciprocal space and best suited for investigation

of a large ensemble of nanowires [although measurements of

single wires can also be made (Biermanns et al., 2009; Bier-

manns, 2012)].

Polytypism refers to the observation that multiple crystal-

line atomic arrangements of the constituting atoms can be

observed even in a single nanowire [see, for example, Caroff et

al. (2011) for a short review]. The phenomenon has its origin

in differences of the energetic barriers for nucleating either

polytype comparable with thermal energy scale kBTGrowth,

where kB is the Boltzmann constant and TGrowth is the growth

temperature of the nanostructure (Johansson et al., 2006, 2009;

Glas et al., 2007; Algra et al., 2008). Polytypism can be found in

various material systems (Dick et al., 2010; Kriegner et al.,

2011) such as GaAs, InAs (Mandl et al., 2006; Takahashi &

Morizumi, 1966; Zheng et al., 2013; Joyce et al., 2010), InSb or

InP (Algra et al., 2008). Understanding and controlling this

polytypism is particularly important for advancing applica-

tions of nanowires, since it deteriorates electronic and optical

properties of III/V nanowires (Hjort et al., 2013; Bao et al.,

2008; Spirkoska et al., 2009; Heiss et al., 2011; Cahangirov &

Ciraci, 2009).

Typically, in addition to the structure of the crystalline

building blocks, a small change in the inter-atomic distances is

observed (Yeh et al., 1992; Panse et al., 2011; Biermanns et al.,

2011; Biermanns, 2012; Tchernycheva et al., 2006; Mariager et

al., 2010). In the case of GaAs nanowires grown in the cubic

(111)c direction, zinc blende as well as wurtzite segments can

be observed (Johansson et al., 2012; Schroth et al., 2015;

Biermanns, 2012). The ratio of their inter-layer spacings dWZ

in the (00.2)h direction and dZB in the (111)c direction is

approximately dWZ =dZB ’ 1 + 0.7% (Köhl et al., 2015; Bier-

manns et al., 2011; Biermanns, 2012).

Both aspects, i.e. the differences in the inter-planar spacings

as well as the distinct crystallographic symmetries of the

polytypes, are means to investigating polytypic nanowires with

X-ray diffraction. However, discriminating the polytypes by

their symmetry requires measurements of multiple reflections

either in non-coplanar or asymmetric geometry (or a combi-

nation thereof) and, thus, are more challenging in the case of

time-resolved in situ X-ray investigations due to the above-

mentioned restrictions (i)–(iii). Nonetheless, very sophisti-

cated modelling of the scattering of polytypic crystals with

non-zero in-plane momentum transfer (e.g. the series [10.L]h

of reflections) has already been carried out (see, for example,

Sebastian & Krishna, 1987). Contrarily, measurements of the

[111]c reflection are comparably easy to realise experimen-

tally, but this reflection only discriminates the polytypes

by their slightly different lattice constants and not by their

symmetry. As a consequence, zinc blende and its twin struc-

ture are indistinguishable.

Nonetheless, a deep understanding of the perspectives and

limitations of measurements of the [111]c reflection is one very

important aspect for planning and evaluation of experiments

with polytypic nanowires. In this manuscript, we discuss these

aspects for measurements of an ensemble of nanowires for

conditions where the coherence of the X-ray beam results in

interference from a single or few wires, but a very large

number of such coherence volumes is illuminated simulta-

neously. Based on extensive numerical simulations, we address

the challenge of proper interpretation of such diffraction data:

how do characteristic features in the distribution of the

polytype segments in the nanowires influence the ensemble

averaged diffraction signal? Which statistical properties of the

polytype segment distribution are indistinguishable? Can we

detect the occurrence of higher-order polytypes (such as the

4H polytype) beyond their statistically expected occurrence

(Johansson et al., 2012)? In addition, we discuss the relation

between the cubic [333]c and [111]c reflection.

We do neither discuss the separation of the scattering from

the nanowires and parasitic growth (Köhl et al., 2015) nor data

evaluation of single-nanowire X-ray measurements (Bier-

manns et al., 2009; Biermanns, 2012; Köhl et al., 2012, 2013;

Minkevich et al., 2014; Rodriguez et al., 2013; Marchesini,

2007a,b; Adams et al., 2012; Chushkin & Zontone, 2013;

Trahan & Hyland, 2013) in this manuscript.

Our reference case is the Markov model for the stacking

in the nanowires, since this model is compatible with high-

resolution transmission electron microscopy (HRTEM) by

Johansson et al. for highly faulty polytypic nanowires (expo-

nential distribution for the faultless phase segment length

distribution with an average defect-free segment thickness of

the order of three to nine layers) (Johansson et al., 2006, 2009)

and recent time-resolved in situ X-ray investigations (Schroth

et al., 2015) with average defect-free segment thicknesses of

the order of 50–400 layers. Therefore, we also provide an

extended discussion of the Markov model, including the
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influence of initial growth and the X-ray scattering within this

model in this manuscript.

The focus of our manuscript is transition probabilities from

one polytype to the other less than 5% per grown layer. Since

most applications aim for nanowires with high phase purity

(i.e. low transition probabilities), this range of transition

probabilities is of high practical relevance. For larger transi-

tion probabilities, more sophisticated modelling of the lattice

spacings inside the nanowires is needed (incorporation of

strain close to the interfaces between the different polytypes),

but this range can also be studied well with TEM even on a

statistical level.

2. Theoretical background

For simulations of the X-ray diffraction signal close to a [hhh]c

(h 2 N) reflection, we must define: (1) a model for the

geometry of the nanowires. The geometry includes parameters

such as the height (distribution), diameter (distribution) and

tapering (i.e. a change of the diameter of the nanowire along

its axial growth direction); (2) a model for the stacking

sequence of the atomic planes in the axial growth direction;

and, finally, (3) a model for the X-ray scattering of those

structures.

Throughout the manuscript, we assume that the geometrical

information on the nanowires is available (e.g. from post-

growth ex situ measurements) and limit our discussion to the

extraction of information about stacking sequence for given

geometric information. Moreover, we neglect parasitic growth

and focus on the diffraction from the polytypic nanowires only.

We now discuss two approaches for modelling the stacking

sequence of the nanowires (see Fig. 1) before we turn to point

(3) from above.

