
computer programs

842 http://dx.doi.org/10.1107/S1600577516005658 J. Synchrotron Rad. (2016). 23, 842–849

Received 23 December 2015

Accepted 5 April 2016

Edited by P. A. Pianetta, SLAC National

Accelerator Laboratory, USA

Keywords: tomography; TomoPy; ASTRA

toolbox.

Supporting information: this article has

supporting information at journals.iucr.org/s

Integration of TomoPy and the ASTRA toolbox
for advanced processing and reconstruction of
tomographic synchrotron data

Daniël M. Pelt,a* Doǧa Gürsoy,b Willem Jan Palenstijn,a Jan Sijbers,c

Francesco De Carlob and Kees Joost Batenburga,c,d

aCentrum Wiskunde and Informatica, Science Park 123, 1098 XG Amsterdam, The Netherlands, bAdvanced Photon

Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837, USA, ciMinds–Vision Lab,

University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium, and dMathematical Institute, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands. *Correspondence e-mail: d.m.pelt@cwi.nl

The processing of tomographic synchrotron data requires advanced and efficient

software to be able to produce accurate results in reasonable time. In this paper,

the integration of two software toolboxes, TomoPy and the ASTRA toolbox,

which, together, provide a powerful framework for processing tomographic

data, is presented. The integration combines the advantages of both toolboxes,

such as the user-friendliness and CPU-efficient methods of TomoPy and the

flexibility and optimized GPU-based reconstruction methods of the ASTRA

toolbox. It is shown that both toolboxes can be easily installed and used

together, requiring only minor changes to existing TomoPy scripts. Furthermore,

it is shown that the efficient GPU-based reconstruction methods of the ASTRA

toolbox can significantly decrease the time needed to reconstruct large datasets,

and that advanced reconstruction methods can improve reconstruction quality

compared with TomoPy’s standard reconstruction method.

1. Introduction

In transmission X-ray tomography experiments performed at

synchrotron facilities, large amounts of projection data are

produced in a short time. Current detector technology allows

one to collect projections at kHz frame rate, enabling three-

dimensional imaging of dynamic systems (Gibbs et al., 2015),

in situ studies of materials (Patterson et al., 2016) and moni-

toring the evolution of biological systems (Moosmann et al.,

2013).

Processing these datasets in a time comparable with data

collection is essential to properly capture the sample evolution

and adjust the instrument settings during the experiment;

this requires algorithms optimized for high-performance

computing (HPC), which have to be easily available and

usable by the beamline users. Furthermore, many advanced

experiments, such as those with extremely high spatial or

temporal resolutions (Sakdinawat & Attwood, 2010; Mokso et

al., 2013) and of dose-sensitive objects (Lovric et al., 2013),

require a variety of pre-processing, post-processing and

reconstruction algorithms to reduce artifacts in the final

reconstruction.

In this paper, we present the integration of two Python

toolboxes which, together, allow users to easily apply

advanced tomographic algorithms on large-scale experimental

datasets in an efficient way: the TomoPy toolbox (Gürsoy et al.,

ISSN 1600-5775

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577516005658&domain=pdf&date_stamp=2016-04-28


2014) and the ASTRA toolbox (van Aarle et al., 2015). By

combining both toolboxes, we are able to leverage the

advantages of both to create an improved workflow for

beamline users.

The TomoPy toolbox is specifically designed to be easy to

use and deploy at a synchrotron facility beamline. It supports

reading many common synchrotron data formats from disk

(De Carlo et al., 2014), and includes several pre-processing and

post-processing algorithms commonly used for synchrotron

data. TomoPy also includes several reconstruction algorithms,

which can be run on multi-core workstations and large-scale

computing facilities. The algorithms in TomoPy are all CPU-

based, however, which can make them prohibitively slow in

the case of iterative methods, which are often required for

advanced tomographic experiments.

The ASTRA toolbox provides highly efficient tomographic

reconstruction methods by implementing them on graphic

processing units (GPUs). It includes advanced iterative

methods and allows for very flexible scanning geometries. The

ASTRA toolbox also includes building blocks which can be

used to develop new reconstruction methods, allowing for

easy and efficient implementation and modification of

advanced reconstruction methods. However, the toolbox is

only focused on reconstruction, and does not include pre-

processing or post-processing methods that are typically

required for correctly processing synchrotron data. Further-

more, no routines to read data from disk are provided by

the toolbox.

