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The ‘missing wedge’, which is due to a restricted rotation range, is a major

challenge for quantitative analysis of an object using tomography. With prior

knowledge of the grey levels, the discrete algebraic reconstruction technique

(DART) is able to reconstruct objects accurately with projections in a limited

angle range. However, the quality of the reconstructions declines as the number

of grey levels increases. In this paper, a modified DART (MDART) was

proposed, in which each independent region of homogeneous material was

chosen as a research object, instead of the grey values. The grey values of each

discrete region were estimated according to the solution of the linear projection

equations. The iterative process of boundary pixels updating and correcting the

grey values of each region was executed alternately. Simulation experiments of

binary phantoms as well as multiple grey phantoms show that MDART is

capable of achieving high-quality reconstructions with projections in a limited

angle range. The interesting advancement of MDART is that neither prior

knowledge of the grey values nor the number of grey levels is necessary.

1. Introduction

Tomography techniques have been widely adopted for

obtaining three-dimensional images of physical objects non-

invasively. Fourier-based methods and algebraic reconstruc-

tion methods are two popular types of principal algorithms

for image reconstruction. Fourier-based methods, which are

directly related to the Radon transform, are still commonly

used because of their small computational burden (Mueller et

al., 1999). Algebraic reconstruction methods, which formulate

the reconstruction problem as a linear system of equations

(Zeng, 2010; Herman, 2009), can achieve images with better

quality than Fourier-based methods, especially when the

number of projections is limited or the angles are in a limited

range.

A limited range of tilt angle occurs frequently in electron

tomography (Milne & Subramaniam, 2009), soft and hard

X-ray nano-tomography (Duke et al., 2013; Tian et al., 2008).

A flat sample holder occludes the light when the tilt angle of

the tomography reaches a high angle (usually �75�). The

limited spacing for specimen holders between the pole pieces

of the objective lens may also prevent the rotation of the

sample holders. These would lead to a ‘missing wedge’ in the

collected data. In this case it is very difficult to obtain a

quantitative measure of the object based on the reconstruc-

tion. In other words, the boundaries and the grey values of the

reconstructions do not match well with the physical objects.
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Discrete tomography has evolved into a powerful, robust

and flexible method for reconstructing images with a small

number of projections when the physical objects contain only

a few discrete grey levels (Herman & Kuba, 2007). Numerous

discrete tomography reconstruction algorithms have been

proposed in the last few decades. Schüle et al. presented a

primal-dual subgradient algorithm for reconstructing binary

images from projections with few-view or a limited range of

angles (Weber et al., 2004; Schüle et al., 2005). There are many

evolutionary algorithms for discrete tomography (Batenburg,

2005; Weber et al., 2006). However, most of these algorithms

are limited in achieving a high-quality reconstruction of binary

images.

Recently, Batenburg et al. proposed the discrete algebraic

reconstruction algorithm (DART), which can address binary

images and images that contain three or more grey levels with

prior knowledge of the grey levels of each material (Baten-

burg & Sijbers, 2007, 2011; Batenburg et al., 2010). When

samples consist of a few discrete materials, it is possible to

obtain accurate reconstructions even if the number of

projections is limited. Furthermore, thresholding is already

applied during the reconstruction, thus DART can achieve

segmented images directly. DART has been steadily devel-

oped into a powerful algorithm for many experimental data-

sets, such as reconstructing catalyst particles for bamboo-like

carbon nanotubes from transmission electron microscopy

(Bals et al., 2007), quantitative analysis of zeolite through

discrete electron tomography (Bals et al., 2009) and recon-

struction of a diamond from a series of micro-computed

tomography projections (Batenburg & Sijbers, 2011).

