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An open-source database containing metrology data for X-ray mirrors is

presented. It makes available metrology data (mirror heights and slopes

profiles) that can be used with simulation tools for calculating the effects of

optical surface errors in the performances of an optical instrument, such as a

synchrotron beamline. A typical case is the degradation of the intensity profile at

the focal position in a beamline due to mirror surface errors. This database for

metrology (DABAM) aims to provide to the users of simulation tools the data of

real mirrors. The data included in the database are described in this paper, with

details of how the mirror parameters are stored. An accompanying software is

provided to allow simple access and processing of these data, calculate the most

usual statistical parameters, and also include the option of creating input files

for most used simulation codes. Some optics simulations are presented and

discussed to illustrate the real use of the profiles from the database.

1. Introduction

Optics simulations play an essential role in the optical design

and optimization of a synchrotron radiation beamline optics.

These calculations must include all the parameters that

determine the final beam profile and divergences. The emit-

tance of the source and the figure errors of the optical surfaces

are among the most critical parameters (Siewert, 2013). The

source characteristics are fundamental for the beamline

performance: the performance of a typical beamline at a third-

generation synchrotron facility in terms of microfocalization

and beam coherence cannot be achieved with the same

beamline at an old synchrotron. This drives the community to

build lower-emittance storage rings, aiming to arrive at the

‘diffraction limit’, a regime where the natural size and diver-

gence of the radiation originated by a ‘single electron’ domi-

nates over the size and divergence of the electron beam

(Eriksson et al., 2014). In addition, requirements at free-

electron lasers (FELs) have led to demands for nearly perfect

optics to preserve the phase space along the full length of

beamlines up to 1 km in length (Samoylova et al., 2009;

Yashchuk et al., 2015a). The beamline optics are actually

limited by the perfection of the optical elements. Typically

figure errors in focusing elements are due to fabrication and
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design (deviation from the ideal surfaces) and deformations

due to heat load, gravity, mis-clamping of the optics in the

mechanics, vibrations, etc. The fabrication and polishing of

mirrors, gratings and multilayers has witnessed a rapid

improvement in recent years. The most demanding beamlines

require a finish quality at the edge of what is technologically

available. In order to predict accurately the beamline perfor-

mance it is necessary to describe it using an adequate model

which also includes the figure errors of the optical elements.

Traditionally the finish errors are divided into two groups:

slope errors, characterized by �s, the slope error standard

deviation (SD) of the slopes profile [or its root means square

(RMS) of the profile with the mean slope removed], and

roughness, �h, the SD value of the heights profile (or RMS of

the heights profile of zero mean). For recent projects at FELs

or diffraction-limited storage rings one distinguishes between

the the mid- and high-spatial micro-roughness causing small-

and wide-angle scatter, respectively (Harvey, 1995). Present

technologies achieve values of a few angstroms or tenths of

angstroms of micro-roughness and sub-microradian (down to

50 nrad) slope error. However, it is recognized that the char-

acterization of the mirror errors by these two parameters is

not complete. The SD is evaluated from the heights or slopes

measurements in a collection of points on the mirror surface

measured in a grid along the mirror, with points separated by a

step s or spatial frequency f = 1/s (number of points per unit

length). Obviously, sampling a mirror profile at different

frequencies will give different values of roughness and slope

errors SD. Therefore, the �s and �h values must always be

accompanied by the indication of the spatial frequency value

at what they have been sampled (or the frequency interval

from where they have been averaged).

For optics simulations what matters is the heights profile,

described with sufficient resolution to assess the role of the

different frequencies in the resulting optical image, or point

spread function. Moreover, for diffraction-limited optics, the

slope errors may play only a minor role (Pardini et al., 2015). A

frequent need in the simulation is to model the errors in the

mirror profile in such a way that predicts accurately the

degradation of the focal spot. Two approaches can be used.

The first one is to build a profile with reasonable parameters;

in other words, to ‘invent’ a mirror that would give reliable

results. This is not easy because one does not know a priori the

type of errors that will be dominant. It has been shown that

too simple models like a single sinusoidal function are too

naive and produce non-realistic results. Better results are

achieved by randomly combining different sinusoidal signals

with frequencies that are multipliers of fmin = 1/L (Sanchez del

Rio & Marcelli, 1992). This approach has been extensively

used for simulating slope errors in ray-tracing simulations of

many beamlines (e.g. Signorato & Sanchez del Rio, 1997). The

second approach for simulating a beamline is to use the mirror

profile of the real mirror installed at the beamline. This is the

ideal situation, but needs an existing beamline and measured

mirrors, which is not the case for the typical use of optics

simulations in beamline design. However, the use of an

experimentally measured mirror profile is always the best

solution and data from existing mirrors (or simulated or

modified from the real measurements) can be used for

predicting performances of beamlines under design. This

approach has been used in the literature (Roling et al., 2014;

Siewert et al., 2010; Yashchuk et al., 2015a) using data from

mirrors that have been measured in the facility, or have been

provided by the manufacturer. But in the general case the

accessibility of good experimental data of state-of-the-art

mirrors for simulations of new beamlines is difficult, because

these data usually live in the computers of the metrology

facilities and usually only their SD values of slopes and heights

and perhaps some graphics are available, which cannot be

directly used for the simulations. Simulations require the

availability of the measured data, prepared with suitable

preprocessing (e.g. detrending the main profile) and re-

formatted for being read by the simulation tool.

Here, we propose to share some of the data stored in our

metrology laboratories and make them available to the

beamline designer. The idea is to facilitate the task of finding

good data for modeling mirror errors in a realistic way to

make accurate predictions for the planned optics, and

compare performances of configurations with different surface

errors. Although the idea of sharing metrology data in a

common database is not new and has been floating in the

metrology community, it was never completely implemented

because of lack of manpower and coordination requiring a

common and parallel effort from many laboratories. The idea

of creating the open-source metrology database presented

here was proposed at the 2013 Metrology, Astronomy, Diag-

nostics and Optics Workshop (MEADOW 2013) in Trieste.

It was positively received by members of different facilities,

among them the authors of this paper. They volunteered to

share some data and join efforts to make these data useful

for the community. The results of this action are described in

this paper.