By integrating the ASTRA toolbox in the TomoPy frame-

work, the optimized GPU-based reconstruction methods

become easily available for synchrotron beamline users, and

users of the ASTRA toolbox can more easily read data and

use TomoPy’s pre-processing and post-processing methods.

This paper is structured as follows: in x2, we give a more

detailed explanation of TomoPy and the ASTRA toolbox,

and explain how we integrated them. In x3, we give general

instructions on how to install and use the combined toolboxes

in practice. An example for a specific dataset in given in x4,

and we conclude the paper in x5.

2. Integrating TomoPy and the ASTRA toolbox

2.1. TomoPy

TomoPy is an open-source Python toolbox to perform

tomographic data processing and image reconstruction tasks,

developed at the Advanced Photon Source of Argonne

National Laboratory (Gürsoy et al., 2014). The toolbox is

available for Linux and OS X operating systems, and is aimed

at providing a high-level interface for processing and tomo-

graphic reconstruction of datasets at synchrotron light sources.

TomoPy relies on standard scientific packages like NumPy,

SciPy and Scikit, and offers a free, open-source, modular,

readable and manageable framework that researchers can use

and contribute to easily. Python also offers easy integration

with C or Fortran code through shared libraries in situations

where computation speed is critical. In addition, the native

control software running at several synchrotron facilities,

EPICS (http://www.aps.anl.gov/epics), is accessible via Python

(http://pyepics.github.io/pyepics/), allowing simultaneous data

analysis and real-time feedback on the instrumentation status.

So far, TomoPy has been employed in reconstructions for

various techniques from micro-CT (Duke et al., 2015) to X-ray

fluorescence tomography (Gürsoy et al., 2015a), X-ray scat-

tering tomography (Gürsoy et al., 2015b), Lorentz electron

microscopy (Phatak & Gürsoy, 2015) and deployed on large-

scale computing facilities (Biçer et al., 2015).

TomoPy includes a plethora of processing functions from

pre-processing to image reconstruction of synchrotron tomo-

graphic data. It includes ring removal algorithms, such as the

generalized Titarenko’s algorithm (Miqueles et al., 2014) and a

Fourier wavelet approach (Münch et al., 2009), and a zinger

correction algorithm based on median filters. The estimation

of the rotation center can be calculated using the image

entropy calculation based method (Donath et al., 2006) or Vo’s

Fourier method (Vo et al., 2014). A single-step X-ray phase-

retrieval algorithm based on Paganin filtering is available for

phase-contrast datasets (Paganin et al., 2002). TomoPy also

includes algorithms for post-processing reconstructed images,

such as Gaussian filtering and median filtering to reduce noise

artifacts.

In addition to Gridrec (Dowd et al., 1999), which is the

traditionally used analytical image reconstruction algorithm,

TomoPy also offers variants of algebraic reconstruction

methods (ART, BART, SIRT) (Kak & Slaney, 2001), and

maximum-likelihood expectation maximization (ML-EM)

approaches (Dempster et al., 1977), as well as their regularized

variations (PML) (Chang et al., 2004). Ordered-subset

implementation of all algorithms are also available for effi-

cient calculations; for example, the well known ordered-subset

expectation maximization (OSEM) algorithm (Hudson &

Larkin, 1994). An overview of all algorithms included in

TomoPy, along with their parameters and usage examples, can

be found on the documentation website of TomoPy (http://

tomopy.readthedocs.org).

Another important property of TomoPy is that it provides

X-ray matter interaction simulation tools, such as X-ray

transmission or wave propagation, that can be used to eval-

uate the efficiency of various coding scenarios or as a platform

for modeling. The standard installation package of TomoPy is

optimized for use at a workstation, but TomoPy algorithms are

also suitable for grid-computing and massive parallelization

when needed. Experiments with MPI implementations of

iterative algorithms and tomography datasets with 1K

projections of 2K by 2K pixels show that TomoPy’s iterative

methods can scale up to thousands of cores on an IBM BG/Q

supercomputer with almost perfect speedup and can reduce

total reconstruction times for such datasets by more than

95.4% on 32K cores relative to 1K cores. Moreover, the

average reconstruction times are improved from 2 hours (256

cores) to 1 minute (32K cores), thus enabling near-real-time

use (Biçer et al., 2015).