A common assumption of DART is that all of the grey levels

of the reconstruction are known a priori; therefore, it is

important to know the appropriate assumption of the grey

levels and the thresholds for obtaining high-quality recon-

structions. Although it is easy to know the grey levels in

simulation experiments, obtaining a priori knowledge in

practice is difficult. To reduce the requirements of prior

knowledge, a semi-automatic discrete grey level selection

(DGLS) method was proposed to estimate the grey levels of

an image (Batenburg et al., 2011). A homogeneous area in the

reconstruction is selected manually to calculate the grey value

of each grey level. Afterwards, a projection distance mini-

mization DART (PDM-DART) method was proposed to

estimate the grey level parameters adaptively; the method

required that only the number of grey levels should be known

in advance (van Aarle et al., 2012). Some algorithms keep a

specific component of the reconstruction fixed, and the rest of

the components changed during the process. For example, the

BgART algorithm could detect the background and keep the

background value fixed for every iteration (Messaoudi et al.,

2013). This algorithm facilitates segmentation of objects and

denoising of the reconstruction.

The series of algorithms of DART are effective when the

number of grey levels is small (Batenburg & Sijbers, 2011). In

some actual applications, such as for integrated circuit chips,

marine sediment and shale, which have multiple phases and

various compositions (Kanitpanyacharoen et al., 2013;

Uramoto et al., 2014), prior knowledge of grey levels, even

simply the number of grey levels, is not easy to acquire. As the

number of grey levels increases, the reconstruction quality

decreases (van Aarle et al., 2012). Hence, it is necessary to

develop a method of reconstructing multiple grey images

when the range of the tilt angle is limited and without prior

knowledge of the grey levels.

In this paper a modified DART (MDART) algorithm is

proposed to reconstruct multiple grey images. In our method

the available projection data were reconstructed using an

algebraic reconstruction method. Then, the reconstruction

images were divided into discrete regions depending on

threshold values that were selected manually. The segmenta-

tion images were used as an input of the proposed method.

Each independent region was a research object. The grey

values of each discrete region were estimated by solving the

algebraic reconstruction linear equations. Thus, the number of

unknown variables in the equations was decreased by several

orders of magnitude. Then, updating boundary pixels and

correcting the grey values of each region were iteratively

alternated until the stop criterion or the maximum iteration

number was met. This method has been tested on both binary

and multiple grey images while the angle of projection was

limited.

2. Notation and concepts

Let x = ðxjÞ 2 R
n represent a two-dimensional unknown

image, which denotes the object function with n pixels. A finite

set of m measured projection data p = ðpiÞ 2 R
m is defined by

Pn
j¼ 1

wij xj ¼ pi; i ¼ 1; 2; . . . ;m; ð1Þ

where wij can be interpreted as the contribution of the jth pixel

xj to the ith detector value pi. W = ðwijÞ 2 R
m�n is the system

matrix. Therefore, the tomography reconstruction algorithm

tries to find the unknown image x by solving the linear system

of equations

Wx ¼ p: ð2Þ

In practice, numerous reconstruction algorithms have been

proposed to solve equation (2) (Kak & Slaney, 2001; Zeng,

2010). For the experiments in this paper, the simultaneous

algebraic reconstruction technique (SART) (Andersen &

Kak, 1984) TVM (SART-TVM) will be used to reconstruct the

images to obtain a preliminary result, and SART will also play

an important role in MDART. Therefore, SART and TVM are

briefly reviewed. SART is a linear algorithm that finds a

solution x such that the difference between the projections

from the original image and the reconstruction image

jjWx� pjj is minimal. Almost all iteration algorithms start

with an initial guess x = xð0Þ, and a new reconstruction xðkÞ is

iteratively calculated from xðk�1Þ. SART carries out updating

operations using all projections at an angle each time as

follows,
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x
ðkÞ
j ¼ x

ðk�1Þ
j þ �

1Ph
i¼ 1wij

Xh

i¼ 1

wij pi �
Pn

t¼ 1 wit x
ðk�1Þ
t

� �
Pn

t¼ 1 wit

; ð3Þ

for j = 1 . . . n, where � is a relaxation parameter and h is the

number of total detectors at each angle.