On the one hand, we employ a single GaAs layer as the

fundamental building block in the construction of the stacking

sequences in our ensemble of nanowires. In that case, a limited

history of previous layers in the stacking sequence determines

the probabilities pZB and pWZ = 1 � pZB for the newly grown

layer to constitute a zinc blende or wurtzite stacking, respec-

tively. This ‘layer-by-layer’ approach is a Markovian model.

On the other hand, we employ a faultless segment of either

polytype as a fundamental building block in the construction

of the stacking (‘segment-by-segment’ growth). Here, the

length of such a building block is taken from various random

distributions.

Whereas the Markov model is particularly useful if a very

limited number of previous layers of the crystalline structure

dominates the growth of new layer, the second model is more

appropriate if the growth dynamics cannot be reduced to a

very limited history in the crystalline structure. For such

conditions, the number of free parameters in a high-order

Markovian model is too high to be of practical use. The two

approaches are, however, connected by the exponential

distribution [see Fig. 1 and equation (2)].

Along the (111)c direction, every layer j of height dj consists

of a plane of arsenic atoms at z = 0 and gallium atoms at z =

0:75dj. The arrangement perpendicular to this (111)c direction

determines the stacking (see Fig. 1): if only two alternating

positions x? ? êeð111Þc
� êez repeat periodically, we have the

wurtzite stacking (e.g. ABAB . . .). If three alternating posi-

tions x? ? êez repeat periodically, we end up with a zinc blende

structure (e.g. ABCABC . . .). Twinned zinc blende permutes

the composition in this fundamental unit and refers to the

permutation ACBACB . . . if the non-twinned structure is

given by ABCABC . . .. The before-mentioned 4H polytype

refers to a periodic repetition of wurtzite and zinc blende, i.e.

ABCBABCB . . .. For an introduction to other higher-order

polytypes, we refer the reader to Johansson et al. (2012) where

an overview is given.

For the detection of the current phase, the history of the

previous three layers is required if we restrict to the zinc

blende and wurtzite polytype. If the layers j� 1 and j� 3 are

of equal type, the current phase (‘local phase’) is wurtzite. If
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Figure 1
Schematic overview of our simulations.



those layers are of different type, the local phase is zinc

blende.

Irrespective of the growth dynamics for layers j� 1, we

summarize the initial nucleation stage in a single parameter

p
ð0Þ
WZ = 1 � p

ð0Þ
ZB which describes the probability for beginning

the stacking as a wurtzite segment.

Moreover, we approximate the number of layers NL in the

nanowire by its geometric height divided by the approximate

layer spacing dj � að111Þc
’ 3.26 Å where að111Þc

is the distance in

the cubic (111)c direction in bulk zinc blende GaAs. Once this

number of layers NL is reached, the generation of the stacking

sequence of a nanowire is finished.

2.1. Layer-by-layer modelling of the stacking (Markov model)

We now discuss the layer-by-layer approach in detail. In the

lowest-order Markov model, we restrict to the history of

exactly three layers. Fewer layers are insufficient for distin-

guishing the two polytypes, whereas the number of free

parameters grows rapidly with each additional layer that is

considered in the history. In this Markov model, the two

independent parameters pPjP parametrize the probability for

continuing growth of the current polytype P 2 fZB;WZg. The

probabilities for switching the current polytype to the

complementary polytype �PP are consequently given by p �PPjP =

1 � pPjP (‘transition probabilities’).

Suppose layer m� 1 is of polytype �PP and layer m of poly-

type P: then, the probability for this segment starting at layer

m to continue n � 1 layers in the stacking of polytype P and

switch back to polytype �PP at layer mþ n is

p
ðlocÞ
P ðn;mÞ ¼ N m

Yn

k¼ 2

pPjPðmþ k� 2Þ

" #
p �PPjPðmþ n� 1Þ; ð1Þ

where N m is the normalization of the probability distribution

for every layer m where a new segment begins. For n = 1, we

define
Qn

k¼ 2 . . . = 1. If the probabilities pPjP are independent

of the current layer, the probability p
ðlocÞ
P ðn;mÞ simplifies to the

exponential distribution

p
ðlocÞ
P ðnÞ ¼

exp �n=bPð Þ

bP

; ð2Þ

with the decay length

bP ¼
�1

logðpPjPÞ
¼

�1

logð1� p �PPjPÞ
�

p �PPjP
� 1 1

p �PPjP

: ð3Þ

The interpretation of equation (1), where n is integer valued,

as an exponential distribution with continuous real valued

parameter n is valid if and only if bP � 1 which is equivalent

to p �PPjP � 1. Therefore, the approximation in equation (3) is

valid.

In Fig. 2, some typical polytype distributions inside nano-

wires are depicted for various values for p �PPjP for illustration

(see also Schroth et al., 2015).

If we incorporate the initial growth p
ð0Þ
P for the layers j =

1,2,3, we are able to recursively calculate the probability qPð jÞ

of layer j in an ensemble of nanowires to be of polytype P from

qPð jÞ ¼
j	 3

p
ð0Þ
P ; ð4aÞ

qPð jÞ ¼
j> 3

qPð j� 1Þ pPjPð j� 1Þ þ q �PPð j� 1Þ pPj �PPð j� 1Þ: ð4bÞ

If we define

~ppSð jÞ ¼ 1�
X

P2fZB;WZg

p �PPjPð jÞ ð5Þ

and exploit that for every layer j we have qP + q �PP = 1 and pPjP =

1 � p �PPjP, the recursive definition simplifies to

qPð jÞ ¼
j> 3

qPð j� 1Þ ~ppSð j� 1Þ þ pPj �PPð j� 1Þ: ð6Þ

If the transition probabilities pPj �PP are layer independent and

the wires change their polytype during growth (i.e. ~ppS < 1), this

recursive definition is equivalent to explicit formula

qPð jÞ ¼
j> 3

~pp j�3
S p

ð0Þ
P þ ð1� ~pp j�3

S Þ �ssP; ð7Þ

which represents a weighted average of the initial growth p
ð0Þ
P

and the stationary limit for the probability of polytype P,

�ssP ¼
pPj �PP

1� ~ppS

¼
1

1þ ð p �PPjP=pPj �PPÞ
ð8Þ

in the limit j!1.