2. The DABAM database

2.1. What is stored in the database: data and metadata

In addition to the obvious necessity of storing the mirror

profiles (heights or slopes) in the database, it is important to

consider how the data, and which additional information,

should be made available. The data needed for optics simu-

lations is the mirror heights profile, usually with the main

curvature removed (circular or elliptic profile) which permits

to simulate and study separately the effect of surface errors

and the focusing parameters (radius, ellipse semi-axes, etc.). It

is important to note whether the metrology was a full area

measurement or a single line scan measurement. At this point

all the profiles stored in DABAM are single line scans. The

storage of full area measurements in the database is left for a

future upgrade. The instruments used for measurements are

mostly the different families of slope-measuring profilers,

optimized to obtain slope error data for synchrotron optics

(spatial frequencies > 1 mm�1) such as the nanometer optical

component measuring machines (NOM) (Siewert et al., 2004,
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2008, 2011; Alcock et al., 2010; Yashchuk et al., 2010; Nicolas &

Martı́nez, 2013; Qian et al., 2015), long trace profilers (LTPs)

(Takacs et al., 1987; Rommeveaux et al., 2008; Kirschman et al.,

2008; Senba et al., 2010) and deflectometers (Geckeler, 2006;

Schulz et al., 2010). Also commercially available instruments

like white-light interferometers or atomic force microscopes

can be used to complete surface error information for the mid-

(1 mm�1 to 1 mm�1) and high- (1 mm�1 to 10 nm�1) spatial

frequencies. A review of different methods for X-ray mirror

metrology can be found in the paper by Takacs (2009).

It is then possible to obtain the heights profile by integra-

tion (and, viceversa, the slopes profile is obtained from the

profile by derivation). It is necessary to detrend the main

curvature and calculate the main parameters (SD values of

slopes and height profiles, etc.). Although these calculations

are not complicated from the analytical point of view, the

numerical implementation and some particularities and tips

vary from one laboratory to another. The final differences are

not dramatic, but may be significant. A round-robin test of

measurements and analysis of the data was organized among

different laboratories (Assoufid et al., 2005; Rommeveaux et

al., 2005, 2007).

Therefore, the question for the proposed database is

whether we include the raw data as measured (usually slopes)

or the detrended profile provided by the laboratory that

provides the profile data. The raw data permit an advanced

user to make the same analysis on different profiles and in this

way better compare the effects. The detrended profile

simplifies the use for a non-expert, who is not concerned with

the technicalities of the data preparation. We decided, there-

fore, to store both raw and detrended data when available.

The next topic is to define which information should be

available for every profile. This is the metadata. This should

include a minimum set of values defining the important

parameters in three families: the physical and manufacturing

aspects of the mirror, the measurement and the data analysis,

and results. The physical aspects include the type of mirror, its

physical and optical sizes, the mirror substrate and coatings

materials. In can be complemented by the year in which it was

manufactured. It is very important to know which technology

of surface finishing is applied in manufacturing the mirror,

because each finishing technology, such as ion beam figuring

(IBF), elastic emission maching (EEM), computer-aided

polishing (CAP) or magneto reological finishing (MRF), will

show a typical ‘fingerprint-like’ residual which is correlated to

the tool-function applied to finish the mirror (Siewert et al.,

2012) which compare the fingerprints of CAP and EEM

techniques in the power spectral density (PSD). Depending on

the final finish method used, the figure error, both high

frequency (roughness) and longer frequency (height error,

slope error), can look very different for a given overall SD

value achieved. There are two main finishing approaches: full

area polishing and small area polishing. This is basically the

size of the polishing tool. Full area refers to the entire polished

surface to always be in contact with a polishing tool. Small

area refers to IBF, EEM, MRF and CNC localized polishing

techniques.

It is recommended to include the instrument used for the

measurement (NOM, LTP, etc.). It is also interesting to include

results of the treatment or detrending applied to the original

measured data, and statistics from them (e.g. SD for heights

and slopes).

It has been decided that the manufacturer of the mirror will

not be mentioned in the database. The reasons for this are that

we do not want to incite competition nor to bias decisions on

the choice of a manufacturer based on data that by nature are

incomplete. The information contained in the database is not

able to answer the question of which manufacturer should be

preferred. The only aim of the database is to help in the study

of the effects of mirror errors in an optical system by making

available experimental metrology data. The conclusions

should be drawn by the ‘user’ who has the full responsibility of

the result.

2.2. Database format, content and access

The database is formed by a collection of mirror profiles

(heights or slopes) from different facilities. The volume of the

data is small, starting with a few tens of profiles, and every

profile usually has a few hundred points. Also, metadata is

quite light, i.e. only a few values and keywords. This fact, and

the underlying idea to concentrate on the data and not on the

container, drove us to select the simplest possible solutions for

file format. We store the data in a format that is (i) human

readable (in ASCII) and (ii) close to the initial raw format or

what is usually supplied and exchanged by users. The use of

the original raw individual files is discarded because there are

multiple formats and complicate the access. We decided to use

an ASCII common format. Each mirror measurement has a

unique identification number, which is just the order in which

it has been included in the database (e.g. dabam-010:dat).

Files containing the mirror profiles have the :dat extension. A

single file (database entry) can contain multiple columns

which allows the raw data and the detrended data to be

included. The two first columns will include the ‘default

information’: the first column is always the spatial coordinate

along the mirror, and the second is the main data, that can be

either slope or profile, either raw or detrended. The additional

information accompanying the data file is stored in an addi-

tional file with the same name and :txt extension. This file is

also ASCII and contains a list of predefined keywords and

their values (e.g. 00YEAR FABRICATION00: 1995). To avoid

defining a new file format and to write new data parsers, we

adopt a common solution for including these metadata in

ASCII with the keyword-value structure: we use the json

format (json:org).

Following these considerations, our database is a collection

of files dabam-n:dat dabam-n:txt, (n = 1, . . . , N), placed in a

single place (local or remote directory) that can be accessed

remotely or copied locally. Each mirror in the database is

represented by two files, one containing the profile data

(dabam-n:dat) and another containing metadata

(dabam-n:txt), which may also include results of the analysis

of the data (results of SD slopes, SD roughness, PSD, etc.).
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Initially we only concentrate on the use of one-dimensional

profiles, typically from LTP or NOM measurements. However,

several profiles for the same mirror can be stored using

multiple columns in the :dat file. It is planned to extend the

database to include two-dimensional or surface data with a

very large number of measured points, for instance for micro-

roughness characterization. As the volume of these datafiles is

much larger, new solutions will be found for the storage.

Appendix A includes a list of the ASCII formats accepted for

the data :dat file and the description of the keywords in the

metadata :txt file.

2.3. How to contribute to the database

The number of entries in the database is limited (25 at the

time of writing this paper) but it is our intention to continue

uploading new mirror profiles to the database, and to invite

other metrology facilities and mirror manufacturers to submit

files. The simplest way to contribute is to send ‘candidates’

mirror profiles for the database to the database maintainer.

They will take care of checking that the data and metadata are

the correct format before uploading them to the server. To

make the submissions easier, we have implemented a web

page where a user can upload the data file and define the

metadata keywords in a user-friendly form (see Appendix B).

3. DABAM in practice: extraction and processing of
data from the database

The database files described in the previous section contain all

the data and information required for optical simulations.