TVM-based algorithms find the approximate solution as the

following optimization problem (Yang et al., 2015),

x� ¼ arg min
x
jjWx� pjj22 þ �TVðxÞ
� �

; ð4Þ

where � is a regularization parameter indicating the impor-

tance of the two terms in the equation and TVð. . .Þ represents

the TVM norm, which is the l1-norm of the gradient image as

defined by Sidky et al. (2006):

TVðxÞ ¼
X
i;j;k

n�
x iþ 1; j; kð Þ � x i; j; kð Þ

�2

þ
�
x i; jþ 1; kð Þ � x i; j; kð Þ

�2

þ
�
x i; j; kþ 1ð Þ � x i; j; kð Þ

�2
o1=2

: ð5Þ

3. The modified discrete algebraic reconstruction
technique

The main limitations in traditional discrete tomography

methods are the requirements of prior knowledge of the

greyscales and the limitation in the number of discrete grey-

scales. In order to overcome these limitations the MDART

algorithm was proposed for reconstruction of incomplete

tomographic data of multiple discrete greyscale phantoms

without any prior knowledge. A flow chart of the algorithm is

shown in Fig. 1. In this approach, we first perform tomographic

reconstruction using a traditional algorithm (SART-TVM) to

provide an initial guess for further calculation. The initial slice

is then segmented based on the greyscales of the image

resulting in a number of isolated regions. Since the tomo-

graphic data were incomplete, the boundary and the grey-

scales in all of the regions might not be accurate and need to

be improved through iterations. These regions were treated as

research objects and their original greyscales disregarded. We

then perform a forward Radon transform of the slice with

unknown greyscales in all of the regions. The result of the

forward Radon transform needs to match the experimentally

measured projection data, which enables us to recover the

greyscales in the regions by solving the linear equations Wxs =

p using the LSRQ method (Paige & Saunders, 1982; Barrett et

al., 1994). Due to the uncertainty of the region boundaries,

the greyscales on the boundary pixels are further updated

by evaluating the difference between the experimentally

measured projection data and the Radon transform of the

slice with the boundary pixels set to zero. The boundary pixels

were smoothed to regularize the boundary reconstruction.

The updated intensity in each boundary pixel is used to

identify the neighbouring region that has the closest greyscale.

This boundary pixel is subsequently merged into the chosen

region, effectively shifting the region boundaries. The above-

described procedure is performed iteratively until the stop

criterion is met, indicating successful reconstruction of the

slice.

There are some main differences with the previous methods.

The procedure for identifying regions is added to the algo-

rithm. Each independent region is chosen as a research object,

instead of the greyscale. The greyscale of each region was

calculated by solving the linear equations. Then the boundary

pixel is merged into one of its neighbouring regions that has

the closest greyscale.

A simple example is presented to demonstrate the process

and details of the algorithm. Fig. 2 indicates the various steps

of the algorithm. Fig. 2(a) is a binary image with two grey

levels (only 0 and 1). Suppose that there were only 121

projections that were equally distributed between 0� and 120�.

Fig. 2(b) shows the initial guess through SART-TVM recon-

struction after 100 iterations. It is obvious that the grey values

and the shape of the reconstruction do not match well with the

original phantom.

Then, the initial reconstruction was segmented into discrete

regions depending on the grey values. Many pieces of software

(such as Amira, ImageJ) could be used to segment the

reconstruction with friendly interactive interfaces. To make

segmentation work more efficiently, a group of threshold

values was chosen to ensure that homogeneous adjacent pixels

were divided into the same region as much as possible. For a

group of three-dimensional data, a few slices that contain the

most compositions are adopted to choose the threshold values.

The threshold values should be appropriate for all of the slices.

There is no strict requirement for the selection of the

threshold, but it would affect the convergence rate of the
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Figure 1
Flow chart of the MDART algorithm.



algorithm. The threshold values � = ð�1 . . . �lÞ were selected

depending on the manual selection. Then, the initial recon-

struction was segmented according to the threshold function,

s xið Þ ¼

1 ðxi � �1Þ

2 ð�1 < xi � �2Þ

..

