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Elemental distribution images acquired by imaging X-ray fluorescence analysis

can contain high degrees of redundancy and weakly discernible correlations. In

this article near real-time non-negative matrix factorization (NMF) is described

for the analysis of a number of data sets acquired from samples of a bi-modal

�+� Ti-6Al-6V-2Sn alloy. NMF was used for the first time to reveal absorption

artefacts in the elemental distribution images of the samples, where two phases

of the alloy, namely � and �, were in superposition. The findings and

interpretation of the NMF results were confirmed by Monte Carlo simulation

of the layered alloy system. Furthermore, it is shown how the simultaneous

factorization of several stacks of elemental distribution images provides uniform

basis vectors and consequently simplifies the interpretation of the representa-

tion.

1. Introduction

X-ray fluorescence spectroscopy (XRF) imaging is a suitable

tool for the investigation of samples at different length scales.

The most advanced instruments for this technique are at

beamlines employing synchrotron radiation, such as the X-ray

Micro/Nano-Probe beamline P06 at the Deutsches Elek-

tronen-Synchrotron (DESY) in Hamburg, Germany (Schroer

et al., 2010). The beamline was designed for the investigation

of samples from a wide range of scientific fields in a flexible

sample environment. The investigated samples cover the fields

of biology (Mishra et al., 2013), materials science (Boesenberg

et al., 2015) and cultural heritage (Monico et al., 2015).

A large fraction of available synchrotron time is dedicated

to external users at these experimental end-stations.

Commonly, these time slots (beam times) are rather short and

consist of only a few days. In order to make efficient use of

time provided at a beamline, at least the preliminary inter-

pretation of data during an experiment is necessary. This

provides a twofold challenge, as the users might be unfamiliar

with the exact experimental conditions and data analysis,

while the scientific staff at the beamline might be unfamiliar

with the samples.

The fundamental processes of XRF analysis are well

understood and the calculation of raw intensities of (groups
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of) individual fluorescence lines from experimental data has

been realised in a range of software packages (Ryan &

Jamieson, 1993; Vekemans et al., 1994; Vogt, 2003; Solé et al.,

2007; Alfeld & Janssens, 2015). Advanced software packages

allow for a real-time or near real-time processing of the

acquired data so that elemental distribution images are

available during the beam time.

In multiphase samples containing concentration variations

of the same elements between phases, compositional changes

may not be immediately revealed. Then, the interpretation of

elemental distribution images is not always straightforward,

especially if the scientist is not familiar with the scientific

background of the sample. Matrix factorization supports the

interpretation of stacks of elemental distribution images

by removing redundancies and highlighting correlations.

Furthermore, it supports an interpretation of the experimental

results unbiased by the user’s expectations.

In matrix factorization, the data matrix V with its spectral

dimension d (here the individual elemental distribution

images) and the number of pixels n is represented by the

product of a number of k basis vectors W and coefficients H

(Fig. 1). From the original three-dimensional data (two lateral

and one spectral dimension) a two-dimensional data matrix

V is calculated by reshaping the array. The base vectors W

represent the loading of individual elemental lines on the

bases, while the coefficients H show the contribution of each

base to an individual pixel. The coefficients H for each base k

can be reshaped into two-dimensional images with the same

lateral coordinate system as the original elemental distribution

images. For clarification, all elemental distribution images in

this paper are in grey-scale, while all factorization results are

in colour-scale.

It is obvious that many combinations of basis vectors W and

coefficients H describe the data matrix V, and the rules used

to determine W and H have a strong influence on the repre-

sentation obtained. Also, to support a fast interpretation of

data during an experiment, an easy and clear representation

prevails upon a complete one. To facilitate this at beamline

P06, a joint project of the Fraunhofer IAIS and DESY was

started to implement fast matrix factorization algorithms for

near real-time analysis of acquired data during beam time.

Principal component analysis (PCA) is probably the most

often used matrix factorization algorithm. It allows straight-

forward calculation of basis vectors and coefficients (usually

termed loads and scores, respectively). Using this algorithm,

all basis vectors are orthogonal and all coefficients ortho-

normal. Due to these constrains the basis vectors and coeffi-

cients may contain negative values. However, all signals

acquired during XRF imaging experiments are positive, and

negative values in the representation are unphysical and

difficult to be intuitively interpreted. For this reason, the

interpretation of PCA data requires significant experience.