computer programs

J. Synchrotron Rad. (2016). 23, 842–849 Daniël M. Pelt et al. � Integration of TomoPy and the ASTRA toolbox 843



2.2. The ASTRA toolbox

The ASTRA toolbox is an open-source software toolbox

developed at the University of Antwerp, Belgium, and at the

Centrum Wiskunde & Informatica (CWI), Amsterdam, The

Netherlands, that is focused on the reconstruction of two-

dimensional (slice-based) and three-dimensional tomographic

datasets (van Aarle et al., 2015). The toolbox is available for

Linux and Windows operating systems, and is aimed at

providing a fast and flexible development platform for

tomographic reconstruction algorithms. Because of its flex-

ibility, it can be applied to various scanning geometries and

acquisition modes, such as (bio)medical and industrial mCT

(Plantagie et al., 2015), electron tomography (Roelandts et al.,

2012), neutron tomography (Peetermans & Lehmann, 2013;

Van Eyndhoven et al., 2015) and synchrotron tomography

(Reischig et al., 2013). The toolbox uses CUDA for NVIDIA

GPUs to perform accelerated parallel computations, reducing

the computation time of many tomographic operations

(Palenstijn et al., 2011). Most two-dimensional slice-based

operations can also be run on standard CPUs, in which case

the toolbox supports different projection kernels, i.e. ways

of discretizing the projection operations. A comparison of

various projection kernels can be found in the paper by Xu

& Mueller (2006). When using GPUs, only a single set of

projection kernels is supported for optimal performance.

Through either a MATLAB or Python interface, the tomo-

graphic operations can be easily used and combined with

other numerical code or software for pre-processing, post-

processing or analysis of the acquired data. The toolbox also

provides a matrix-like interface to linear tomography opera-

tors, allowing them to be easily used in existing and new code

(Bleichrodt et al., 2015). A version of the ASTRA toolbox with

MPI support for high-performance computing is available as a

separate package (Palenstijn et al., 2015).

The ASTRA toolbox includes many popular tomographic

reconstruction methods (see Table 1), such as the analytic

filtered backprojection (FBP) method and the iterative SIRT

method (Kak & Slaney, 2001) and CGLS method (Hansen,

1998). These methods support various parameters that can

help improve reconstruction quality; for example, the choice

of filter to use in the FBP method, and additional nonnega-

tivity constraints in the SIRT method. An important feature of

the ASTRA toolbox is that it also provides building blocks

that can be used to develop advanced tomographic recon-

struction methods. For example, using the optimized methods

for the forward projection of objects and the backprojection of

sinograms, it is possible to develop efficient advanced iterative

methods, such as total variation regularized methods, using the

ASTRA toolbox. A recent addition to the toolbox is a plugin

system, which enables algorithm developers to easily distri-

bute new tomographic reconstruction methods, and ASTRA

users to easily install and use them with minimal changes in

production scripts. With the TomoPy integration presented in

this paper, these ASTRA plugins will automatically be usable

in TomoPy as well.

2.3. Implementation

The code to integrate TomoPy and the ASTRA toolbox is

written in the Python language, since TomoPy is mainly

written in Python and the ASTRA toolbox includes a Python

interface as well. Specifically, a first step was to add code to

TomoPy that enables the use of other Python libraries to

perform tomographic reconstruction instead of TomoPy’s

included algorithms. Using this new feature, code was added

which enables the use of the ASTRA toolbox to perform

the reconstruction. By integrating the ASTRA toolbox into

TomoPy in this way, synchrotron users that are familiar with

TomoPy will be able to use the ASTRA toolbox with minimal

effort. Note that other tomographic reconstruction libraries

that include a Python interface can be integrated in TomoPy in

the same way. Since the integration requires both toolboxes to

be installed on the same machine, it is only supported on

operating systems in which both TomoPy and the ASTRA

toolbox can be installed. Currently, this is only the case for

modern Linux operating systems, but other operating systems

will be supported once both TomoPy and the ASTRA toolbox

support them.