. ..
.

l ð�l�1 < xi � �lÞ

l þ 1 xi >�lð Þ

8>>>>><
>>>>>:

: ð6Þ

A group of threshold values � = (225, 200, 165, 70, 20, 10)/255

is chosen depending on the features of Fig. 2(b). The

segmentation result is shown in Fig. 2(c).

The procedure for identifying regions was performed

afterwards. If the difference between two adjacent regions

was less than the threshold value ", the two regions were

combined. 143 regions are identified and presented in Fig. 2(d).

In this algorithm, each independent region was chosen as a

research object, instead of the grey values. Thus, there were

143 unknown variables in the new matrix xs. The values of

each independent region were calculated by solving the linear

equations Wxs = p using the LSQR method (Paige & Saun-

ders, 1982; Barrett et al., 1994). The image endowed with new

values is shown in Fig. 2(e).

The boundary region N of the image was the set of all pixels

that had at least one different pixel in their eight-connected

neighbourhoods. The boundary of the image with the new

values is shown in Fig. 2( f). Subsequently, the values of the

pixels were updated by the SART iterations, while the other

pixels were fixed. Thus, the number of variables in the linear

equations was obviously reduced compared with the conven-

tional SART. Fig. 2(g) shows the result of the boundary

reconstruction after ten SART iterations. To regularize the

boundary reconstruction, smoothing must be applied to the

boundary pixels. Let b denote the average of eight-connected

neighbourhoods of a pixel. The boundary pixels were

smoothed with b as follows,

x
ðtÞ
i ¼ 0:7x

ðtÞ
i þ 0:3b: ð7Þ

After that, the pixels in N were merged into one of their

neighbouring regions that had the closest greyscale.

Subsequently, iterations of the algorithm were performed

until the stop criterion was met. In this study, the sum of the

squared difference between two successive iteration results

was used as a measurement of the degree of convergence. The

iterations were stopped once this parameter was smaller than

500 or the maximum iteration number was met.

The final reconstruction of the phantom is shown in

Fig. 2(h). It was almost the same as the original phantom

image, except for a few pixels with different values. It reveals

that MDART is effective while the angle range of the

projections is limited.

4. Experiments and discussion

In this section, a series of experiments are presented to

demonstrate the reconstruction performance of the proposed

method and compared with some commonly used methods.

For all algorithms, the six phantom images shown in Fig. 3

were used. Phantom 1 and phantom 2 are binary images

(Batenburg & Sijbers, 2011). Phantom 3 and phantom 6 are

multiple grey phantoms that contain 15 and 14 grey levels,

respectively. Their grey-level distribution is shown in Figs. 3(d)

and 3(h), respectively. Phantom 4 is the well known Shepp–

Logan phantom, which contains six grey levels. Phantom 5

is composed of 49 homogeneous discs. Every circle has a

different value, and a total of 50 grey levels are contained in

the phantom. The size of all of the phantoms is 256 � 256

pixels.

Five reconstruction algorithms were compared in this

section. We provide a brief review of them as follows:

(i) FBP. Filtered back projection (FBP) is a Fourier-based

method that is related to the inverse Radon transform. In the
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Figure 2
Sequence of operations of the various steps of the MDART algorithm.



experiments, we used a Ram-Lak filter and linear interpola-

tion in the projection domain as the MATLAB defaults.

(ii) SART. The SART algorithm, which has been described

in x2, was run with 500 iterations in the experiments. A posi-

tivity constraint was used after each iteration to obtain a

better result.

(iii) SART-TVM. This algorithm had also been described

in x2, and there are many studies that present details of the

algorithm (Sidky et al., 2006; Yu & Wang, 2009; Liang et al.,

2013). In this work, we refer to the original article (Sidky et al.,

2006) for details except using SART to replace ART. We used

a = 0.2 (gradient descent parameter), Ngrad = 20 (the total

number of gradient descent steps) and 500 iterations for the

analysis.