Consequently, a simultaneous rescaling p �PPjP ! � p �PPjP,

� 2 R, for both polytypes P results in the same fractions �ssP of

each polytype in the stationary limit. However, the phase

purities, which we define to be the expectation value of the

distribution of lengths of the defect-free polytype segments,

scale as bP ! ��1 bP .

We point out that most applications require two properties

of the phase-length distribution: a large mean value (i.e. on

average long segments without stacking defects) and low

fluctuations around this mean (low probability for short

segments and in order to guarantee correlations in super-

lattice structures). Neither of these two requirements can be

estimated solely from the phase fractions �ssP . However, the

phase fractions can be estimated if the phase purities are

known.

As long as growth of the nanowires can be approximately

described by such a low-order Markov model, the before-
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Figure 2
Illustrations of polytype distribution inside nanowires generated
according to the Markov model discussed in the main text. The upper
parameter value refers to pWZjZB, the lower value to pZBjWZ, and p

ð0Þ
P was

set to 0.5%. The layers j = 0–5000 have been depicted. Moreover, the
range j = 4500–5000 has been magnified.



mentioned fluctuations cannot be controlled separately from

the mean value, since the standard deviation of the expo-

nential distribution is equal to its mean value.

The weight ~pp j�3
S of p

ð0Þ
P in equation (7) drops below expð�1Þ

for

j > 3þ
�1

log ~ppS

� � �~ppS 	 1 1P
P pPj �PP

¼

Q
P bPP
P bP

: ð9Þ

Thus, we can estimate the ‘memory’ of the stacking sequences

for the initial growth polytype probability p
ð0Þ
P in the Markov

model. Given the values for bP, it is therefore possible to

decide whether the initial growth behaviour, the stationary

growth limit or some mixture is observed in a particular

growth experiment.

We would like to point out that X-ray measurements typi-

cally probe the entire nanowire volume and, thereby, only

detect the average phase fractions

�mmPðNLÞ ¼
NL > 2 1

NL

XNL

j¼ 1

qPð jÞ ð10aÞ

¼
3

NL

þ
~ppS

NL

1� ~pp j�3
S

1� ~ppS

� �� �
p
ð0Þ
P

þ
NL � 3

NL

� �
�

~ppS

NL

1� ~pp j�3
S

1� ~ppS

� �� �
�ssP ð10bÞ

throughout the entire wire. This mean phase fraction is again

expressed as a weighted average of p
ð0Þ
P and �ssP for convenience.

Moreover, �mmPðNLÞ ¼
NL!1 �ssP and �mmPðNLÞ ¼

NL¼ 3

p
ð0Þ
P . The quantities

qP and �mmP are depicted as a function of the currently growing

layer j in Fig. 3. Therefore, it is possible to detect traces of the

initial growth behaviour in X-ray experiments even if its

influence is already negligible for the top-most layer NL.

2.2. Segment-by-segment modelling of the stacking sequence

We now turn to segment-by-segment growth for the nano-

wire stacking.

Instead of a single layer j, a segment of length NS � 1 of the

complementary polytype �PP with respect to the previously

grown polytype is added. This length NS is drawn from a

random distribution. The polytype of the initial segment is

determined by the probabilities p
ð0Þ
P .

If we consider exponential distributions [see equation (2)],

the segment-by-segment approach is identical to the Markov

model with constant transition probabilities. An important

property of the exponential distribution is that it is a special

case of both the Gamma distribution

Gðx; b;mÞ ¼
1

b �ðmþ 1Þ

x

b

� 	m

expð�x=bÞ ð11Þ

as well as the Weibull distribution

Wðx; b;mÞ ¼
1þm

b

x

b

� 	m

exp � x=bð Þ
1þm


 �
ð12Þ

if we set m = 0. The parameters NS, b and m are constrained by

x � 0, m > �1 and b > 0. Here, we suppressed the dependence

of these parameters on the polytype for simplicity. We map

x> 0 2 R to an integer value for the number of layers NS � 1

by NS = round(x + 0.5).

If we compare these two distributions with the special case

of the exponential distribution, the power-law x m strongly

influences the occurrence of short segments: for m > 0, the

probability of short segments is strongly reduced as compared

with the Markov model. For any m > 0, the maximum of the

probability distribution is no longer located at x = 0. In

contrast, for m < 0, the probability for short segments is

enhanced and the probability distributions G and W diverge

for x! 0þ. However, by the constraint m > �1, the diver-

gences are integrable as required for probability distributions.
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Figure 3
Influence of initial growth in the Markov model. The dashed-dotted lines illustrate qP for wurtzite as a function of the currently growing layer j [see
equation (7)], whereas the continuous lines refer to the mean phase fraction �mmPð jÞ from layer 1 up to the currently growing layer j [see equation (10b)].
The dashed black line shows the stationary limit for j!1 [see equation (8)]. (a) Fixed value p

ð0Þ
P = 0.75 for the initial growth and transition probability

pZBjWZ = 0.5%. (b) Fixed stationary limit �ssP and extreme cases p
ð0Þ
P equal to 0 and 1.



The behaviour of long segments is dominated by the

exponential terms in both distributions. In contrast to the

Weibull distribution, the exponential term is not influenced by

the parameter m in the Gamma distribution. For the Weibull

distribution, m > 0 implies a faster decay of the probability for

long segments than for the exponential distribution whereas

m < 0 reduces this decay.

Consequently, the segment-by-segment modelling with

Gamma and Weibull distributions is very useful for studying

the influence of deviations from the Markov model on the

X-ray diffraction signal, regardless of the microscopic origin of

such deviations.

In order to understand the results obtained during this

investigation, we also investigate (truncated) Gaussian distri-

butions

Sðx; �S; �SÞ ¼
�ðxÞ

�S
ffiffiffiffiffiffi
2�
p exp �

1

2

x� �S
�S

� �2
" #

ð13Þ

where we can tune the mean value �S and width �S inde-

pendently. Here �ðxÞ is the Heaviside step function.

Moreover, we also consider the Poisson distribution

RðNS; �Þ ¼
�NS�1

ðNS � 1Þ!
expð��Þ: ð14Þ

Finally, it is interesting to observe the scattering signal of

distributions which are not dominated by an exponential

function for large segments NS � 1. Consequently, we also

include the Pareto distribution

Pðx; �;mÞ ¼
�

m

m

xþ 1

� ��þ1

; x � m� 1 ð15Þ

for m = 1 in our investigations. Therefore, we define Pðx; �Þ �
Pðx; �;m ¼ 1Þ.