In the interfacing code, the parallel-beam geometry defined

by TomoPy (i.e. the number of detector pixels, the angles for

which projections are acquired, and the center of rotation) is

translated to a corresponding ASTRA geometry, and the

chosen ASTRA reconstruction method is performed. After-

wards, the result of the reconstruction is stored in TomoPy

memory, and all ASTRA objects are cleaned up. In this

way, the reconstruction step is completely self-contained and

independent of any pre-processing or post-processing step. An

advantage of this independence is that user scripts do not have

to be rewritten to use the ASTRA toolbox: only the recon-

struction function call has to be modified. Also, changing

between different reconstruction methods, between CPU and

GPU implementations, and between different reconstruction

parameters usually only requires changes in a single line of the

user script. Examples of these minimal changes are shown in

x3.2. A schematic overview of the full processing workflow

from loading the raw data to analysis is shown in Fig. 1.

computer programs

844 Daniël M. Pelt et al. � Integration of TomoPy and the ASTRA toolbox J. Synchrotron Rad. (2016). 23, 842–849

Table 1
List of tomographic reconstruction methods included in TomoPy and
ASTRA for two-dimensional parallel-beam geometries.

For more information about the FP, BP, FBP, ART, SIRT and SART methods,
we refer to Kak & Slaney (2001). For the Gridrec, MLEM, OSEM, PML and
CGLS methods, we refer to Dowd et al. (1999), Dempster et al. (1977), Hudson
& Larkin (1994), Chang et al. (2004) and Hansen (1998), respectively.

TomoPy ASTRA

Method CPU GPU Method CPU GPU

ART � ART �

BART � BP � �

Gridrec � CGLS � �

MLEM � FP � �

OSEM � FBP � �

PML � MLEM �

OSPML � SART � �

SIRT � SIRT � �



3. Installation and usage

3.1. Installation

Both TomoPy and the ASTRA toolbox can be installed

using the Conda package management system (http://conda.

pydata.org). The advantage of using Conda over other Python

package management systems is that Conda allows for the

inclusion of non-Python library dependencies, which are

commonly needed for numerical toolboxes such as TomoPy

and the ASTRA toolbox. Since the goal of both toolboxes is to

be easily installable at the various workstations and compu-

tational clusters available at synchrotrons, which may each be

running a different environment of installed libraries and

library versions, the ability to tightly control the library

dependencies is important to create a user-friendly installation

process. To install TomoPy in a Conda environment, the

following command can be used:

A similar command can be used to install the ASTRA

toolbox:

Note that both toolboxes can be installed and used indepen-

dently from each other. TomoPy will automatically detect

whether the ASTRA toolbox is available, and enables the use

of ASTRA methods if this is the case. Both toolboxes can also

be compiled and installed from source code, which can be

downloaded from their respective git repositories (https://

github.com/tomopy/tomopy and https://github.com/astra-

toolbox/astra-toolbox). Compared with installing using

Conda, it is easier to make modifications and contribute to the

development of the toolboxes when installing from source

code, but the compilation step requires the availability of

several library dependencies on the workstation.

3.2. Usage

We will now show how the new features can be used after

installation of both toolboxes. The following example script

shows a simple standard TomoPy workflow, loading data from

disk, normalizing the data using the flatfield and darkfield

images, and finally reconstructing with the standard TomoPy

gridrec method (all scripts shown in this paper are available in

the supporting information):

To modify this script to reconstruct using the ASTRA toolbox

instead, only line 13 has to be changed, replacing gridrec with

tomopy:astra, specifying which method to reconstruct with in

the method option, and specifying which type of projection

kernel to use in the proj type option. An overview of

common options that are used when reconstructing with the

ASTRA toolbox is given in Table 2. For example, to recon-

computer programs

J. Synchrotron Rad. (2016). 23, 842–849 Daniël M. Pelt et al. � Integration of TomoPy and the ASTRA toolbox 845

Figure 1
Schematic overview of the workflow of processing a dataset with the integrated TomoPy and ASTRA framework. Note that the reconstruction step can
be performed by either TomoPy or the ASTRA toolbox.

Table 2
List of common options that are used when reconstructing with the ASTRA toolbox through TomoPy.