(iv) DART. The DART algorithm program is included in the

ASTRA toolbox (Palenstijn et al., 2013) and is available

online. 500 iterations were performed to obtain convergent

reconstructions. The grey levels and threshold values were

applied as prior knowledge, but they were not adopted in the

four other algorithms. The 500 SIRT algebraic reconstruction

method has been used for the initial reconstruction and 15 in

the successive ones. The fix probability is 0.99, and equation

(7) is used to smooth the boundary reconstruction.

(v) MDART. Details of MDART were described in x3. The

threshold value " of the regions that need to be identified was

0.01 in the experiments.

The total number of different pixels between the recon-

struction and original image was used as the performance

metric. Because prior knowledge of the grey levels was not

used in all of the algorithms, except for DART, the segmen-

tation process was not performed after the iteration step.

Therefore, a certain degree of difference in the pixel values

between the reconstruction and original image was acceptable.

We define the computing method for the total number of

different pixels as follows:

K ¼ i
��� x r

i � xi

�� �� > maxð!��; 0:003Þ
� �n o���

���; ð8Þ

where �� is the minimum interval between the two grey levels

in the original images; ! is an indicator between 0 and 1 (! =

0.03 was used in the experiment); and !�� is the threshold

value of the errors. However, ordinary image formats are

usually 256 grey levels. When the difference of a pixel between

the reconstruction and original image is less than a grey level it

can be ignored. Thus, when !�� < 0.003, the threshold is set to

0.003.

If prior knowledge of the grey levels q = ð�1; �2; . . . ; �lÞ is

known in advance, the reconstructions can be segmented as

follows:

s xið Þ ¼

�1; xi � ð�1 þ �2Þ=2

..

.

�i; ð�i�1 þ �iÞ=2 < xi � ð�i þ �iþ1Þ=2

..

.

�l; xi > ð�l�1 þ �lÞ=2

8>>>>>><
>>>>>>:

ð9Þ

The relative error of the value of the grey levels was defined as

follows:

� r
i � �i

�� ��
max f�igð Þ

� 100%; i ¼ 1 . . . l: ð10Þ

4.1. Binary phantoms reconstruction

In this section, we present the reconstruction results of

binary phantoms based on the projections with a limited
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Figure 3
Simulated phantoms used for the simulation experiments: (a), (b) are binary phantoms; (c) is a multiple grey phantom, and its grey values are shown in
(d); (e) Shepp–Logan phantom; ( f ) multiple grey circle phantom; (g) multiple grey Shepp–Logan phantom, and (h) shows the grey values.



angular range. As mentioned above, for the DART algorithm,

prior knowledge of the grey levels is necessary, whereas, for

other techniques, it is not required. Fig. 4 shows the recon-

structions of phantom 1 with an angle range of 130� and

phantom 2 with an angle range of 140� by FBP, SART, TVM,

DART and MDART. The angular step is 1�. Obviously, when

the angular range of the projections is limited, a missing wedge

has a significant influence on the reconstructions using FBP

and SART. The pixel error distribution caused by using five

algorithms as a function of the angular range is shown in Fig. 5,

and the total number of all the phantoms is 65536. The results

of TVM, DART and MDART are more accurate as the angle

range increases. Combining Figs. 4 and 5, the reconstruction of

MDART is better than TVM for the same projections. If prior

knowledge of the grey level is applied, DART can obtain very

accurate reconstructions of the binary phantoms with a small

angle range. It can be concluded that, for binary images of

a limited angle range, MDART can achieve high-quality

reconstructions without prior knowledge of the grey levels.

4.2. Multiple grey phantoms reconstruction

For most discrete tomography reconstruction algorithms,

it is a challenge to reconstruct a multiple-level grey image.