The limitations of PCA can be partially resolved by clustering

the data, leading to easily interpretable basis vectors but

coefficients of binary nature (Vekemans et al., 1997).

In search of an algorithm that allows a fast, robust matrix

factorization approach that yields easily interpretable repre-

sentations, we came to non-negative matrix factorization

(NMF) (Lee & Seung, 1999). Using this algorithm, W and H

are initiated with random values and updated in an iterative

process, leading to a representation that preserves the non-

negative nature of XRF data sets and resolves many correla-

tions. A good criterion for convergence to be used as a

response function is the Frobenius norm1 and variations of it.

However, for the analysis of spectromicroscopy data other

measures have also been recently proposed (Mak et al., 2014).

Matrix factorization with non-negative constrains has long

been used in spectroscopic imaging (Kotula et al., 2003), but

has found only limited use in the interpretation of XRF

imaging data until now. Osan et al. used positive matrix

factorization of the EPA PMF 3.0 software package in a study

on the sorption capacity of claystone for several radionuclides,

to identify the most strongly absorbing mineral phases (Osán

et al., 2014; Kéri et al., 2016). Lahlil et al. used the NMF

routines implemented in the PyMCA software package to

identify components present in micro-XRF maps of lead

antimonate-based opacifiers in glass samples from several

epochs (Lahlil et al., 2011). Santos et al. used the same routines

to identify in a full spectral XRF data set of an enamel plaque

the correlation of several elements of an anachronistic

pigment and so revealed the object to be a 19th century

forgery (Santos et al., 2016). Our group used the NMF function

of the Python Matrix Factorization module (pymf) (https://

code.google.com/p/pymf/) for the interpretation of elemental

distribution images of several thousand square centimetres

of a Rembrandt painting to discriminate between chemical

components with identical qualitative but different quantita-

tive chemical composition (Alfeld et al., 2014).

Based on this experience we found NMF suitable for use at

beamline P06 during and after XRF imaging experiments. A

suitable GUI for online analysis was developed and is now

integrated in the data evaluation procedures at beamline P06.

The GUI, which was used to obtain the results presented

in this paper, will soon be published as open source after a

period of internal testing (https://sourceforge.net/projects/

p06pymfgui/). In this publication we illustrate the value of

NMF analysis in supporting the fast and intuitive interpreta-

tion of XRF imaging data associated with the study of phase

transformation kinetics during continuous heating of a bi-

modal �+� Ti-6Al-6V-2Sn alloy (Barriobero-Vila et al.,

2015a).
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Figure 1
Principle of matrix factorization: the data matrix V with the spectral
dimension d and the number of pixels n is represented by a set of k basis
vectors W and coefficients H. 1 Frobenius norm F : F =

Pn
n¼ 1

Pd
d¼ 1

jV �WHj2
� �1=2

.



�+� Titanium alloys present special interest for the aero-

space and land transportation industry since they feature high

specific strength, fatigue resistance and excellent corrosion

resistance (Banerjee & Williams, 2013). The mechanical

properties of these alloys are essentially determined by their

microstructure, which is controlled by thermal and thermo-

mechanical treatments during manufacturing. Therefore,

advances in functional alloy design and cost reduction of

components are strongly dependent on the correct under-

standing of the phase transformation kinetics (Barriobero-

Vila et al., 2015a,b). The diffusion mechanisms controlling

these processes have been generally explained on the basis of

theoretical equilibrium concentrations of alloying elements

between phases. Recently, the role of element partitioning on

the �–� phase transformation kinetics of a bi-modal �+�
Ti-6Al-6V-2Sn was studied experimentally by micro-XRF,

revealing variations in the transformation sequence with the

heating rate (Barriobero-Vila et al., 2015a). In addition to the

elemental distribution images acquired by micro-XRF at

beamline P06, in situ high-energy synchrotron X-ray diffrac-

tion (HEXRD) was carried out at the ID15B beamline of the

European Synchrotron Radiation Facility (ESRF), Grenoble,

France. Moreover, scanning electron microscopy with energy-

dispersive X-ray spectroscopy (SEM-EDX) as well as

conventional metallographic analysis were applied. In the

SEM images it was clearly visible that next to the large

volumes of the primary � phase a secondary � phase also

exists, which is enclosed in small volumes inside the � phase.