Option Description Example values

Which reconstruction method to use

Which projection kernel to use

Number of iterations to use in iterative method

Python dictionary with extra method-specific options

List of GPU indices to use for reconstruction



struct with FBP using a voxel-driven kernel, we change the

final part of the above script to:

When running on a machine with a GPU with CUDA

capabilities, the same reconstruction can be performed using

optimized GPU code, greatly decreasing the needed compu-

tation time. This can be realised by specifying cuda as

the projection kernel, and use a GPU-enabled method

(FBP CUDA):

Iterative methods can be used by specifying the corresponding

ASTRA method (e.g. CGLS CUDA for a GPU-enabled CGLS

method), and the number of iterations to use in the num iter

option:

Most reconstruction methods in the ASTRA toolbox support

several parameters that can help improve reconstruction

quality. In the TomoPy integration, these parameters are

specified by supplying them in the extra options setting. For

example, to add a nonnegativity constraint to the GPU-

enabled SIRT method, we add MinConstraint to the

extra options setting (note that lower bounds other than

zero can also be used):

An overview of the various parameters that are supported by

the reconstruction methods can be found on the website of the

ASTRA toolbox (http://www.astra-toolbox.com).

If multiple GPUs are installed in the workstation running

TomoPy and the ASTRA toolbox, the computations can be

distributed over multiple GPUs by specifying a list of GPU

indices in the gpu list option. Since each slice of the

reconstruction can be computed independently from the other

slices, a significant reduction of computation time can be

achieved by distributing the computations in this way. For

example, to use four installed GPUs, labeled 0 through 3, we

use ½0; 1; 2; 3� as the gpu list:

Finally, ASTRA plugins can be used by first registering them

with the ASTRA toolbox itself, and using the method name

defined by the plugin as the method option. Extra parameters

for the reconstruction can be specified using the

extra options setting, similar to standard ASTRA methods.

An ASTRA plugin is typically distributed as a Python class

within a Python package, which has to be imported separately.

After importing, the astra:plugin:register method is used

to register a plugin with the ASTRA toolbox. For example,

suppose that there is a plugin class tvtomo:plugin within the

tvtomo package, with the method name TV-FISTA and an

additional parameter tv reg. To use this plugin in TomoPy,

the following code can be used:

3.3. Computation time

In Fig. 2, a comparison is shown between the computation

times per slice of reconstructions computed with different

methods of both TomoPy and the ASTRA toolbox, for a

single slice of a dataset with 1200 detector pixels and 1024

projections. All reconstructions were computed on a work-

station with 128 GB of memory, two Intel Xeon E5-2623 v3

CPUs (four cores each, running at 3.0 GHz) and two Geforce

GTX Titan Z cards (running at their default clock speeds).

Each Titan Z card contains two GPUs, with 15 multiprocessors

(2880 cores) and 6 GB of memory per GPU. The workstation

was using the Fedora 21 operating system, with the official

CUDA 7.0 drivers provided by NVIDIA. We compare the

computation times of gridrec computed using TomoPy, FBP

computer programs

846 Daniël M. Pelt et al. � Integration of TomoPy and the ASTRA toolbox J. Synchrotron Rad. (2016). 23, 842–849

Figure 2
Computation time per slice of reconstructing with the gridrec method
computed with TomoPy, the FBP method computed with the ASTRA
toolbox, and 100 iterations of the SIRT method computed with both, for
1024 projections and a detector width of 1200 pixels. Results are shown
for using a single CPU core, 8 CPU cores, a single GPU, and 4 GPUs.



computed using the ASTRA toolbox, and 100 iterations of

SIRT computed using both TomoPy and the ASTRA toolbox.

For the CPU-based methods of TomoPy and the ASTRA

toolbox, computation times are shown for using both a single

core and all eight cores of the machine. For the GPU-based

methods of the ASTRA toolbox, computation times are

shown for using both a single GPU and all four installed

GPUs.

The results of Fig. 2 show that for the SIRT method a

significant reduction of computation time can be achieved

by using GPUs instead of CPUs for computation, with the

computation time per slice when using TomoPy and eight CPU

cores being roughly 600 times the computation time when

using the ASTRA toolbox and four GPUs. Note that this

reduction of computation time can be important in practice,

since, in this case, computing the SIRT reconstruction of

200 slices would take less than 4 minutes with four GPUs,

compared with more than 32 hours with eight CPU cores.