However, because the access and evaluation of the data is not

straightforward, we provide a software tool that is able to

access the data, perform usual operations (e.g. calculate SD

values, plot profiles, etc.) and store it locally in different

formats ready for simulations (e.g. for SHADOW). Again, for

the sake of simplicity, we implemented this tool using the

Python language, which runs on almost every machine, and is

in many cases preinstalled in the machine operating system

(e.g. Linux and MacOS). This piece of software is contained

in a single file dabam:py that can be dowloaded from the

DABAM repositories and run by entering in a terminal

window the command: python dabam:py n, with n the

DABAM entry number. An example is shown in Fig. 1 that

shows the text information of the DABAM entry number 10.

Local files are created, are easily plotted and can be exported

to other programs. The behaviour of the code can be changed

by using flags in the call. A description and some examples of

how to call dabam:py can be found in Appendix B.

3.1. Slopes and heights SD values

In most cases the metrology apparatus records the angles �
versus the mirror coordinate x. As these angles are very small,

their tangent can be approximated by the angle, but the

difference can be noticeable with very curved optics:

�ðxÞ ’ tan½�ðxÞ� ¼ slopesðxÞ ¼ z 0ðxÞ ¼
dzðxÞ

dx
; ð1Þ

where z is the spatial height coordinate (thus the slope is the

derivative of the height). We keep the y spatial coordinate

along the mirror width for future use.

The slopes profile can be obtained by integration to obtain

the heights profile (we use a trapezoidal rule as implemented

in numpy:trapz),

zðxÞ ¼
Rx
�1

z 0ðsÞ ds ¼ D�1 z 0ðxÞ½ �; ð2Þ

where D�1 represents the anti-derivative operator. Viceversa,

the slopes profile can be calculated by derivation of the

heights profile (using Python’s numpy:gradient).

These operations are exact in the absence of errors but have

to be taken with care when using experimental profiles. The

integration in the presence of random error leads to the

accumulated error along the trace.

Errors also affect differentiation. The particularities of the

numerical methods used also make some differences in the

integration and in the Fourier transform (Yaroslavsky et al.,

2005).

The mean values are

�zz ¼
1

N

X
i

zi ; �zz 0 ¼
1

N

X
i

z 0i ; ð3Þ

and the standard deviations (slope error SD and roughness

SD, respectively):
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Figure 1
Output of the command python dabam:py 10:



�h ¼
1

N � 1

X
i

zi � �zzð Þ
2

" #1=2

;

�s ¼
1

N � 1

X
i

z 0i � �zz 0ð Þ
2

" #1=2

:

ð4Þ

3.2. Main profile detrending

In most cases the statistical values calculated from the raw

measured slopes or heights profiles are meaningless because

they include the main curvature of the mirror itself. In order to

obtain meaningful values of slope error SD (�s) or height

error SD (�h) it is necessary to remove the main profile that

includes the mirror curvature.

Removing the best circle radius R in the heights profile

(R� L) corresponds to removing a linear regression on the

slopes profile. This is a very simple operation. But, again, it has

to be taken with care when dealing with numerical data: the

sampling of the data, the fitting method used, the error

propagation, etc. lead to common situations where a linear fit

in the slope domain and a quadratic function fit to the inte-

grated heights profile give different radius of curvature. More

generally, the slopes profile can be fitted to a polynomial of

degree d (we use the numpy:polyfit routine).

The fit is subtracted from the slopes. A linear detrending

corresponds to a linear fit d = 1 of the slopes, equivalent to fit

the heights profile to a best circle with radius R = 1/m, where m

is the slope of the straight line. By default, for non-elliptical

mirrors, a linear detrending of the slopes profile is system-

atically carried out to remove the best circle in mirrors with a

circular heights profile (cylindrical, spherical or toroidal). In

the case of plane mirrors, this linear detrending helps to

remove a first order of a smooth approximation of other shape

errors (e.g. the gravity sag). Fig. 2 shows the heights and slopes

profiles for the plane mirrors in the database. Similarly, Fig. 3

shows the profiles of the spherical, cylindrical and toroidal

mirrors (all of them with circular profile along the mirror

coordinate).

For elliptical mirrors, a higher degree of polynomial

detrending can be applied, but it is more accurate to remove

the ellipse profile wanted when the mirror was designed. This

ellipse is usually described by three parameters: p (source–

mirror center distance), q (mirror center–focal position

distance) and � (grazing incident angle). However, the real

mirror usually follows an ellipse profile with parameters that

are close but never identical to the design parameters.

Therefore, an optimization of the ellipse parameters is carried

out via a least-squares minimization to fit an optimum ellipse

to the measured profile. This minimization is a local optimi-

zation method with final result depending on the initial

conditions (we used the design parameters). Sometimes two

more parameters are added: a constant shift in the two

orthogonal directions. These parameters are highly correlated

to the design parameters making the convergence to the final

parameters more unstable. This fit can be performed either for
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Figure 2
Heights (a) and slopes (b) profiles of the plane mirrors listed in Table 1.

Figure 3
Detrended heights (a) and slopes (b) profiles of the mirrors with circular
profiles (spherical, cylindrical and toroidal) listed in Table 1.



the heights or the slopes profiles. As a rule of thumb, it is

preferred to process data in the domain where they were

recorded so one can then manipulate the residuals without

producing bias to the data. Because most of our profiles are

recorded in the slopes domain, and after testing different

possibilities, we found it more appropriate to implement

systematically in DABAM a fit in the slopes profile. Appendix

C describes the methodology used for the ellipse detrending.

Table 1 shows the heights and slopes error values (SD) for all

profiles. The heights and slopes detrended profiles are dumped

in a local file with a file root defined by the user (by default

tmpHeights:dat and tmpSlopes:dat). Fig. 4 shows the

detrended profiles for elliptical mirrors.

3.3. Power spectral density analysis

The power spectral density (PSD) for profile heights can be

calculated numerically by (Church & Takacs, 1986)

PSDð fmÞ ¼
2s

N

XN

i¼ 1

zi exp
�
� 2�jðm� 1Þði� 1Þ=N

������
�����

2

; ð5Þ

where s is the sampling distance in coordinates along the

mirror, and fm = ðm� 1Þ=L is the spatial frequency, m =

1; . . . ;N=2þ 1, from fmin = 1=L (L is the mirror length) to

fmax = ð2sÞ�1, the Nyquist frequency. In a similar way, it is

possible to compute the PSD of the slopes profile.

Sometimes the zi coordinates are first weighted with a

window to remove border effects related to the finite profile

length. Different windows have been proposed in the litera-

ture for dealing with particular filtering in different applica-

tions, but no common recommendation exists to our

knowledge for the analysis of X-ray mirror data. It is impor-

tant to apply windowing when the PSD is manipulated so that

it removes noise. Good experience has been obtained by some

of us using a Kaiser–Bessel window with different values of

the strength of taper parameter. In DABAM we calculate

PSDs with no window because windowing smooths the profile,

thus reducing the SD of heights and slopes, and we do check

these quantities after computing the PSD (see later discus-

sion).