Conventional continuous reconstruction methods cannot

achieve high-quality results when the angle range is limited

because of the ‘missing wedge’ of data. Fig. 6 shows the

reconstructed results of phantoms 3, 4, 5 and 6 using the five

methods. Many artifacts and deformations of morphology

could be found in the reconstructions of FBP and SART. The

results of TVM showed a very undesir-

able staircase effect as the number of

grey levels increases. DART also

suffered from the missing wedge influ-

ence. The MDART technique showed

good behaviour for both morphology

and grey value. The pixel error K as a

function of the angle range of the

projections for FBP, SART, TVM,

DART and MDART is shown in Fig. 7,

where erroneous pixels number are

calculated using equation (8). The

angular step in all cases is 1� between

the projections. It clearly showed that,

even without using prior knowledge of

the grey levels, MDART performs

better than FBP, SART, TVM and

DART when processing multiple grey

phantoms in a limited angle range.
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Figure 4
Reconstructions of binary images using FBP (column 1), SART (column 2), TVM (column 3), DART (column 4) and MDART (column 5). Phantom 1
has an angular range of � = 130� and phantom 2 has an angular range of � = 140�.

Figure 5
Pixel error K as a function of the angle range of the projections for FBP, SART, TVM, DART
and MDART.



Fig. 8 shows the number of error pixels of the reconstruc-

tions that have been segmented by equation (9) as a function

of the angle range of the projections. When the results

obtained by FBP, SART and TVM have been segmented, all of

the reconstructed results obviously improved. However, it was

obvious that the number of error pixels of MDART was still

much less than for the four other methods. Note that

segmentation was not applied to the reconstructions of DART

because they had already been segmented in the algorithm.

The limitation of the number of grey levels was also

investigated. Phantoms, resembling phantom 5, were tested

with an increasing number of discs and grey levels. For each

phantom, varying angle ranges of projections were simulated.

The pixel error K of the reconstructed images as a function of

the angle range is shown in Fig. 9. As the number of grey levels

increased, the quality of the reconstructions decreased.

The relative errors of the grey value of phantoms 3, 4, 5 and

6 using MDART were calculated using equation (10) in a

different angle range, as shown in Fig. 10. For the four multiple

grey phantoms, the relative errors decreased to a low level

with the angle range increased. Most of the relative errors are

less than 1% when, for the angle range of phantom 3, � > 135�;

for phantom 4, � > 137�; for phantom 5, � > 120�; and for

phantom 6, � > 150�. The precision is good enough to distin-

guish different compositions. It shows that, for most of the

phantoms, an angle range of 150� can usually result in a precise

reconstruction. MDART is suitable for multiple grey phantom

reconstruction in a limited angle range.
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Figure 6
Reconstructions of multiple grey phantoms using FBP (column 1), SART (column 2), TVM (column 3), DART (column 4) and MDART (column 5).
Phantom 3 has an angular range of � = 130�, phantom 4 has an angular range of � = 147�, phantom 5 has an angular range of � = 135� and phantom 6 has
an angular range of � = 145�.



4.3. Convergence

To understand the impact of the initial value of the

segmentation on the algorithm, a multiple grey image,

phantom 3, with an angle range of 130� is tested.

To segment the reconstruction of the SART-TV result into

discrete regions, a group of threshold values was chosen. In

Table 1 there are ten groups of threshold values with different

values. The threshold values of the first eight groups are

chosen depending on the features of the reconstruction. The

ninth group, which is roughly segmented, is a case where the

third hole in the figure is not identified, as shown in Fig. 11(d).