Therefore, by using GPU-based methods, it is possible to

compute iterative reconstructions during experiments,

enabling direct inspection of the reconstructions and the

possibility of making adjustments to improve the experimental

results during the experiment itself.

In contrast to the iterative SIRT method, TomoPy’s CPU-

based gridrec method takes less time to compute compared

with the GPU-based FBP method, especially when using

multiple CPU cores. This is expected for problems with a

relatively large number of projections, since the most costly

computations of the gridrec method are the two-dimensional

Fourier transforms, for which the computation time is inde-

pendent of the number of projections. On the other hand, in

the FBP method the most costly computation is the back-

projection operation, for which the computation time scales

linearly with the number of projections. Note that the recon-

struction quality of gridrec and FBP reconstructions are

usually similar (Marone & Stampanoni, 2012).

4. Example

In this section, we give an example of the full processing

workflow of reconstructing a tomographic synchrotron

dataset, acquired at the 32-ID beamline of the Advanced

Photon Source of Argonne National Laboratory. We compare

the resulting reconstructions of a single slice using various

reconstruction methods, both with and without ring-removal

pre-processing applied. The dataset is of a sample under

pressure in a diamond anvil cell, whose frame blocks part of

the acquired projections, rendering them unusable. The result

is a limited-angle tomographic problem, where the acquired

projections do not span the entire 180� range. Specifically,

projections of 2160� 2560 pixels were acquired in 0.5� inter-

vals over a 137� range, for a total of 273 projections. It is

typically difficult to obtain accurate reconstructions for

limited-angle problems, with standard methods producing

wedge artifacts in the direction of the missing projection

angles (Delaney & Bresler, 1998).

In Fig. 3, reconstructions are shown of a single slice of the

sample, reconstructed with various reconstruction methods.

In each reconstruction except for the one shown in Fig. 3(b),

a ring-removal pre-processing method that is included in

TomoPy (Münch et al., 2009) was used to suppress ring arti-

facts. In Fig. 3(a), the reconstruction computed with TomoPy’s

gridrec method is shown. In Figs. 3(b) and 3(c), ASTRA’s

GPU-enabled SIRT method was used to compute the recon-

structions. Finally, a reconstruction regularized with total

variation minimization is shown in Fig. 3(d), computed using

an ASTRA plugin that implements the FISTA method (Beck

& Teboulle, 2009). The Python script used to compute the

reconstruction of Fig. 3(c) is given below. Note that the scripts

used to compute the other reconstructions are similar, only

requiring minimal changes like the ones given in x3.2:

The results of Fig. 3 show that the gridrec reconstruction

includes large amounts of noise artifacts, especially visible in

the line profile, as well as wedge artifacts resulting from the

missing projection angles. These artifacts can make further

analysis, such as volume estimation, difficult or impossible,

even with further post-processing. The iterative reconstruc-

tions, which can be computed efficiently using the GPU-

enabled methods of the ASTRA toolbox, include fewer arti-

facts, significantly reducing noise in the reconstructed image.

Note, however, that significant ring artifacts are present in

computer programs

J. Synchrotron Rad. (2016). 23, 842–849 Daniël M. Pelt et al. � Integration of TomoPy and the ASTRA toolbox 847



Fig. 3(b), where we did not use one of TomoPy’s ring-removal

pre-processing methods. In the reconstruction of Fig. 3(c), the

ring artifacts are significantly reduced, which shows that

TomoPy’s advanced pre-processing methods can be used to

improve the reconstruction quality of ASTRA’s reconstruc-

tion methods. Finally, the total variation minimization recon-

struction of Fig. 3(d) shows that advanced regularized

reconstruction methods can be distributed as ASTRA plugins

and be used in combination with TomoPy to minimize artifacts

in the final reconstruction.