A summary of the statistical distributions that are relevant

in this manuscript is given in Table 1.

We point out that, depending on the random distribution

for NS, the ‘memory’ of the stacking for its initial polytype, i.e.

p
ð0Þ
P , may differ strongly from the ‘memory’ in the Markov

model [see equations (7) and (10b)] if the stacking of the

nanowires is generated according to the segment-by-segment

model.

2.3. X-ray scattering of polytypic nanowires

We now discuss the X-ray scattering of polytypic nanowires

once their stacking sequences as well as their geometry are

known.

First, a single nanowire is small enough that multiple scat-

tering in a single wire can be neglected and we restrict to

a lowest-order Born approximation (‘kinematic approxima-

tion’). Moreover, for typical sample–detector distances of the

order of 1 m, it is also valid to assume far-field conditions.

Consequently, the scattering of a single wire can be approxi-

mated by the Fourier transform of the electron density,

%elðxÞ ¼
XNL

j¼ 1

�ð jÞðx?Þ
X

�2fGa;Asg

%ð j�Þel ðx?; zÞ; ð16Þ

where �ð jÞðx?Þ is the shape function of layer j and %ð j�Þel ðx?; zÞ

is the electron density of sub-layer � in layer j. Here, z points

in the cubic (111)c or (001)h direction. Here, we repeat that

every layer j of height dj consists of two atomic planes: a plane

of arsenic atoms centred at z = 0 and a plane of gallium atoms

centred around z = 0:75dj.

In the subsequent discussions, we restrict to the vicinity of

symmetric Bragg reflections

QB ¼ ½hhh
z!c ¼ ½00:ð3hÞ
z!h1 � ½00:ð2hÞ
w!h2: ð17Þ

½hhh
z!c refers to the Miller Bravais indices of a cubic lattice

expressed in the conventional cubic unit cell, whereas

½00:ð3hÞ
z!h1 refers to the same reflection of a cubic lattice but

expressed in hexagonal surface coordinates instead. In this

coordinate system the zinc blende structure simplifies to a

three-layer periodic stacking (such as ABCABC . . .) along the

surface normal. If the length of the surface normal is

normalized to this three-layer periodicity, the Bragg indices

½hhh
z!c = ½00:ð3hÞ
z!h1 refer

to the same location in reci-

procal space. If the surface

normal of the hexagonal

surface coordinate system

is instead normalized to a

hexagonal crystalline struc-

ture, which has the two-layer

periodic wurtzite stacking

(such as ABAB . . .) in the

direction of the surface

normal, the indices must be

rescaled by a factor of 2/3.

For this normalization, we

employ the notation ½�
w!h2.

If the inter-planar distance of

two successive layers, e.g. of

type A and B, of the zinc

blende and wurtzite structure
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Table 1
Overview of statistical distributions used for the generation of phase segments of either zinc blende or wurtzite
phase with random length.

Gamma and Weibull distributions reduce to an exponential distribution for m = 0. �ð�Þ denotes the Gamma function.
Gamma, Weibull, Pareto and Gaussian distributions are two-parameter distributions whereas the exponential and
Poisson distribution are one-parameter distributions.

Distribution Density function Mean Variance

Exponential expð�n=bPÞ

bP
bP b2

P

Gamma 1
b �ðmþ1Þ x=bð Þ

mexpð�x=bÞ, b > 0, m > �1 b ðmþ 1Þ b2 ðmþ 1Þ

Weibull 1þm
b x=bð Þ

mexp½�ðx=bÞ1þm

, m > �1, b > 0 b � 2þm

1þm

� �
b2 � 3þm

1þm

� �
� � 2þm

1þm

� �
 �2
n o

Gaussian 1
�S
ffiffiffiffi
2�
p exp

h
�1

2
x��S
�S

� 	2i
, �S > 0 �S �2

S

Poisson �NS�1

ðNS�1Þ! expð��Þ, � > 0 � �

Pareto �
m

m
xþ1

� ��þ1
, � > 0

�m=ð� � 1Þ � > 1

1 � 	 1
�m2=½ð� � 2Þð� � 1Þ2
 � > 2

1 � 	 2



was identical, the position in reciprocal space of the

½00:ð2hÞ
w!h2 reflection would exactly coincide with the

½hhh
z!c reflection. However, the small difference in this inter-

planar spacing induces a slight offset of the zinc blende and

wurtize structure and the wurtize zinc blende polytypism

can be studied by measuring a region in reciprocal space

containing the ½hhh
z!c and the ½00:ð2hÞ
w!h2 reflection. At

the bottom right of Fig. 1, a graphical illustration of the zinc

blende and wurtzite structure as it might occur inside a

nanowire is depicted. Additional background information

(including the mathematical relations for non-symmetric

Bragg reflections) is given, for example, by Köhl (2014) and

Biermanns (2012).

If we define the atomic form factors f �ðqÞ as the Fourier

transform of the electron density of an atom of type � centred

around the origin [i.e. f �ðqÞ = FTx qf%
ð�Þ
el g], the Fourier

transform of the electron density of a single wire w in the qz

direction (q? = 0) close to QB is given by

F
ðSWÞ
w ðqz;QBÞ /

XNL

l¼ 1

~��ðlÞw exp �iqzzwl

� �


X

�2fGa;Asg

f�ðQBÞ exp �iqz�wl�

� �
: ð18Þ

Here, zwl is the beginning of layer j in wire w, i.e.

zw0 ¼ 0; zwl ¼
l� 1
Xl�1

k¼ 0

d
ðwÞ
j ; ð19Þ

where d
ðwÞ
j is the thickness of the GaAs layer j in wire w.

�wl� = 0 for � = As and �wl� = ð3=4Þd
ðwÞ
j for � = Ga. ~��ðlÞw is the

in-plane cross section of layer j in wire w.

As long as radial growth is absent or only epitaxial in such

a way that no tapering emerges, ~��w is independent of j. If

pronounced tapering is observed, it can be included in a

straightforward manner by ~��ðlÞw . For simplicity, we assume the

absence of tapering in our result section, but we point out that

the conclusions drawn from this special case are also valid for

non-zero tapering.