These volumes of the secondary � are smaller than the beam

used for XRF imaging at P06 and are thus not resolved and

only detected as a minor concentration variation, which was

found to have no influence on data evaluation in the further

paper. For high-resolution SEM images the reader is referred

to the original publication (Barriobero-Vila et al., 2015a).

The experiments at P06 aimed at the acquisition of

elemental distribution images that featured, next to a high

lateral resolution, also statistics and contrast superior to SEM-

EDX images to study the element partitioning especially for

stabilizers of the � phase, i.e. V, Fe and Cu. The near real-time

NMF analysis provided crucial information that prevented a

potential misinterpretation of the acquired data.

In the following, the samples and the technical details

concerning the acquisition of elemental distribution images by

XRF will be described. It will be shown how NMF allowed to

highlight artefacts that hindered a clear understanding of the

images and how Monte Carlo simulation confirmed our

interpretation of them as absorption effects. Finally, alter-

natives to the NMF approach used will be discussed.

2. Experimental

2.1. Sample preparation

Eight samples of the Ti-6Al-6V-2Sn alloy were investigated

by micro-XRF at beamline P06. They were subjected to

different thermal treatments that comprise an initial contin-

uous heating using 5 and 100�C min�1 followed by helium

quenching of samples at different temperatures. To enhance

readability only three of the measured samples will be

discussed in this paper (see Table 1). Samples of �10 mm

thickness and 4 mm � 4 mm area were obtained for the XRF

imaging experiments by grinding and polishing of the thermal

treated samples in a Multiprep machine. Details on sample

preparation can be found in the original study (Barriobero-

Vila et al., 2015a). The concentration of minor components in

the bulk material was given by the manufacturer as Al 6 wt%,

V 6 wt%, Sn 2 wt%, Cu 0.75 wt% and Fe 0.35–1 wt%.

2.2. XRF imaging at beamline P06

The elemental distribution images discussed in this publi-

cation were acquired at the Microprobe end-station of

beamline P06. The third harmonic from a 2 m spectroscopy

undulator was selected by means of a cryogenically cooled

Si(111) double-crystal monochromator, yielding a primary

beam of 11.5 keV. A Kirkpatrick–Baez mirror system (KB)

was used to focus the beam down to approximately 0.5 mm �

0.5 mm at the site of the sample, on which it impinged near

normal angle. The fluorescence radiation emitted by the

sample was recorded by means of a Vortex EM detector

(50 mm2 active area), on which a conical collimator was

mounted to reduce the contribution from primary radiation

scattered by the air. The intensity of the primary beam was

monitored by means of an ionization chamber positioned

before the KB system, and a passivated implanted planar

silicon (PIPS) diode positioned behind the sample. The latter

allowed for the acquisition of images featuring the intensity of

the transmitted radiation.

The sample was positioned in the focus of the beam and

rotated until the detector featured an out-going count rate of

20 kcounts s�1. This procedure prevented the overexposure of

the detector during the measurement and assured a compar-

able, albeit not identical, detection geometry between

different samples. Consequently, the detection angle varied

around 5� with an air path length of approximately 2.5 cm,

which is considered acceptable for non-quantitative results.

Areas of 10 mm � 10 mm were scanned with 0.5 mm step size

and a dwell time of 0.2 s per pixel, consequently taking

roughly 135 min per sample. Under the chosen experimental

conditions Sn-L lines were only weakly excited and strongly

absorbed in the air path between sample and detector, so that

their distribution could not be imaged.

Elemental distribution images were obtained in a few

minutes by linear least-squares fitting in PyMCA (Solé et al.,

2007) and corrected for beam intensity and dwell time varia-
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Table 1
Samples investigated.

Sample
Heating rate
(�C min�1)

Quenching
temperature (�C)

A 5 940
B 5 530
C 100 590



tions in in-house-written software.

Gamma correction was used on all

images shown in order to enhance their

readability.