5. Conclusions

In this paper, we presented the integration of two Python

toolboxes used for processing tomographic data: TomoPy and

the ASTRA toolbox. The integration allows for combining the

advanced I/O, pre-processing and post-processing capabilities

of TomoPy with the advanced tomographic reconstruction

methods of the ASTRA toolbox. One advantage of the inte-

gration is that it enables the use of GPU-enabled methods

included in the ASTRA toolbox to significantly improve

computation time, especially for iterative reconstruction

methods. Another advantage is that advanced iterative

methods can be written and distributed as ASTRA plugins

and subsequently used within TomoPy. Code has been added

to TomoPy that automatically creates the necessary ASTRA

objects, cleaning them up after computation has finished. As a

result, only minimal changes are needed in user scripts to use

the ASTRA toolbox within TomoPy.

We have shown how to install both toolboxes on a single

machine, and how to use the various features of the integrated

software. In particular, we have shown how to adjust an

existing TomoPy script to reconstruct with the ASTRA

toolbox, how to change between different ASTRA recon-

struction methods and between CPU and GPU implementa-

tions, and how to specify options for each method.

Furthermore, an example was given where an ASTRA plugin

was used to reconstruct the acquired data. For a specific

dataset, we compared the computation time of various

methods included in TomoPy and the ASTRA toolbox, which

showed that the GPU-enabled iterative SIRT method of the

ASTRA toolbox significantly reduced computation time

compared with the CPU-based SIRT method of TomoPy.

Finally, we computed reconstructions using different recon-

struction methods for a single slice of experimental data,

showing how ASTRA’s advanced reconstruction methods in

combination with TomoPy’s advanced pre-processing methods

can help reduce artifacts in reconstructions of tomographic

synchrotron data, in particular in challenging scenarios where

only a limited set of projections are available.

Acknowledgements

We thank Luhong Wang and Haohe Liu, Harbin Institute of

Technology, for sharing the data reported in Fig. 3. This

research used resources of the US Department of Energy

(DOE) Office of Science User Facilities operated for the DOE

Office of Science by Argonne National Laboratory under

Contract No. DE-AC02-06CH11357, and was also funded by

the Netherlands Organization for Scientific Research (NWO),

project number 639.072.005. We acknowledge COST Action

MP1207 for networking support.

References

Aarle, W. van, Palenstijn, W. J., De Beenhouwer, J., Altantzis, T., Bals,
S., Batenburg, K. J. & Sijbers, J. (2015). Ultramicroscopy, 157, 35–
47.

Beck, A. & Teboulle, M. (2009). IEEE Trans. Image Processing, 18,
2419–2434.

Biçer, T., Gürsoy, D., Kettimuthu, R., De Carlo, F., Agrawal, G. &
Foster, I. T. (2015). Euro-Par 2015: Parallel Processing, edited by
J. L. Trff, S. Hunold and F. Versaci, Vol. 9233 of Lecture Notes in
Computer Science, pp. 289–302. Berlin/Heidelberg: Springer.

Bleichrodt, F., van Leeuwen, T., Palenstijn, W. J., van Aarle, W.,
Sijbers, J. & Batenburg, K. J. (2015). Numer. Algor. 71, 673–697.

Chang, J.-H., Anderson, J. M. M. & Votaw, J. R. (2004). IEEE Trans.
Med. Imaging, 23, 1165–1175.

computer programs

848 Daniël M. Pelt et al. � Integration of TomoPy and the ASTRA toolbox J. Synchrotron Rad. (2016). 23, 842–849

Figure 3
Reconstructions of a single slice of a sample in a high-pressure diamond
anvil cell which blocks 86 of the 359 projections over 180�, with 2560
detector pixels per projection. Reconstructions are computed with (a)
gridrec (TomoPy), (b) and (c) SIRT with a nonnegativity constraint
(ASTRA), and (d) TV-minimization using FISTA (ASTRA plugin). In
(a), (c) and (d), a ring-removal pre-processing step (Münch et al., 2009)
was applied using TomoPy. A line profile of the center, indicated in (a) by
a dotted line, is shown for each reconstruction, as well as a cropped
128� 128 pixel section of the upper left part of the sample.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB5


De Carlo, F., Gürsoy, D., Marone, F., Rivers, M., Parkinson, D. Y.,
Khan, F., Schwarz, N., Vine, D. J., Vogt, S., Gleber, S.-C.,
Narayanan, S., Newville, M., Lanzirotti, T., Sun, Y., Hong, Y. P. &
Jacobsen, C. (2014). J. Synchrotron Rad. 21, 1224–1230.