Finally, we need to define how the layer spacings d
ðwÞ
j are

obtained.

For that purpose, we compare the type of layer in the

stacking sequence of layer j� 1 and jþ 1: if both are equal, we

locally have a wurtzite stacking and assign the value dWZ to it.

If the type of these two layers differs, we attribute dZB which

we retrieve from the bulk value of cubic GaAs. For the ratio

dWZ =dZB, we employ 1.007 (Köhl et al., 2015; Biermanns et al.,

2011; Biermanns, 2012).

In this model, we therefore neglect strain effects at the

interface of the different polytypes. If, as a result of the

statistical generation of the stacking sequence, higher poly-

types (Johansson et al., 2012) are contained in the stacking,

their spacing scales linear with the hexagonality: a hexagon-

ality of 0 corresponds to zinc blende, the 4H polytype to a

hexagonality of 0.5 and wurtizte to 1.0. More advanced

modelling of such strain effects can be easily incorporated, but

this simple model is fully sufficient for the discussions in the

results section.

With this information, formulas and definitions, we are able

to calculate the scattering of a single nanowire.

Since we aim to extract results with high statistical signifi-

cance, we need to probe a large number of nanowires. For this,

we assume a large beam spot (for example, of the order of

1 mm 
 1 mm). However, the coherence length for X-rays at

current scattering beamlines at synchrotron facilities is typi-

cally of the order of micrometres, and, therefore, similar to

typical nanowire densities (1 wire=mm2). Therefore, we assume

that from the contributions from different wires the measured

intensity distribution Iðqz;QBÞ is obtained by an incoherent

summation

Iðqz;QBÞ ¼
XNW

w¼ 1

F
ðSWÞ
w ðqz;QBÞ



 

2: ð20Þ

Here, NW � 1 is the number of wires encountered by the

X-ray beam. Throughout the results section we set NW = 2500

and employ an equidistant spacing of 2 
 10�5 Å�1 for qz in

our simulations. In order to remove tiny residual fluctuations

which we observe despite the huge number of wires NW = 2500

in some cases (statistical distributions with high fluctuations),

the result of our simulations smoothed by a running average

with (maximum) 50 simulated points (i.e. points spanning a

range 10�3 Å�1).

3. Results for the layer-by-layer modelling (Markov
model)

We now turn to numerical results of our simulations for the

Markov model (Fig. 4). Since this model has already been

employed for interpretation of the first time-resolved in situ

X-ray intensity profiles along the qz direction close to the

[111]c Bragg reflection (Schroth et al., 2015), an extended

analysis of this model and its comparison with other models

for the distribution of the polytypes will now be presented.

In Fig. 4(a) we show the X-ray profiles for the same para-

meters as for the direct space illustration of the polytype

distributions in Fig. 2. These profiles, and all other profiles

depicted in this manuscript other than Fig. 7(a), are normal-

ized to equal area for best comparison of their shapes, whereas

the profiles depicted in Fig. 7(a) are normalized to a maximum

of 1.

A qualitative discussion about the changes of these profiles

as a function of the phase fractions and as a function of the

phase purities at fixed phase fraction has already been given

(Schroth et al., 2015). We supplement this qualitative discus-

sion here by the results depicted in Fig. 4(b) which contains

the three lowest (central and normalized) moments (centre of

mass, standard deviation and skewness) of the intensity

distribution in reciprocal space close to the [111]c Bragg

reflection of GaAs.

The centre of mass of our X-ray profiles is calculated as

� ¼

Z 1:9367 A�1�

1:90 A�1�
qz

~II qz

� �
dqz; ð21aÞ

the standard deviation as
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� ¼

Z 1:9367 A�1�

1:90 A�1�
qz � �
� �2 ~II qz

� �
dqz

" #1=2

; ð21bÞ

and, finally, the skewness as

s ¼

Z 1:9367 A�1�

1:90 A�1�

qz � �

�

� 	3
~IIðqzÞ dqz: ð21cÞ

Here, ~II is the normalized intensity

~IIðqzÞ ¼ IðqzÞ

. Z 1:9367 A�1�

1:90 A�1�
I qz

� �
dqz

" #
: ð22Þ

For symmetric conditions pWZjZB = pZBjWZ, the skewness is

equal to zero and the centre of mass is the average of the

native zinc blende and wurtzite positions. Both the skewness

and the centre of mass change monotonously. Contrarily, the

width of the profiles shows a maximum for pZBjWZ
>
� pWZjZB

and behaves non-monotonously. We point out that the

maximum width is not obtained for strictly symmetric condi-

tions pWZjZB = pZBjWZ.

If we could estimate two of these moments, we could esti-

mate the static transition probabilities pWZjZB and pZBjWZ in

the framework of the Markov model.

Since the skewness is a monotonous function of pZBjWZ,

we can re-arrange these results and depict results for fixed

skewness s. The result of this rearrangement is depicted

in Fig. 5.

For a wide range of parameters the wurtzite fraction in the

wires is a very flat function for given skewness s of the [111]c

intensity profile [see Fig. 5(a)]. We emphasize that the skew-

ness of a measured profile can be estimated without qz cali-

bration. However, we remind the reader that for proper
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Figure 5
Rearrangement of the results given in Fig. 4(b): each depicted branch
corresponds to a given constant skewness s. (a) Phase fraction of wurtzite
for given skewness s as a function of the transition probability pWZjZB.
(b) Width of the X-ray profile for given skewness s as a function of the
transition probability pWZjZB.

Figure 4
Characteristics and quantitative evaluation of the qz intensity profile
close to the [111]c Bragg reflection of GaAs. (a) Scattering profiles for the
parameters underlying Fig. 2. (b) Centre of mass, standard deviation and
skewness of the intensity profiles IðqzÞ in the framework of the Markov
model.



interpretation of the experimental profile a correction for the

contribution of parasitic growth to the scattering signal is

required (Köhl et al., 2015), and the resolution element must

be either negligible or well known.

Knowledge of the width of the intensity profile (in addition

to its skewness) is then sufficient to extract not only the phase

fractions but also the values for the transition probabilities

and, thus, the phase purities. The relation of the width of the

profile with the transition probability pZBjWZ can be found in

Fig. 5(b). As expected, the width of the profile is decreasing

with increasing transition probability pZBjWZ for fixed skew-

ness s.