3. Results and discussion

3.1. Elemental distribution images

In Fig. 2 elemental distribution

images of the samples A to C are

shown. In the red and yellow binary

images each pixel is attributed

belonging predominantly to the

primary � phase (yellow) and � phase

(red) based on a comparison of the

intensity of the Cu-K� signal with

an empirical threshold. The noisy

appearance of the Ti-K and transmis-

sion intensity images of the detail are

due to incomplete correction for

variations of the primary beam’s

intensity.

Sample A, which was heated at

5�C min�1 up to 940�C, presents a

matrix of � phase rich in V with only a

small �10 vol% of primary � phase

(relatively richer in Ti) (Barriobero-

Vila et al., 2015a). In the V distribution

image it can be seen that the V signal

decreases with proximity to the �
grains. At the interface the signal is

decreased by 10% compared with that

of the bulk � phase. The distribution of

the weaker absorbing � phase in the

depth of the sample is discernible in

the transmission image. This confirms

that the depletion of V in the �/�
interphase is not an artefact due to

underlying phases but a concentration

gradient. The other stabilizers of the �
phase, namely Fe, Cu and Ni (the latter

was found with a lower concentration

level), are also mainly present in the �
phase. Differently to V, they do not

show clear variations in the interphase.

Furthermore, the statistics of the V-K�

image only give a vague impression of

the enrichment due to the noisy image

obtained from the lesser intense fluor-

escence line.

Samples B and C were heated up to moderate temperatures

(see Table 1) and present less easily interpretable images.

Here, � amounts to �88 and 85 vol% for 5 and 100�C min�1,

respectively (Barriobero-Vila et al., 2015a). Also, the primary

� and � phases are clearly discernible in the Ti-K and trans-

mission signal images. However, as primary � and � phases are

much closer to one another a clear distinction on a per-pixel

base is more difficult. The difference in signal intensity in the

lower left corner of sample B is due to variations of sample

thickness.

After seeing concentration variations in the � phase

boundaries of sample A, it is tempting to search for similar
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Figure 2
Elemental distribution images of 10 mm� 10 mm with a step size of 0.5 mm and a dwell time of 0.2 s of
samples A, B and C (left to right). Two primary � grains of sample B are shown in the rightmost
column, as indicated in the Ti-K distribution image. ‘Trans’ indicates the intensity of the radiation
transmitting through the sample. To guide the eye, the pixels predominantly belonging to the � phase
are coloured yellow and those predominantly belonging to the � phase are red, in the binary images.
The scale bars refer to the large overview images; the images in the bottom row are half of this.



effects in the images of the samples B

and C. Indeed, a close inspection of

the V-K� distribution images of these

samples reveals also a gradient of

the recorded signal’s intensity in the

boundaries between primary � and �
phases. This is especially clear in the

upper part of the two representative

primary � phase grains, shown in the

rightmost column of Fig. 2. Similar

gradients are weakly discernible in the

element distribution of the other stabi-

lizer elements of �, i.e. Fe, Cu and Ni

[shown in Digital Supporting Informa-

tion (DSI) 0.1 of the supporting infor-

mation].

In backscatter electron images and

classical metallographic light micro-

scopic images, which practically probe

only the surface of the sample, the

border between � and � phases can

be easily defined by setting a global

threshold in the intensity of the

displayed signal. This approach is less

accurate for elemental distribution

images of the elements obtained by

micro-XRF since the recorded fluores-

cence radiation can penetrate through

several micrometres of the sample.

Therefore, sub-surface features can

contribute to the acquired elemental

distribution image. However, quantifi-

cation of this effect is difficult. To gain

additional insight into the elemental

distribution images, NMF was used.

3.2. Non-negative matrix factorization

For the data set of sample B the elemental distribution

images obtained by fitting with PyMCA were analyzed with

NMF. As data matrix the elemental distribution images shown

in Fig. 2 were selected, omitting those unrelated to the sample,

such as that of Ar. Prior to factorization each elemental

distribution image was normalized to the square root of its

mean value (Vekemans et al., 1997). This form of normal-

ization was found best for the factorization of elemental

distribution images, as un-normalized data are dominated by

the strongest element, in this case Ti. In the case of normal-

ization to the mean value of elemental distribution images the

random noise in distribution images of weakly contributing

elements was found to be given too much weight. After

factorization the base vectors were rescaled to normal values.2

The number of bases k was empirically determined. Given

the presence of two phases with different elemental compo-

sition in the Ti-6Al-6V-2Sn alloy, the number of bases k had to

be larger than two. Three bases were used in the factorization,

as with more bases the NMF did not properly converge,

yielding several noisy coefficient images which represented

together the � phase (shown in DSI 1.1 of the supporting

information). In other studies we used the number of signifi-

cant PCA bases to estimate the number of bases k in a NMF

factorization.