The computation of equation (5) implies evaluating a sum

for each value of the frequency. The result is proportional to

the square of the Fourier transform modulus of the profile, and

can be evaluated much faster using the fast Fourier transform

algorithm implemented in most numerical libraries. With

Python, equation (5) can be evaluated from a command such

as

psd ¼ step=N � numpy:absoluteðnumpy:fft:fftðzÞ � �2Þ

The results of heights PSD for the plane mirrors are shown in

Fig. 5. As will be discussed later, all PSDs show a similar

behaviour, approaching a straight line (in log–log plot) with

negative slope.
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Table 1
Calculated values of slope error �s (in mrad) and height error �h (in nm)
for the different database data calculated from the points of the heights or
slopes profiles, respectively.

The first value in parentheses is calculated by integrating the PSD. The second
value in parentheses, where available, is the value provided by the user that
supplied the data. Scan length (L in mm) and mirror shape are also included.

Index Shape L �s �h

1 Plane 1200 0.49 (0.49) 43.85 (43.85)
2 Plane 360 0.15 (0.15) 4.46 (4.46)
3 Spherical 118 0.17 (0.17) 1.56 (1.56)
4 Elliptical 32 0.13 (0.13) 0.22 (0.22)
5 Spherical 429 0.84 (0.84) 31.89 (31.90)
6 Elliptical 200 1.01 (1.01) 2.98 (2.98)
7 Plane 99 0.58 (0.57) 0.57 (0.51)
8 Plane 97 0.57 (0.57, 0.67) 4.05 (4.05, 0.28)
9 Plane 97 0.44 (0.44, 0.61) 3.53 (3.52, 0.41)
10 Plane 442 0.23 (0.23, 0.23) 6.20 (6.20, 3.05)
11 Plane 445 0.23 (0.23, 0.23) 6.58 (6.59, 3.23)
12 Plane 442 0.32 (0.32, 0.32) 2.93 (2.86, 2.51)
13 Spherical 114 1.30 (1.29, 1.51) 9.11 (8.97, 10.86)
14 Spherical 240 1.15 (1.14, 1.05) 23.38 (23.28, 15.37)
15 Toroidal 800 2.13 (2.13, 2.13) 170.87 (170.87, 97.36)
16 Toroidal 239 1.85 (1.84, 1.86) 54.67 (54.78, 36.54)
17 Toroidal 495 2.27 (2.27, 2.40) 61.49 (61.54, 47.58)
18 Cylindrical 330 0.12 (0.12, 0.12) 1.83 (1.83)
19 Elliptical 350 0.14 (0.14, 0.06) 7.25 (7.25)
20 Elliptical 121 0.45 (0.45, 0.50) 3.40 (3.39)
21 Elliptical 430 0.43 (0.43, 0.50) 6.05 (6.05)
22 Cylindrical 1130 5.32 (5.32, 5.00) 400.83 (400.82)
23 Plane 127 0.18 (0.18, 0.18) 2.17 (2.17)
24 Plane 774 0.20 (0.20, 0.20) 5.35 (5.35)
25 Plane 200 0.07 (0.07, 0.07) 1.48 (1.47, 1.33) Figure 4

Detrended heights (a) and slopes (b) profiles of the elliptical mirrors
listed in Table 1.



As a result of the Parseval theorem, the integral of the PSD

gives the second moment (variance) of the profile. Therefore,

the square root of the integral of the slopes (heights) PSD

gives a value equal to the standard deviation of the slopes

(heights) profile (Church, 1979):

�h
¼

Rfmax

fmin

PSDhð f Þ df

" #1=2

¼

n
D�1
ðPSDhÞ

� �
ð fmaxÞ

o1=2

;

�s
¼

Rfmax

fmin

PSDsð f Þ df

" #1=2

¼

n
D�1
ðPSDsÞ

� �
ð fmaxÞ

o1=2

:

ð6Þ

This means that the contribution of a spatial frequency f to the

slope (height) error is proportional to the square root of the

slopes (heights) power spectral density at that frequency.

Roughly speaking, the average error values come from the

sum of the errors for the individual frequencies (a sort of mean

value). In practice, the values calculated in this way may not

be exactly the same as the values computed using equation (4)

because of the possible windowing and some numerical errors

introduced in the calculations. A sanity test of the post-

processing operations is to check that the values calculated

using equations (6) and (4) are in good agreement (Table 1).

Because of the finite nature of the acquired data and the

limitation of the detector, the measured data only give a

limited frequency bandwidth in the PSD. Within this band-

width available from the measured data, the integral in

equation (6) can be calculated in a limited interval of

frequencies ½ f1; f2� thus giving the error values due to profile

irregularities in that particular range of frequencies or char-

acteristic lengths. It is interesting to visualize the effect of how

increasing frequencies contribute to the final values of profile

errors. For that, it is useful to define the function CSD( f)

(cumulative spectral density, sometimes also called cumulative

spectral power):

CSDð f Þ ¼
Rf

fmin

PSDð�Þ d�

" #1=2

¼

n
D�1ðPSDÞ
� �

ð f Þ
o1=2

: ð7Þ

This function can be evaluated for both the heights PSD and

the slopes PSD. It has a sigmoid shape, with zero value at fmin

and �s (or �h) at fmax. It shows the contribution to the error

value of characteristic frequencies up to f. The point crossing

0:5� gives the frequency where higher frequencies contribute

the same as lower frequencies to the final error value. It can be

normalized [the normalized CSD (NCSD)],

NCSDð f Þ ¼
CSDðf Þ

CSDðfmaxÞ
; ð8Þ

to better compare the contribution of different frequencies to

the final error in different profiles. Fig. 6 shows this function

for the slopes profiles of the plane mirrors in DABAM.

3.4. Gaussian and fractal profiles: comparison with simulated
profiles

Some statistical parameters are used to characterize heights

or slopes profiles. The first moment is the mean, which is

generally removed before data processing and is therefore

zero. The second moment is the variance, for which the

square-root is the standard deviation �. The third moment

is the skewness, which represents asymmetric spread of the

height or slope distribution. The fourth moment is the

kurtosis, and represents the peakedness of the distribution,

Ssk ¼
1

N�3

X
i

zi � �zzð Þ
3; ð9Þ

Sku ¼
1

N�4

X
i

zi � �zzð Þ
4
� 3: ð10Þ

A Gaussian surface has both zero skewness and zero

kurtosis. It is therefore useful to calculate these moments in

order to have an idea of how our profile is separated from a

Gaussian profile. The profile should be Gaussian only if the

error distribution is fully random. When a deterministic

polishing is used, the errors usually present a well defined

pattern. Another visual way to check the Gaussianity of our

profiles is to histogram the heights or slopes. The result can be

fitted to a Gaussian to visually see whether the profiles adjust

well or not to Gaussian profiles. Table 2 contains the skewness

and kurtosis values of all detrended profiles in DABAM. The

resulting values are different from zero, meaning that they are
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Figure 6
NCSD function [equation (8)] of the slopes profiles for plane mirrors.