4. Results for the segment-by-segment modelling

4.1. Generalizations of the Markov model: Gamma and
Weibull distributions

After this in-depth exploration of the Markov model for the

stacking sequences in the nanowires, it is interesting to

investigate the effect of certain deviations from the Markov

model on the qz intensity profile close to the [111]c Bragg

reflection of GaAs.

As we already discussed, the length distribution of the

polytypic segments without stacking faults in the Markov

model is given by the exponential distribution, equation (2),

which is a special case of the Gamma distribution [see equa-

tion (11)] as well as of the Weibull distribution [see equation

(11)]. Therefore, we discuss the results for these distributions

first (see Fig. 6). For the special case m = 0 (continuous lines)

we also give the corresponding transition probability p �PPjP of

the Markov model. For simplicity, we restrict to symmetric

conditions pWZjZB = pZBjWZ, although all statements are valid

also for non-equal transition probabilities.

We observe [see Fig. 6(a)] that neither an enhancement of

short segments (m < 0) nor a reduction of short segments (m >

0) in comparison with the Markov model has strong influence

on the shape of the intensity distribution. Even worse, all

characteristic features are identical. For example, the profile

for m = 0 and decay length b = 140 is essentially identical to

the case m = 1.0 and b = 100. Consequently, such deviations

in statistics of short segments could not be revealed by an

observation of the intensity profile of the [111]c Bragg

reflection of GaAs. For each deviation of the Markov model

m 6¼ 0 and b = 100 we also depict the result for the Markov

model that corresponds to the same expectation value as the

non-Markovian case. For all three cases the results for the

corresponding cases differ. And in all three cases the change in

the profile in the Markov model m = 0 with the expectation

value compared with m = 0 and b = 100 is greater than if the

change in the expectation value originates in a change in the

statistics of short segments (i.e. m 6¼ 0). Therefore, the shape

of the profile does not even uniquely map to the expectation

value of the polytype length distribution. From these results

we see that the decay lengths b of both polytypes have

strongest influence on the intensity profile. Thus, if deviations

of the Markov model are expected for small polytypic

segments, the interpretation and discussion of the respective

X-ray profiles should be based on these decay lengths b

instead of the expectation values of the length distributions of

the polytype segments. Otherwise, the interpretation entails

large systematic uncertainties.

Whereas the Gamma distribution mainly introduces a

deviation from the Markov model for short segments, the

Weibull distribution also mimics strong changes in the statis-

tics of long segments. Despite these even stronger deviations,

the X-ray profile is still not unique [see, for example, the two

cases (m = 0.0, b = 333 layer) and (m = �0.4, b = 100 layer) in

Fig. 6(b)]. If we compare the three cases with the expectation

value � = 100 (continuous lines), the shape of the intensity

profile changes tremendously with the parameter m, although

the characteristic features remain identical to the Markov

model. For each value m, the Markov case for decay length b =

100 has also been depicted. Clearly, the influence of the decay

lengths b is minor as compared with the parameter m.

Therefore, we could identify the following hierarchy for the

influence on the shape of the X-ray profile: most important is

the decay of the length distribution for long segments where

the exponents of the exponentials are more important than

the decay lengths. Contrarily, deviations for short segments

have only small influence. Unique identification of the X-ray

profile is only possible if two out of the three features ‘long-

length decay behaviour’, decay length scale and ‘short length

deviations’ are known. For the Markov model, the only free

parameters are the decay length bP and unique extraction of

this parameter for both polytype is possible.

A common feature of the exponential distribution and the

Gamma as well as the Weibull distribution is large intrinsic

fluctuations that scale with the decay lengths. Specifically, we

have the mean values

�G ¼ bðmþ 1Þ; ð23aÞ

�W ¼ b �
2þm

1þm

� �
; ð23bÞ

and standard deviations

�G ¼ bðmþ 1Þ1=2; ð24aÞ

�W ¼ b �
3þm

1þm

� �
� �

2þm

1þm

� �� �2
( )1=2

ð24bÞ

for the Gamma and Weibull distribution, respectively. It is this

huge standard deviation � which is of the same order as the

mean value � that defines the characteristics of the X-ray

profiles.

4.2. Towards super-cell structures: the influence of
fluctuations of the polytype segment lengths

In order to study the influence of these fluctuations, we now

decouple the mean and standard deviation and model the

phase segment length distribution by considering a Gaussian

distribution [see Fig. 7(a)]. As long as the standard deviation

is of comparable order of magnitude as the mean value, the

X-ray profile resembles the same characteristic features as

for the Gamma and Weibull distributions. Once the standard
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deviation is significantly smaller than the mean value, the

characteristic features change dramatically. Instead of two

broad overlapping peaks, beating phenomena are observed as

a consequence of the high correlations in the phase segment

distribution in direct space. This limit of high correlations

corresponds to super-lattices in phase distribution in direct

space. If we go even one step further, and model the phase

distribution in direct space by a Poisson distribution (standard

deviation scales only like the square root of the mean value),

we also observe such beating phenomena [see Fig. 7(b)]. From

the spacing of two sub-peaks from such a beating signal, we

can retrieve the sum of the mean values of the Poisson

distribution of both polytypes, whereas the absolute qz posi-

tions reveals the relative fractions of the polytypes. In

summary, we can deduce from the results in Fig. 7 that X-ray

diffraction measurements of the vicinity of the [111]c Bragg

reflection are highly suited for studying the quality of alter-

nating zinc blende wurtzite super-lattices.
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Figure 6
Examples for the X-ray intensity profiles for length distributions of each polytype given by (a) a Gamma or (b) a Weibull distribution which both contain
the exponential distribution (Markov model) as special case. � refers to the expectation value and � to the standard deviation of the respective
distributions. The parameters b and m are defined in equations (11) and (12), respectively. For illustration, we also depicted the respective probability
density functions as well as several realisations of the segment distribution inside the nanowires.



4.3. Polynomial polytype segment length distributions

Up to now, the decay of the phase segment distribution was

related to the exponential function. If we instead consider a

power law decay [‘Pareto distribution’, see equation (15)] for

the probability for long defect-free polytype segments in the

stacking sequence in the (111)c growth direction, we also

observe an interesting shape of the intensity profile close to

the [111]c GaAs Bragg reflection (see Fig. 8): for exponents

� <� 1.5 we observe pronounced and very sharp peaks at the

native positions of both polytypes. In contrast to behaviour for

the Gamma and Weibull distributions, these peaks do not drift

towards each other with decreasing phase purity (i.e.

increasing parameter �).