The data set was factorized with 3000 iterations and aborted

when the improvement of the Frobenius norm in an iteration

of the NMF was less than 1 p.p.m.. The factorization was

repeated 99 times with different seeds for the random initial

values of H and W. Seventy-one results comparable with those

presented in Fig. 3 were returned. The presence of a third

component was not recognized 20 times, and the � phase was

represented by one base, while the � phase was represented by

two bases, yielding noisy images, clearly indicating that the

factorization had failed (shown in DSI 1.2 of the supporting
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Figure 3
Typical coefficient images obtained by NMF from the data set of sample B only. The base vectors
feature average loads and their sample standard deviation, calculated from the 71 successful NMF
attempts. The area of the detail is indicated in the coefficient image of Base 1.

2 Not normalized coefficients were obtained by multiplication with the inverse
of the normalization matrix C: C d� d

�V d� n
� C d� d

�W d� k
�H k� n;

(C d� d)�1
�C d� d

�W d� k = W d� k.



information). Three phases were found eight times, but Base 0

and Base 2 were not clearly resolved. This is basically worse

than a ‘failed’ factorization as the failure is not obvious to the

user (shown in DSI 1.3 of the supporting information). The

successful factorizations took on average 17.7 s on a normal

office PC3 and converged after 1550 iterations on average.

Given the rather swift processing of the data set the para-

meters of the NMF could be empirically improved and results

were provided in a short time compared with data acquisition

(more than 2 h).

From the 71 ‘good’ factorizations the mean basis vector

values for each element were calculated, as well as their

sample standard deviation. For most elements the sample

standard deviation is less than 12%; however, especially weak

contributions to one base can have a sample standard devia-

tion of several hundred percent.

Of the ‘good’ factorization shown in Fig. 3, Base 1 and

Base 2 represent primary � and � phases, respectively. Base 1

features a strong contribution from Ti and weaker contribu-

tions from all other elements and is similar to the composition

of the primary � phase. Base 2 features a higher contribution

of the stabilizing minor elements of the � phase. The coeffi-

cient images of both bases are in good agreement with the

distribution of the two phases concluded from the elemental

distribution images. Base 0 is more difficult to interpret. In its

elemental composition it resembles more the � than the

primary � phase, but more striking is its distribution. It is of

moderate intensity in areas dominated by the primary � phase

and presents high intensity in some of its boundaries, showing

a structured anisotropic distribution. In the detail shown the

high-intensity boundaries are mainly upwards and to the right.

In the rest of the data set no general preference for a single

direction can be observed. The contribution of Base 0 is very

low in areas dominated by the � phase and weak in that

dominated by the � phase.

The rise of the V-K� signal inside the primary � phase was

assumed to be an artefact resulting from absorption effects

and not a true enrichment of V and other stabilizers of the �
phase, as diffusive processes are not expected to favour one

lateral direction during thermal treatment. In Base 0 the effect

from the thickness variation of the sample is also visible,

showing a stronger contribution in the upper right corner than

in the lower left.

Also the elemental distribution images of the samples A

and C were investigated with NMF. While in the literature

matrix factorization is, with few exceptions (De Juan et al.,

2004), limited to single scans, we combined the images of all

three samples into one data matrix and processed it with the

same settings (number of bases, maximum number of itera-

tions, convergence criterion) as the images of sample B in less

than 1 min to determine bases and coefficients.

The results, shown in Fig. 4, are in good agreement for

sample B with the individual processing, yielding similar basis

vectors and coefficient images (Fig. 3). The difference between

the basis vectors normalized to V obtained by both approaches

is in general less than one standard deviation. This is, however,

not true for the Ni-K signal of Base 0 and the V-K� signal of

Base 2, which differ by 4.0 and 1.5, respectively, standard

deviations. In the NMF results of sample C a representation

similar to sample B was found. Base 1 represents the primary

� phase, Base 2 the � phase matrix and Base 0 features the

anisotropic distribution located at the boundaries of the

primary � phase.