Figure 5
PSD of the heights profiles of plane mirrors.



far from being normal. The mirror finish for synchrotron

mirrors, as studied here, is carried out up to the nanometric

level, thus revealing the atomic distribution in a superpolished

surface. Therefore, the surface statistics are not expected to be

Gaussian but more approaching a fractal structure.

One interesting family of profile errors have PSDs that look

like a straight line in the log–log plot, which corresponds to a

power law of the PSD (Voss, 1988):

PSDð f Þ ¼ j f j��: ð11Þ

Our mirrors show a behaviour of the PSD typical of the power

law. The slope of the linear fit of the log–log representation of

the PSD gives ��. Table 2 shows these calculated values. A

linear fit has been performed in the log(PSD) versus logð f Þ

data, in a window containing over 80% of the logð f Þ interval.

An interesting particular case of profiles presenting a

power-law PSD are fractals (Church, 1988). A fractal’s shape

is replicated at various length-scales. When this replication

is only statistical we have a statistical fractal. Fractals are

described by the so-called fractal dimension Df , related to � by

Df ¼
3Eþ 2� �

2
; ð12Þ

where E is the Euclidean dimension of our data, E = 1 for

profiles, E = 2 for surfaces, etc. For a natural fractal profile

(e.g. coastline, etc.), this dimension is in the interval

E < Df < Eþ 1, which, for one-dimensional profiles (our

case), E = 1.

A natural one-dimensional fractal has a fractal dimension

between one and two (3 > � > 1), but in engineered surface

and profiles it can go beyond this dimension. Looking to our

profiles (Table 2), it can be observed that only a few profiles

(7, 10, 12) may be true fractals because 3 > � > 1. The �
values we obtained are in the 3 to 5 range, meaning a lower

contribution of high frequencies than expected for the natural

fractal. Two possible explanations are possible.

The first explanation accounting for � values higher than for

fractal profiles can be due to different types of experimental

and analysis errors. The limited frequency range of the

measurements implies that higher frequencies are not

resolved to a good resolution and one would need a much

smaller step along the mirror coordinate to better explore this

zone. A lack of resolution will limit the amount of information

at high frequency, therefore reducing the PSD at the high-

frequency end, and increase the slope. It is remarked that the

data in the log–log scale introduced non-uniformities in the

distribution of the points that affect the goodness of the fit. It

could be possible from a computational point of view to fit the

PSDs for both heights and slopes profiles. But this is redun-

dant; with the slopes profile being the first derivative of the

heights, in Fourier space it is equivalent to multiplying by the

frequency f, so the PSD that is the square of the Fourier

transform is affected by an f 2 term. Thus, the power law

exponent for the slopes is theoretically the exponent for

heights plus two. We performed some fits using the slopes PSD

and obtained values of � with some disagreement with respect

to those calculated and shown in Table 2 due to errors. As a

matter of fact, the error in the obtained � is large.

The other obvious explanation for accounting for large

values of � and also a not very good fit to the power law is to

say that our profiles are just not fractal. Church (1984) has

suggested the so-called ABC model that solves some of the

problems seen. A better modern approach is a method based

on an autoregressive moving average (ARMA) modeling of

the surface metrology (Yashchuk & Yashchuk, 2012; Yash-

chuk et al., 2014, 2015a,b) resulting from a stochastic

polishing process. It provides a reliable way to describe,

model and parametrize the measured residual slopes profiles

of the X-ray mirrors. The ARMA method is based on time-

invariant linear filter (TILF) modeling of a polished surface,

considered as a result of a uniform stochastic process. The

ARMA/TILF model determined for the measured optics can

be used to forecast a set of new surface error distributions

with the same statistical properties, but with generally

different parameters, such as the distribution length and

slopes and heights SD. This approach has been successfully

applied to numerically simulate the beamline performance of

a flat offset mirror under design for using in the SASE1

beamline of the European XFEL (Samoylova et al., 2009). As

a future development of the DABAM tool, we plan to

incorporate the corresponding codes for ARMA/TILF

modeling and forecasting.

It is also interesting to calculate the autocorrelation func-

tion (ACF) of a profile cl. It gives the average of heights (or

slopes) compared with a translated version of itself:
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Table 2
Calculated values of skewness Ssk, kurtosis Sku, correlation length cl (in
mm) and � [equation (11)] for the first 25 DABAM profiles.

N is the number of points of the profile.

Heights Slopes

Index N Ssk Sku cl � Ssk Sku

1 1201 �0.17 �1.45 161 3.89 �0.25 0.06
2 361 �0.25 �1.12 51 3.24 �0.02 �0.46
3 591 0.42 �1.35 24 4.79 �0.16 �0.37
4 161 �1.16 0.74 3 4.61 �0.19 �0.52
5 1718 0.01 �1.15 61 4.38 0.17 �0.54
6 801 0.34 �0.35 14 4.87 �0.11 1.10
7 100 �0.02 �0.02 3 0.97 0.02 0.68
8 99 0.71 �0.30 10 5.35 �0.21 �0.71
9 99 0.84 �0.69 17 5.14 1.06 1.89
10 435 0.63 �1.16 81 2.66 0.07 2.42
11 438 �0.48 �1.48 91 3.26 1.50 6.74
12 443 �0.59 �0.64 43 2.76 �0.42 2.37
13 115 �0.18 �1.01 19 3.03 �3.01 19.08
14 241 0.01 �1.05 37 3.70 �0.22 3.39
15 801 �0.59 �0.67 126 4.34 0.22 0.68
16 240 0.02 �1.37 48 4.55 �0.12 �1.02
17 496 �0.57 0.39 38 3.99 �0.24 �0.47
18 661 �0.29 �0.62 22 3.86 �0.27 �0.42
19 1751 �0.08 �1.55 73 3.23 0.36 �0.71
20 244 0.06 �0.59 14 3.51 �0.02 0.23
21 2151 �0.37 �1.15 22 3.94 0.58 0.98
22 2261 �0.31 �1.40 211 4.30 �0.13 �0.30
23 636 0.38 �1.42 18 3.60 �0.37 3.04
24 775 0.78 �0.30 78 3.09 �0.37 2.25
25 171 �0.12 �1.02 32 4.02 �1.21 3.33