For 1:0 <� � <� 1.5, a third, broader, peak in between the

native positions of the polytypes emerges. Its centre drifts for

asymmetric conditions pWZjZB 6¼ pZBjWZ, whereas the peaks

at the native positions only change the weight (see the two

examples �ZB = 1.3, �WZ = 1.0 and �ZB = 1.3, �WZ = 1.8).

These peculiar features stem from the combination of the

slowly decaying tails of the length distribution for the polytype

segments and the large probability for very small segments.

Such a central peak, which drifts with the asymmetry, has

already been observed in the Markov model for highly faulty

wires [see Fig. 4(a)]. In contrast, two sharp peaks at the native

positions of both polytypes have been observed for nanowires

with very high phase purity. A power law distribution mixes

these two cases for a certain range of parameters. For large

decay parameter � >� 1.5, we essentially observe only the limit

of highly faulty wires. For small decay parameter � <� 1.0, the

long defect-free polytype segments from the slowly decaying

tails of the Pareto distribution determine the shape of the

X-ray signal. We point out that power law distributions are

scale-free, and, consequently, the zoom of the direct space

realisations in Fig. 8 resembles very closely the features on the

larger scale.

In summary, we demonstrated in this section the importance

of fluctuations and, strongly related, correlations in the phase

distributions in direct space. On the one hand, we discussed

the non-uniqueness of the X-ray qz intensity profile for

distributions with high fluctuations if more than one para-

meter of the phase segment distribution is not known.

However, we could still rank the importance of deviations

from the Markov model for short- or for long-phase segments.

On the other hand, we investigated the transition of the X-ray

signal if these fluctuations are decreased more and more.

Finally, we also investigated the consequences of the absence

of an exponential decrease for the probability to observe a

long defect-free polytype segment.

4.4. 4H occurrence beyond its statistical expectation

Up to this point, other (higher-order) polytypes than zinc

blende or wurtzite are only observed according to their

combinatorial probability (Johansson et al., 2012). However,

an enhancement of specific polytypes, most importantly the

4H polytype, should be investigated (Dubrovskii & Sibirev,

2008; Johansson et al., 2012; Panse et al., 2011).

Since the 4H structures are constituted by a stacking of type

ABCB, we enhance the 4H wurtzite structures in the nano-
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Figure 7
Influence of fluctuations on the shape of the X-ray profile close to the
[111]c Bragg reflection of GaAs: (a) Gaussian distribution (�P = 200
layer) and (b) Poisson distribution. Parameters are defined in equations
(13) and (14), respectively.

Figure 8
Examples for the X-ray intensity profiles for a length distributions of each
polytype given by a Pareto distribution.



wires stacking if we specifically increase the probability for a

phase segment with length 1. We point out that this is different

from enhancing short segment lengths in the case of Gamma

or Weibull distributions, since the enhancement of the 4H is

not equally selective.

Consequently, a model for the enhancement of the 4H is the

length distribution

p
ð�Þ
P;4Hþð jÞ ¼ ð1� �PÞ p

ðlocÞ
P ð jÞ þ �P p1þð jÞ ð25aÞ

¼
Eq:2

ð1� �PÞ
expð�j=bPÞ

bP

�ð jÞ þ �P 	1j ð25bÞ

for the zinc blende and wurtzite polytype P. Here, the para-

meter �P 2 ½0; 1
 and 	1j is the Kronecker delta. The limit � = 0

corresponds to the original Markov model. The limit � = 1

results in pure 4H nanowires.

Within this model, the length distribution of the 4H

segments is well approximated by the exponential distribution

p4Hð jÞ ¼
exp �j=b4Hð Þ

b4H

�ð jÞ ð26Þ

with decay length

b4H ¼ �2

�
log

1

bZB

þ �ZB

bZB � 1

bZB

� �
1

bWZ

þ �WZ

bWZ � 1

bWZ

� �� �
:

ð27Þ

For the decay length b4H to be significantly larger than 1,

either both parameters bP must be of the order of unity or the

parameters �P must be both very close to 1.

It is important to understand that, for values of �P very

close to 1, almost all newly generated segments are only one

layer thick. In contrast, every rare event ð1� �PÞ typically

adds a large number of layers to the stacking.

The condition b � bP = b4H is fulfilled for � � �P if

� ¼
1

b� 1
b exp

�1

b

� �
� 1

� �
�

b� 1

1�
1

b
: ð28Þ

For this order of magnitude of �P, the amount and purity of

the 4H polytype becomes comparable with wurtzite and zinc

blende.

Typical results for this model are depicted Fig. 9. The 4H

polytype shows up as a third sub-peak which ‘interacts’ with

the sub-peaks of zinc blende and wurtzite. The same obser-

vations as for the Markov model (see Fig. 4) apply, but now for

three sub-peaks. For very pure wires, (up to) three essentially

independent sub-peaks can be observed [1� �P � ð1=bPÞ �

1%, continuous lines in Fig. 9]. For decreasing phase purity,

the peaks overlap and plateaus emerge. If only very short 4H

segments exist in the nanowires, the middle peak becomes so

broad that essentially only the wurtzite and zinc blende peaks

are observable. For 1� �� ð1=bÞ, the 4H is barely detectable

by studying the [111]c Bragg reflection of GaAs. This case of

three split peaks resembles the profiles for the Pareto distri-

butions (see Fig. 8). Consequently, misinterpretations are

possible if one is not aware of these non-uniquenesses.

For 1� �P � ð1=bPÞ >� 1%, the 4H enhanced signal shows

similar charateristics as the signal in the Markov model (see

dashed lines in Fig. 9) and the segment-by-segment growth

model based on Gamma and Weibull distributions. Conse-

quently, misinterpretations are also possible for this range of

values for the parameter �P.

4.5. Relations between the [333]c and [111]c Bragg reflection

We now provide a short excursion on the relation of the

[111]c and [333]c reflection (and higher-order symmetric

reflections).