The results of sample A are different. Base 1 still represents

the primary � phase, while the � phase matrix is represented

by Bases 0 and 2, with Base 0 having a stronger contribution. It

is not surprising that Base 0 with its lesser relative V contri-

bution is stronger, as the same absolute mass of V is now

distributed over a larger volume of � phase and so its

concentration is reduced. The concentration variation of V at

the boundaries between � and primary � phase is represented

by the addition of Base 1 to Base 2 in the absence of Base 0.

However, it is crucial that no anisotropic effects similar to the

samples B and C were observed for sample A.

The factorization of all samples in parallel simplifies the

interpretation of NMF data considerably, as only one set

of basis vectors needs to be interpreted, but it requires

comparable measurement conditions and similar samples.

If processed individually, the data sets of the samples A and

C featured a slightly improved contrast and similar sample

standard deviation of the elemental contributions to the basis

vectors. The parameters used for NMF in this section, i.e. k,

elemental maps used, normalization method, maximum

number of iterations, and threshold for interrupting the

factorization, were adjusted to obtain easily readable results.

However, the presence of a third base, next to those for the

two phases, was immediately apparent, as was its anisotropic

distribution around the grains of the primary � phase.

3.3. Monte Carlo simulation

The exact meaning of the anisotropic distribution of Base 0

around the primary � grains remained puzzling after NMF

analysis. It was assumed to be caused by superposition of

primary � and � phases and the resulting absorption effects

in some areas, but the magnitude of this effect for different

elements was difficult to estimate and required further

analysis.

As discussed in the Introduction, the fundamental physical

interactions giving rise to XRF signals are well understood.

An approximation of the intensity of fluorescence lines based

on analytical calculations using the fundamental parameter

approach is straightforward, but to take secondary excitation

in layered structures into account is not. A solution to this

is Monte Carlo simulation (MC), in which the interaction

between primary photons and the sample is simulated as a

number of random events with probabilities based on funda-

mental parameters.

The system simulated is shown at the bottom of Fig. 5. The

sample has a uniform thickness of 10 mm. At the very left the

sample is pure � phase, featuring strong signals of V, Fe and

Cu. Then a layer of � phase is superimposed and grows in
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3 Intel QuadCore CPU with 3.3 GHz and 8 GB installed memory.



thickness until all the sample consists only of � phase rich in Ti

and Al. Afterwards, the pure � phase is superimposed with

a pure � layer until the sample is pure � phase again. The

primary beam (11.5 keV) impinges on the sample at normal

angle and the fluorescence radiation is detected in an angle

of 5�. The model aimed at a qualitative reproduction of the

effects, and not a quantitative reproduction of the measured

data for a single sample with a specific concentration of trace

elements in both phases and a specific detection angle.

XMIM-SIM was chosen for the simulation of these

experiments, as it allows for fast MC without in depth

programming knowledge and command line operations in a

transparent, interactive fashion (Schoonjans et al., 2012, 2013).

Further, the software package provides a batch mode that

allows for the variation of one or more parameters in a series

of MC simulations without user-intervention.

In the upper part of Fig. 5 all signals are normalized to their

maximum intensity and plotted against the thickness of the

surface layer. In the middle part the signals were first

normalized to the V-KL3 signal and then again normalized

to fully exploit the value space between 0 and 1. The KL3

transitions are directly proportional to the element’s K� lines,

while the KM3 transition corresponds to the K� lines. In all

elements but V, the absorption in the sample matrix is

comparable for the K� and K� lines, so that they are not

individually treated. In the case of V the K� line (4.952 keV)

is below the Ti-K edge (4.966 keV), while the K� line

(5.427 keV) is above it, therefore the V-K� line is much

stronger attenuated. This renders the line ratio of the V-K

lines very sensitive to the structure of the sample.