ACFðxÞ ¼

R
zð�Þzð�� xÞ d�R
½zð�Þ�2 d�

: ð13Þ

This function has a value of 1 at x = 0 and oscillates tending to

zero for large values of x. The autocorrelation length can be

defined as the value of x where ACF takes the value of one

half: ACFðclÞ = 0.5. It gives an approximation of the length at

which the profile values are uncorrelated such that they start

to be random. In other words, if one expands the profile in a

Fourier series, the phase of the components with spatial

frequency larger than 1=cl could be ‘safely’ replaced by a

random phase without altering significantly the macroscopic

profile shape, so keeping the same statistical properties (SD

and PSD functions) and optical performances. On the

contrary, if one uses a random phase for the low-frequency

Fourier components ( f < c�1
l ), then the shape of the profile

(figure errors) is significantly altered, so the optical response

of the profile will be very different. The PSD and ACF provide

the same information about surface statistics expressed in

space frequency and space coordinates, respectively. One can

pass from one to another via Fourier transform (Lighthill,

1958).

Statistical analysis of the real profile provides important

information to create or simulate profiles with similar char-

acteristics to the experimental ones that can be used for our

simulations. Interest in playing with simulated profiles is

twofold: it permits some mirror parameters to be adapted to

our particular needs (e.g. mirror length, slope error SD, etc.),

and allows profiles with ideal correlation (Gaussian, fractal)

and SD values to be created to compare with our experimental

values.

An ab initio simulated profile with PSD that follows the

power law / j f j�� can be created using a sum of sinusoidal

functions with frequencies in the desired interval and random

phase, and with amplitude matching the power law:

zðxÞ ¼
Xfmax

f1 ¼ fmin

f �� sin 2�fxþ ’rð Þ; ð14Þ

where the sum extends over a collection of N frequencies

[usually N is equal to the profile points, with fmin = 1/L, fmax =

1=ð2xsÞ, and xs is the step along the mirror length of the mirror

profile to be generated].

As an example, we have used the profile entry 12 and

simulated a profile with the same parameters (N = 443, �= 2.8,

�s = 0.3 mrad). The original and simulated profiles and their

PSD are compared in Figs. 7 and 8, respectively. From these

figures, it can be appreciated that the experimental and

simulated profiles have similar structure for large frequencies,

but for small frequencies (figure or shape errors) are

completely different, because of the random phases used. In

fact, another realisation with different phases produces a

profile with completely different shape errors. This illustrates

the interest in having real profiles available, so justifying the

DABAM database. Moreover, one can also simulate ab initio

profiles with the Gaussian height distribution and Gaussian

autocorrelation function (Garcia & Stoll, 1984). Using also the

entry 12 in the DABAM data (cl = 44 mm, N = 443, �s =

0.3 mrad) a simulation is performed and shown in Figs. 7 and 8.

It is evident that the shape and PSD of the simulated profile

are very different from the experimental one, thus concluding

that our profiles are not Gaussian correlated. In the ab initio

simulation of profiles it is important that the sampling para-

meters are strongly correlated to the profile inputs (cl or �)

and profile normalization (to �s or �h). Therefore, if one wants

to work using simulated profiles, it is interesting to work in

tandem using the DABAM tool that permits different

experimental profiles to be looked at and compared with the

results of a simulation tool. Both tools are available in the

ShadowOui package.

4. Examples of applications

When calculating the performances of an optical system, two

complementary methods may be used. The first is the ray-

tracing approach, based on geometrical optics. The second

is physical optics, that permits calculation of the intensity

distribution (diffraction pattern) produced by our optics when

illuminated by a coherent beam. Here we perform some

simulations using DABAM profiles using simple approxima-
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Figure 7
Comparison of DABAM profile 12 with a simulated fractal with the same
� and a simulated Gaussian with the same cl.

Figure 8
Comparison of the PSD of DABAM profile 12 with a simulated fractal
with the same � and a simulated Gaussian with the same cl.



tions of both methods, and a full simulation combining both

methods.

4.1. Simple ray-tracing calculations including slope errors
from DABAM

A simplified model for ray-tracing can be easily imple-

mented if (i) the geometrical optics approximation is applic-

able, i.e. diffraction effects produced by the mirror aperture

and mirror irregularities are negligible, (ii) one-dimensional

tracing is assumed in the plane of the profile, (iii) the source

can be assumed with zero dimension (point source), (iv)

focusing is performed with a focalization element of focal

length F. Let us suppose that the mirror is placed at a distance

p from the source and the image plane is placed at q down-

stream from the mirror. The lens equation is verified for good

focalization:

1

p
þ

1

q
¼

2

R sin �g

¼
1

F
; ð15Þ

with �g being the grazing angle on the mirror, and R the radius

of curvature of the mirror. It is convenient to work with a

coordinate X perpendicular to the optical axis, so the zi

heights profile and z 0i slopes profile versus xi can be expressed

as a function of the new coordinate Xi = xi sin �g, forming the

following incident angles with respect to the optical axis:

�inc
i = Xi=p. The angle after the reflection, always measured

with respect to the optical axis, is obtained by adding the

contribution of the mirror curvature (focusing) and slope

error: �ref
i = �inc

i � 2xi=R� 2z 0i , where the mirror curvature

introduced a slope xi=R and a factor of two is set to indicate

that it is measured with respect to the entrance direction. The

coordinates at the image plane are just X
image
i = Xi þ�ref

i q,

which are not uniformly distributed. The intensity profile can

be obtained by a histogram of the X
image
i array. The intensity

profiles at the image plane for some mirrors with circular

shape (spherical, toroidal or cylindrical) are shown in Fig. 9.

4.2. Simple physical-optics calculations including slope
errors from DABAM

In a simplified model to calculate the effect of a mirror

focusing including profile errors one could consider the source

as a spherical wavefront (point source). The propagation of

the wave in a vacuum requires solving the Fresnel or Fresnel–

Kirchhoff integrals usually by Fourier optics (e.g. Chubar &

Elleaume, 1998; Bahrdt et al., 2014; Shi et al., 2014b; Kewish et

al., 2007a,b; Pardini et al., 2015) or by reducing the integral to a

sum over an adequate gridding of the source and image plane.

The second method is used here: we sample the directions

perpendicular to the optical axis at the source, mirror and

image plane and calculate the propagation from one element

(e.g. source) to the next one (e.g. mirror) by multiplying the

electric field at the source by a phase term that depends on

the optical path. Thus, we are approximating the Fresnel–

Kirchhoff integral to a simple sum:

Um ¼
P

i2 source

Ui exp jkrimð Þ; ð16Þ

where the electric field at the source can been set to Ui = 1,

and rim is the distance from the ith source position to the mth

point position in the mirror plane.