The tenth group starts with a hole in the middle that spreads

outward. The eleventh group is segmented without threshold

values, but it is manually marked with some obvious feature

regions, as shown in Fig. 11( f). Some of the segmentation

results are shown in Figs. 11(b)–11(e), and the others are

shown in Figs. S1 and S2 of the supporting information. Using

different segmentation results as an input to MDART leads to

a different number of required iterations and different final

error, as shown in Table 1. The values of the error pixels are

slightly different. The number of error pixels as a function

of the iteration number is shown in

Fig. 11(g). The threshold values are

related to the convergence rate of the

algorithm. For three-dimensional data,

a few typical slices are used to select the

threshold values, and then the threshold

values are applied to the entire three-

dimensional data. Overall, the method

of selecting the threshold values using

software (such as Amira, ImageJ, etc.) is

convenient and robust.

In the past decade, many important

tomography reconstruction methods

have been proposed. Equally sloped

tomography with oversampling recon-

struction (Miao et al., 2005) overcomes

the limitation of interpolation error

of the points from a polar grid to a

Cartesian grid in Fourier space. This

method has been applied to many

tomography fields. Liu et al. proposed

an iterative algorithm to reconstruct the

refractive index information from data

collected by an analyzer-based imaging

setup (Liu et al., 2007). It is effective and

accurate compared with the standard

analytical method. For discrete tomo-

graphy, several competing algorithms

also have been presented. DART has

proved to be a successful algorithm for

objects consisting of only a few different

compositions with prior knowledge of

the grey levels (Batenburg & Sijbers,

2011). PDM-DART has been applied in

tomography that requires prior knowl-

edge only of the number of grey levels (van Aarle et al., 2012).

A partially discrete algebraic reconstruction technique

(PDART) could reconstruct and segment the densest nano-

particles and allow the rest of the reconstruction to vary freely

(Roelandts et al., 2011). The BgART algorithm detects the

background and keeps the background fixed at a uniform

value for every iteration (Messaoudi et al., 2013). This facil-

itates denoising the reconstruction and segmentation of

objects without prior knowledge of the materials. The

MDART algorithm treats each region as a research object, and

the value of each region is calculated by solving the linear

system of equations. It reconstructs images with multiple

compositions without prior knowledge of the grey values.

5. Conclusions

In this paper, a modified DART (MDART) algorithm for

reconstructing an image with multiple grey and discrete

regions is presented. MDART focuses on reconstructing

images with a limited angle range and without prior knowl-

edge of the grey values. By using each independent region

instead of pixels as a research object, the number of unknowns

research papers
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Figure 7
Pixel error K as a function of the angle range of the projections for FBP, SART, TVM, DART and
MDART.



in the algebraic reconstruction linear equations is decreased

by several orders of magnitude.

The results show that MDART is a powerful algorithm

for compensating for the ‘missing wedge’ effects that present

a major challenge for quantitative

analysis of an object when using tomo-

graphy methods. MDART can achieve

a higher-quality reconstruction without

prior knowledge of the grey levels for

both binary and multiple grey phan-

toms. The number of erroneous pixels in

the multiple grey reconstructions using

MDART is smaller than the numbers

obtained by other reconstructed

methods. Although the number of grey

levels increases to 50, there is no

obvious reduction in the accuracy.

Additionally, the grey level values

calculated using MDART are precise

enough when compared with the

original images. Thus, MDART can be

used as an alternative method to quan-

titatively analyze objects with multiple

compositions, such as integrated circuit

chips, the cathode and anode of a solid

oxide fuel cell, marine sediment, shale,

nanoparticles, etc. In future work, we

intend to optimize the algorithm to

make it suitable for different types

of experimental data with discrete

compositions obtained from soft X-ray

microscopy, hard X-ray microscopy,

electron microscopy, etc.
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Figure 11
Segment results of the SART-TV reconstruction of phantom 3 and the convergence rate of different segment results. (a) The reconstruction of SART-TV
with an angular range of � = 130�. (b) Segmented carefully with 11 threshold values. (c) Segmented with three threshold values. (d) One of the holes in
the middle is not identified. (d) One of the holes in the middle spreads outward. ( f ) According to the reconstruction, a few obvious features of the
regions are marked out manually. (g) The convergence rates of different segment results as an initial input into the MDART.
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