It can be clearly seen that, in the case of superposition of

any order, the signal of the stabilizing elements of the � phase
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Figure 4
Bases obtained from a combined data set consisting of the elemental distribution images of the samples A, B and C. The coefficient images for the
samples A, B and C are shown from left to right, with the detail of sample B (indicated in coefficient image of Base 1) shown in the rightmost column.



(V, Fe and Cu) is enhanced relative to the composition of the

pure �-phase and might be misinterpreted as an enrichment of

these elements in the grain boundaries of primary �. However,

normalizing all signals to the V-KL3 signal reveals an odd

feature, which would not be observed in the case of enrich-

ment: if the � phase is in superposition to the � phase the

signals of all lines above the Ti-K edge (V-KM3, Fe-KL3 and

Cu-KL3) are reduced (left part of Fig. 5). If the � is present

above the � phase (right part of Fig. 5) an enhancement of

these signals relative to the V-KL3 can be expected. Ni was

not included in the model as it is a minor element not listed in

the report of conformance of the as-received Ti-6Al-6V-2Sn

alloy. However, its signal would be, if plotted, between that of

Fe and Cu.

In the obtained data set four different components, i.e.

phase combinations, should be present: � phase, � phase,

� phase on � phase and � phase on � phase. While the phases

in superposition do not represent clear components, but rather

signal gradients, they can be approximated as such. However,

NMF only reveals the presence of three bases: the Ti-rich

primary � phase is represented by Base 1 (with minor

contribution of Base 0), the V-rich � phase is represented by

Base 2, and the overlap of � phase on � phase is highlighted in

Base 0. Owing to the additive nature of NMF the missing case

(� phase on � phase) is not represented as an individual base,

but as a linear combination of the Bases 1 and 2. It can also be

seen in Fig. 5 that this case is less pronounced than the

superposition of � on � phase and signals similar to that of the

bulk material are reached with only a few micrometres of �
phase on the � phase.

MC allows confirmation of our assumption that absorption

effects cause the elemental ratios giving rise to Base 0. In the

upper and right interphases of the two primary � phase grains

shown in detail in Figs. 2 to 4 the � phase is present at the
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Figure 5
Results of the MC simulation using XMIM-SIM. On the left a superposition of the � phase (yellow) on the � phase (blue) is shown, and on the right the
opposite is the case. In the two upper graphs the intensity of the given fluorescence line is normalized to its maximum value. In the two lower plots the
intensity of all lines is shown relative to the V-KL3 and normalized to fully exploit the value space between 0 and 1. Dashed lines are to guide the eye
only. The plots in one row of the figure use the same vertical axis.



surface of the sample, above the � phase. This explains the

anisotropic features visible in the coefficient images.

From the results of the virtual line scan shown in Fig. 5,

elemental distribution images were calculated, reducing the

intensity per pixel and adding statistical noise (see Fig. 6). The

simulated image contains several � grains in a �matrix. To the

left of each � grain the � phase is in superposition to the �
phase, while to the right the opposite is the case. In the

simulated data the gradient at the interphase is fully resolved,

so the absorption effect on the ratio of V-K� to V-K� can

be shown in the V-KM3/(V-KM3 + V-KL3) image. Here the

presence of the �-phase on the surface results in a relative

enhancement of the V-KM3 signal, while it is diminished in the

case of the presence of the �-phase on the surface. This ratio

image is much clearer than that in DSI 2.3 (see supporting

information), given the better statistics per pixel.

The simulated data set was analyzed with NMF with iden-

tical parameters as the original data set, with the exception of

the absence of the Ni signal. Typical results of these factor-

izations are shown in Fig. 6. Base 0 represents the super-

position of the � on the � phase, Base 1 the � phase and Base 2

the � phase, which is identical to the results on the acquired

real data sets and confirms our interpretation of the NMF

results.

However, the NMF representation of the simulated data

diverges from that of the measured data at two points. In the

MC model the abundance of Fe in the � phase was over-

estimated, so that the Fe-KL3 load on Base 1 is also enhanced

towards the measured data.

Further, probably due to this quantitative divergences

between simulation and real data, Base 0 contributes not only

to the area where the �-phase is present above the � phase but

also to the pure � phase (strongly) and the pure � phase

(weakly), as opposed to the real data, where Base 0 contrib-

uted to the pure � phase weakly and negligible to the � phase.