The focusing effect of the mirror is modeled as a thin

element that changes locally the phase by exp½ jkX 2
m=ð2FÞ�,

where F is given in equation (15) and Xm is the distance to the

optical axis, as defined in the previous section, and k = 2�=�.

The effect of the slope errors is modeled by an additional

phase term expð jk2ZmÞ, where Zm = zm sin �g is the heights

profile projected onto the plane perpendicular to the optical

axis (and interpolated onto the grid in use). Therefore, the

combined effect of mirror focusing and slope errors changes

the electric field amplitude,

Um �! Um exp jkX 2
m=ð2FÞ

� �
exp jk2Zmð Þ: ð17Þ

After calculating the electric fields Um at the mirror plane

including the mirror effects (focusing and profile errors) a

propagation from mirror to image plane is performed by

applying again equation (16). The intensity is then evaluated

at the image plane as the square modulus of the electric field

amplitude. Using this method it is possible to obtain a good

approximation of the effect of the profile errors in a focusing

mirror. Results of some simulations are shown in Fig. 10.

4.3. Hybrid (ray-tracing and physical-optics) calculations

For many cases in new X-ray sources with particular regard

to diffraction-limited storage rings and free-electron lasers,

ray-tracing is insufficient for giving a good estimate of the

distribution of the intensity at the focal position (Pardini et al.,

2015), since it does not include coherent effects due to the

mirror aperture and the mirror imperfections. On the other

hand, wave-optics simulation using single wavefront propa-

gation (plane, spherical waves or single electron emission) is
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Figure 9
Image produced by circular mirrors set to focus with p = 30 m, q = 10 m,
�g = 3 mrad with slope errors from the database entries 3 (�s = 0.17 mrad),
5 (�s = 0.85 mrad) and 22 (�s = 5.32 mrad). For clarity, the intensity of
profile 22 has been multiplied by 5. The effect of higher broadening
produced by profiles with high slope error (entry 22) is evident. Note also
the structures in the focal intensity distribution produced by the low-
frequency errors (shape or figure errors).



usually not accurate because the synchrotron beam is not fully

coherent and, moreover, is not diffraction-limited [the product

of the source size s and source divergence �s does not verify

s�s ’ �=ð4�Þ, with � the photon wavelength]. For these cases,

an intelligent combination of geometric and physical optics

gives reasonable results. This method has been proposed (Shi

et al., 2014a) and implemented in SHADOW (Shi et al., 2014c).

Results of simulations for the mentioned case with the

SHADOW hybrid method are given in Fig. 11. For cases in the

geometrical optics regime (e.g. entries 5 and 22), the intensity

profiles are similar to that anticipated using the simplistic ray-

tracing model. In the case of entry 3, the hybrid calculation

provides more accurate results since it includes all effects of

geometry and broadening of the focal image due to diffraction

and interference.

4.4. DABAM integration in simulation packages: ShadowOui

The availability of DABAM and its Python binding makes it

suitable for integration into simulation environments that can

interact with Python. Oasys is a Python-based environment

(Sanchez del Rio et al., 2014) designed to integrate optics

simulations into virtual experiments. ShadowOui is the Oasys

user interface for the ray-tracing SHADOW, also including

the hybrid approach used before. The DABAM database is

fully integrated into ShadowOui and the user can auto-

matically access and use the metrology files for simulations in

an automatic and transparent way. Fig. 12 shows the Shadow-

Oui widget dedicated to access DABAM and insert the slopes

errors into the SHADOW optical elements. ShadowOui also

includes a profile simulator that is able to create synthetic

surfaces by using experimental or synthetic (fractal or Gaus-

sian) profiles and then combine them into a two-dimensional

surface by defining the geometry of a transversal profile.

5. Summary and conclusions

A collaborative effort among different metrology laboratories

of several institutions has permitted collection of a set of

measured mirror profiles that are grouped and stored in a

database. This information is open to the community to allow

the role of mirror irregularities and errors in the performances

of optical systems to be assessed, mostly in synchrotron

beamlines. In addition to the experimental data, software is

written to retrieve and process the mirror profiles in the

database. Some statistical parameters are calculated on the

detrended profiles. Moreover, using simple methods of

propagation based on geometrical optics (ray-tracing) and

physical optics, we can compute the effect of the profile errors

in a simple focusing configutarion.
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Figure 11
Intensity profiles produced by circular mirrors set to focus with p = 30 m,
q = 10 m, � = 3 mrad with slope errors from the database entries 3 (�s =
0.17 mrad), 5 (�s = 0.85 mrad) and 22 (�s = 5.32 mrad) at a photon
wavelength � = 1 Å. Simulations are performed using hybrid ray tracing
and physical optics algorithms (Shi et al., 2014b).

Figure 12
Interface of DABAM as available in ShadowOui.

Figure 10
Intensity profiles produced by circular mirrors set to focus with p = 30 m,
q = 10 m, � = 3 mrad with slope errors from the database entries 3 (�s =
0.17 mrad), 5 (�s = 0.85 mrad) and 22 (�s = 5.32 mrad) at a photon
wavelength � = 1 Å. The dashed line corresponds to the system without
errors, and the solid line used the experimental profile after detrending.
The effect of broadening of entry 3 with respect to the others is evident
because of its smaller aperture L sin �g. The Airy disk values
[q1:22�ðL sin �gÞ

�1] are: 3.45, 0.46 and 0.18 mm for profiles 3, 5 and 22,
respectively. Note also that the widths of the intensity profiles for entries
5 and 22 are much smaller than the widths calculated by ray tracing
(Fig. 9), indicating that in these cases the effect of beam coherence and
diffraction are negligible. This is no longer true for entry 3, where both
geometrical optics and physical optics contributions have comparable
widths.



The DABAM database is not centralized, and local copies

or other servers can be deployed. In particular, the DABAM

concept can also be used to store all data measured in a

metrology laboratory but keeping the server and access

private.

The main use of the DABAM data is in combination with

simulation tools, like ray tracing. The ShadowOui package

incorporated in the hybrid model contains tools to access

DABAM data and to simulate ab initio surfaces. The DABAM

database can easily be integrated into other simulation tools.

APPENDIX A
Format of data files and metadata keywords

The data files stored in the database contain one-dimensional

profiles of measured mirrors. They are presented as ASCII

files named dabam-n:dat with some header lines and a block

of numeric data arranged in multiple columns. Usually, the

data are the undetrended raw profiles, but detrended profiles

can be used instead or in addition (using new columns). The

file format accepted by the dabam:py code are numbered and

are:

FILE FORMAT ¼ 1: Spatial coordinates in first column

(column index 0), measured slope in next column (column

index 1). Additional columns contain other information (e.g.

detrended profile) using the same abscissas column, thus the

column structure is X1; Y1; Y2; Y3; . . ..
FILE FORMAT ¼ 2. The same as FILE FORMAT ¼ 1 but

using measured heights in column index 1.