Up to now, we solely focused on the [111]c GaAs Bragg

reflection. These profiles are related to the respective profiles

of the [333]c Bragg reflection by a rescaling of the transition

probabilities and the qz axis: within the Markov model, the qz

profiles of the [333]c reflection with transition probabilities

p �PPjP are equal to the profiles of the [111]c reflection with

transition probabilities p �PPjP=3 evaluated at qz=3. This beha-

viour is illustrated in Fig. 10. In this figure the profiles calcu-

lated directly are equal to those obtained by the scaling

relation. For comparison, the shape of the [111]c and [333]c

profiles for identical transition probabilities p �PPjP is depicted in

this figure. As expected from the scaling relation, the peaks

are well separated for transition probabilities three times

larger than for the [111]c reflection. Therefore, information on

nanowires with high transition probabilities p �PPjP is extracted

more easily from the shape of the [333]c Bragg reflection than

from the [111]c Bragg reflection.

The origin of this scaling relation can be understood from

the phase segment length distribution which is given in

equation (2): up to the normalization, the functional depen-

dence is fully determined by the ratio n=bP . The three times

larger value of qz of the [333]c reflection can be achieved by

variation of the scattering angles towards larger angles or by

reduction of the X-ray wavelength or combinations thereof.

The scaling behaviour is most easily understood if we absorb

the full multiplicative factor of three in a decrease of the X-ray

wavelength of three while maintaining identical scattering

angles. As long as the discreteness of the atomic scale is not

relevant for the phase correlations of the scattered intensity

(which is taken care of by the centre of the Bragg peak and

thus no longer relevant for the behaviour in its close vicinity),
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Figure 9
Examples for the X-ray qz intensity profiles for an occurrence of the 4H
polytype which is increased above its combinatorial likelihood [see
equation (25)]. The less pure structures (dashed lines) have been
normalized to three times the area of the structures with higher phase
purity for better visibility.



we effectively reduce the n in equation (2) which produces the

same phase shift by a factor of three. If we compensate for this

reduction by a simultaneous rescaling of bP by a factor of

three, i.e. increasing p �PPjP = b�1
P in the Markov model by a factor

of three, the interference pattern of a single nanowire does not

change and, thus, the incoherent average does neither.

From this discussion, it is clear that the same reasoning also

applies to Gamma and Weibull distributions which are also a

function of the ratio n=bP and neither n nor bP is coupled to

the additional parameter of these distributions separately.

Thus, a rescaling of bP by a factor of three precisely produces

the shape of the corresponding [333]c reflection. Hence,

deviations from the Markov model for the stacking in nano-

wires towards Gamma- or Weibull-like behaviour can even not

be extracted based on the combination of measurements of

the [111]c and [333]c reflection.

5. Conclusion

In summary, we demonstrated that great care is required in

order to avoid misinterpretations of X-ray measurements of

the [111]c Bragg reflection of polytypic nanowires.

Depending on the statistical properties of the distribution of

the polytypes, a large variety of characteristic features is

observed, ranging from beating phenomena in highly corre-

lated systems such as super-lattice structures over three-peak

behaviour in the case of length distributions decaying as a

power law or enhanced occurrence of the 4H polytype to

single-peak signals in the case of highly disordered nanowires.

However, despite the huge variety of characteristic features,

the profile shape of the qz profile of the [111]c Bragg reflection

contains also a large number of ambiguities, most notably in

the case of polytype distributions with large fluctuations of the

length of each polytypic segment. A particularly important

special case of the previous statement are Weibull- and

Gamma-distributions for the lengths of a faultless polytype

segment with parameter values resulting in distributions

similar to an exponential distribution: the qz profile close to

the [111]c reflection requires a theoretical model for stacking

in the nanowires which fixes all but one (independent) para-

meter.

In the case of a Markov model, the decay lengths, which

equal the expectation value as well as the standard deviation

of this distribution, (or transition probabilities) may be taken

as this parameter. Moreover, the skewness of the measured

signal already reveals the phase fractions of the polytypes. If

additionally the width of the signal is taken into account, also

the phase purities of the polytypes can be estimated easily.

High-quality super-lattices can easily be detected with

X-ray diffraction experiments over a huge range of phase

purities due to the characteristic beating phenomena in the

X-ray profile. Contrarily, detection of an enhanced occurrence

of the 4H polytype requires very pure polytype segments.

Due to the scaling relation between the profiles near

the [111]c and [333]c reflection, measurements of the [333]c

reflection extend the range of applicability to nanowires with

three times lower phase purity. However, sufficiently high

X-ray flux and energy as well as an adequate measurement

setup are needed which is challenging in the case of time-

resolved in situ X-ray experiments. Consequently, measuring a

series of reflections on the asymmetric crystal truncation rod

such as the reflections [220]c–[10.3]h–[311]c is often a better

choice than the [333]c reflection if the experimental setup is

capable of such measurements (for example, this series of

reflections of a [111]c-oriented substrate can be measured at

an X-ray energy of 15 keV by performing a rotation of the

sample around its normal by a few degrees at a fixed incidence

angle of 15.5�, while a current two-dimensional detector is

located at a fixed position during this scan (Köhl, 2014).

We are convinced that future advances in the microscopic

modelling of the growth dynamics of polytypic nanowires will

remedy most of these ambiguities in the interpretation of the

X-ray profiles of an ensemble of polytypic nanowires (by

reducing the number of degrees of freedom in the models).

Therefore, we believe that X-ray investigations of polytypic

nanowires will become more and more important for verifi-

cation and optimization of the growth of an ensemble of

nanowires.
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A., Uccelli, E., Peiró, F., Morante, J. R., Schuh, D., Reiger, E.,
Kaxiras, E., Arbiol, J. & Fontcuberta i Morral, A. (2011). Phys. Rev.
B, 83, 045303.

Hjort, M., Lehmann, S., Knutsson, J., Timm, R., Jacobsson, D.,
Lundgren, E., Dick, K. & Mikkelsen, A. (2013). Nano Lett. 13,
4492–4498.

Johansson, J., Bolinsson, J., Ek, M., Caroff, P. & Dick, K. A. (2012).
ACS Nano, 6, 6142–6149.

Johansson, J., Karlsson, L. S., Dick, K. A., Bolinsson, J., Wacaser,
B. A., Deppert, K. & Samuelson, L. (2009). Cryst. Growth Des. 9,
766–773.

Johansson, J., Karlsson, L. S., Patrik, T., Svensson, C., Mårtensson, T.,
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