These quantitative differences notwithstanding, the factor-

ization of the simulated data set has confirmed the inter-

pretation of Base 0 as the result of superposition of phases in

the sample.

3.4. Alternatives to the NMF approach used

Next to NMF other approaches to study the absorption

effects were investigated. The most obvious alternative to

NMF is PCA, which was also performed

with the data set of sample B for

comparison (shown in DSI 2.1 of the

supporting information). Like NMF, it

highlights the anisotropic phase repre-

sented by Base 0 in NMF, but it is less

straightforward to be interpreted, as

the representation obtained did not

preserve the non-negative nature of

elemental distribution images.

One can also directly investigate the

ratio of two signals, either in the form of

a scatter plot (V-K� plotted against V-

K�) (shown in DSI 2.2 of the supporting

information) or a ratio map [e.g. V-K� /

(V-K�+V-K�)] (shown in DSI 2.3 of

the supporting information). This also

provides some insight into absorption

effects, but it requires a high degree

of user intervention during data inter-

pretation and is limited to the relation

of two signals. In the case of the samples

investigated, in the scatter plots of V-K�

against V-K�, Fe and Cu, a broadening

of elemental ratios was observed, but no

sharp separation, as the statistics of the

acquired data were insufficient for this.

Recently, Mak et al. described their

non-negative matrix analysis tool

included in the MANTiS software

package for the analysis of spectro-

microscopy data (Mak et al., 2014). The

basic NNMA (non-negative matrix

approximation) algorithm was found to

be comparable with the NMF one used
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Figure 6
Artificial test data set, based on the results of the Monte Carlo simulation shown in Fig. 5 and its
representation by NMF.



in this paper. However, they discussed alternatives to the

Frobenius norm as quality criterion for NMF, mainly with

respect to the analysis of full spectral data. One of their

approaches was to cluster the sample after PCA and use the

obtained cluster spectra as initial values for NMF. During

NMF the similarity of the calculated basis vectors to the

cluster spectra is used as a criterion of the quality of the

factorization. We observed in our data set that this resulted in

clearer representations with less variation and fewer ‘failures’.

However, we refrained from including a similar algorithm as it

would require an interpretation of the PCA results and thus

complicate the analysis. It also remains to be seen how far the

bias of the data towards the cluster spectra does not also bias

the representation away from minor components that might

otherwise be found.

4. Conclusions

It has been shown that NMF is fast and provides easily

interpretable representations unbiased by the user’s expecta-

tions. It is also robust, as it can handle limited differences

in sensitivity, e.g. due to variations in sample thickness and

detection geometry.

This makes it a suitable tool for the correct near real-time

analysis and interpretation of data acquired during XRF

imaging experiments at synchrotron sources, as the emphasis

of correlations and reduction of redundancies in the data sets

supports the efficient use of the short experimental time

allocated.

In the studied case, variations of the X-ray fluorescence

intensity of several elements at the grain boundaries of

primary � grains were studied for a bi-modal �+� Ti-6Al-6V-

2Sn alloy. NMF analysis highlighted the anisotropic distribu-

tion of these variations in the samples B and C, which was not

detected in sample A. This allowed, in combination with MC,

to show that in sample A (heated to 940�C, �10 vol% of

primary � grains dispersed in a � matrix) this effect is asso-

ciated with concentration variations at the interphases of the

bulk material, i.e. diffusion effects during the � ! � phase

transformation. For microstructures formed by globular

primary � grains (about 85 vol%) within a �matrix (samples B

and C, heated to 530�C and 590�C, respectively), these signal

intensity gradients are associated with the superposition of

both phases.

Care needs to be taken when interpreting the representa-

tion in a quantitative way. Each representation is just one of

many possible solutions and so the quantitative information in

the basis vectors varies, typically by a few percent, between

factorizations.

Beyond that, we could show that NMF is not limited to the

interpretation of imaging data of single samples, but that it can

be used to factorize data from several similar samples, yielding

uniform basis vectors.

In general it can be said that NMF only provides minor

insights in well known and well understood systems, but it

tremendously supports the interpretation of less well under-

stood ones. Furthermore, the easily understandable nature

of base vectors and coefficients allows easily communicating

correlations in complex data sets.
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