FILE FORMAT ¼ 3. Multi-abscissas and multicolumn slope

profiles, arranged like X1; Y1; X2; Y2; X3; Y3; . . .. This format

is interesting for including several measured profiles in the

same DABAM entry, each of them may have a different

abscissas gridding.

FILE FORMAT ¼ 4. The same as FILE FORMAT ¼ 3 but

using measured heights in Y columns.

Metadata (additional information on the mirror) are

arranged in a separated file named dabam-n:txt that contains

a collection of keywords stored in ASCII json format.

Keywords that must be filled for all entries (mandatory) are

shown in bold. A ‘null’ assignment means an undefined

keyword. New keywords can be added by the user but will be

ignored by dabam:py:

FILE FORMAT. Type of file used.

FILE HEADER LINES. Number of header lines in the

data file.

X1 FACTOR. Conversion factor from user units to SI units

for the column index 0.

Y1 FACTOR. Conversion factor from user units to SI units.

YEAR FABRICATION. Year of fabrication of mirror.

SURFACE SHAPE. Type of mirror (toroidal, sagittal

cylinder, elliptical, etc.).

FUNCTION. Mirror function (white beam mirror, collimating

mirror, focusing mirror).

LENGTH; WIDTH; THICK. Physical size in SI units (m).

LENGTH OPTICAL. Optical size in SI units (m) (usually the

scan length).

SUBSTRATE. Mirror substrate.

COATING. Mirror coating.

INSTRUMENT. Instrument type used for measuring data (full

area or single scan like LTP, NOM, etc.).

FACILITY. Facility, laboratory or company where the data

have been measured.

POLISHING. Polishing/finish technology (IBF, EEM, CAP,

MRF, etc.).

ENVIRONMENT. Environment (clamped, gravity direction,

cooling system, etc.).

SCAN DATE. Date of the measurement in format

YYYYMMDD.

PLOT TITLE X1; PLOT TITLE Y1. Information for default

plots (not implemented).

CALC HEIGHT RMS. Heights RMS value obtained by the

user in SI units.

CALC SLOPE RMS. Slopes RMS value obtained by the user

in SI units.

USER REFERENCE. A text description or reference.

USER ADDED BY. Name and email of the user that

added the profile.

USER EXAMPLE. Example of other keywords that can be

added by users.

APPENDIX B
DABAM web addresses and basic use

All entry points for DABAM use (accessing, downloading,

profile submission) can be obtained from http://ftp.esrf.eu/

pub/scisoft/dabam/readme.html. The DABAM files can be

accessed remotely (viewed, downloaded, etc.) from the official

address: http://ftp.esrf.eu/pub/scisoft/dabam/. In order to run

the code to access and process DABAM files, the Python code

dabam:py should be downloaded from: http://ftp.esrf.eu/pub/

scisoft/dabam/code/dabam.py. From a terminal or console

window in the local system, copy or move dabam:py to the

current directory and enter python dabam:py -h for a list

and description of the options (see output in Fig. 13).

The dabam:py program accesses the data entry from the

FTP repository, but access to local files is possible (use flag -l).

By default, the program reads mirror spatial coordinates from

the first column (column index 0) (use -A to change). The

default ordinates are slopes (if metadata keyword FILE_

FORMAT:1) or heights (if metadata keyword FILE_

FORMAT:2), that can be overwrite by using flags -A

(abscissas). The ordinates are read from the next column

(column index 1) unless specified by -O (ordinates). Input

coordinates are transformed to SI by applying a multiplicative

factor (X1_FACTOR, Y1_FACTOR, etc.). Detrending is

applied by default (-D -2) consisting of linear detrending for

plane and circular (spherical, toroidal and cylindrical) mirrors,

or elliptical detrending if the mirror is elliptic. No detrending

is done if set -D -1.

The web address for profile submission is also listed in

http://ftp.esrf.eu/pub/scisoft/dabam/readme.html, as well as

other resources for advanced users and developers.
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APPENDIX C
Elliptical detrending

An elliptical mirror (Howells et al., 2000) is usually designed

by giving the incident grazing angle of the incident beam �g

and the focal positions: source–mirror distance p and mirror–

focus distance q. The semi-axes a and b of the ellipse are:

a ¼
1

2
ð pþ qÞ;

b ¼
ffiffiffiffiffiffi
pq
p

sin �g;

c ¼ F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2
p

;

" ¼ c=2;

ð18Þ

where 2F is the distance from source to focus, and " is the

ellipse eccentricity. In the reference frame ðu; vÞ where the

ellipse is centered, the equation of the ellipse is:

f ¼
u2

a2
þ

v2

b2
� 1 ¼ 0: ð19Þ

The mirror center is at

u0 ¼ ð p� qÞ=2"; v0 ¼ �b 1� u2
0=a2

� �� �1=2
: ð20Þ

The local axes related to the mirror ðx; yÞ are defined by a

vector normal to the ellipse at ðu0; v0Þ,

N ¼ �rf ¼ �2u0=a2;�2v0=b2
� �

; ð21Þ

the normalized vector and its perpendicular (tangent to the

ellipse, thus zero slope at the mirror center) are

n ¼ N=jNj ¼ ðn1; n2Þ;

t ¼ ðt1; t2Þ ¼ ðn2;�n1Þ:
ð22Þ

The ellipse in the local reference system ðx; yÞ can be written

as a conic:

cxxx2
þ cyyy2

þ cxyxyþ cxxþ cyyþ c0 ¼ 0; ð23Þ

where

cxx ¼
1

a2
t 2
1 þ

1

b2
t 2
2 ;

cyy ¼
1

a2
n2

1 þ
1

b2
n2

2;

cxy ¼ 2
1

a2
u1t1 þ

1

b2
n2t2

� 	
;

cx ¼ 0;

cy ¼ 2
1

a2
u0n1 þ

1

b2
v0n2

� 	
;

c0 ¼ 0:

ð24Þ

This gives a second-degree equation in y with coefficients

a ¼ cyy;

b ¼ cxyxþ cy;

c ¼ cxxx2
þ cxxþ c0:

ð25Þ

One can obtain the height y for a particular x by solving the

second-degree equation y = ð2aÞ�1
ðb2 �

ffiffiffi
d
p
Þ with d = b2 � 4ac

and the slope is y 0 = ð�2aÞ�1
½b0 þ d 0=ð2

ffiffiffi
d
p
Þ�. This permits to

compute numerically the heights and slopes profiles of an

ellipse defined by p; q; �g in the local frame of the mirror.

Usually these parameters are sligntly changed to better fit

the experimental profile by a numerical local optimization.

This is done in dabam:py using the leastsq function of

scipy:optimize.
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