Delaney, A. H. & Bresler, Y. (1998). IEEE Trans. Image Processing,
7, 204–221.

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). J. R. Stat. Soc.
Ser. B (Methodological), 39, 1–38.

Donath, T., Beckmann, F. & Schreyer, A. (2006). J. Opt. Soc. Am. A,
23, 1048–1057.

Dowd, B. A., Campbell, G. H., Marr, R. B., Nagarkar, V. V., Tipnis,
S. V., Axe, L. & Siddons, D. P. (1999). Proc. SPIE, 3772, 224–236.

Duke, D. J., Swantek, A. B., Sovis, N. M., Tilocco, F. Z., Powell, C. F.,
Kastengren, A. L., Gürsoy, D. & Biçer, T. (2015). SAE Int. J. Eng. 9,
2015–01–1873.

Gibbs, J. W., Mohan, K. A., Gulsoy, E. B., Shahani, A. J., Xiao, X.,
Bouman, C. A., De Graef, M. & Voorhees, P. W. (2015). Sci. Rep. 5,
11824.

Gürsoy, D., Biçer, T., Almer, J. D., Kettimuthu, R., Stock, S. R. & De
Carlo, F. (2015b). Philos. Trans. R. Soc. London A, 373, 20140392.

Gürsoy, D., Biçer, T., Lanzirotti, A., Newville, M. G. & De Carlo, F.
(2015a). Opt. Express, 23, 9014–9023.

Gürsoy, D., De Carlo, F., Xiao, X. & Jacobsen, C. (2014). J.
Synchrotron Rad. 21, 1188–1193.

Hansen, P. (1998). Rank-Deficient and Discrete Ill-Posed Problems.
Society for Industrial and Applied Mathematics.

Hudson, H. M. & Larkin, R. S. (1994). IEEE Trans. Med. Imaging, 13,
601–609.

Kak, A. C. & Slaney, M. (2001). Principles of Computerized
Tomographic Imaging. Society for Industrial and Applied Mathe-
matics.

Lovric, G., Barré, S. F., Schittny, J. C., Roth-Kleiner, M., Stampanoni,
M. & Mokso, R. (2013). J. Appl. Cryst. 46, 856–860.

Marone, F. & Stampanoni, M. (2012). J. Synchrotron Rad. 19, 1029–
1037.

Miqueles, E. X., Rinkel, J., O’Dowd, F. & Bermúdez, J. S. V. (2014).
J. Synchrotron Rad. 21, 1333–1346.

Mokso, R., Marone, F., Irvine, S., Nyvlt, M., Schwyn, D., Mader, K.,
Taylor, G. K., Krapp, H. G., Skeren, M. & Stampanoni, M. (2013).
J. Phys. D, 46, 494004.

Moosmann, J., Ershov, A., Altapova, V., Baumbach, T., Prasad, M. S.,
LaBonne, C., Xiao, X., Kashef, J. & Hofmann, R. (2013). Nature
(London), 497, 374–377.

Münch, B., Trtik, P., Marone, F. & Stampanoni, M. (2009). Opt.
Express, 17, 8567–8591.

Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W.
(2002). J. Microsc. 206, 33–40.

Palenstijn, W. J., Batenburg, K. J. & Sijbers, J. (2011). J. Struct. Biol.
176, 250–253.

Palenstijn, W. J., Bédorf, J. & Batenburg, K. J. (2015). Proceedings
of the 13th International Meeting on Fully Three-Dimensional
Image Reconstruction in Radiology and Nuclear Medicine, pp. 166–
169.

Patterson, B. M., Cordes, N. L., Henderson, K., Williams, J. J.,
Stannard, T., Singh, S. S., Ovejero, A. R., Xiao, X., Robinson, M. &
Chawla, N. (2016). J. Mater. Sci. 51, 171–187.

Peetermans, S. & Lehmann, E. H. (2013). J. Appl. Phys. 114, 124905.
Phatak, C. & Gürsoy, D. (2015). Ultramicroscopy, 150, 54–64.
Plantagie, L., van Aarle, W., Sijbers, J. & Batenburg, K. J. (2015). 2015

IEEE 12th International Symposium on Biomedical Imaging
(ISBI), pp. 1596–1599. IEEE.

Reischig, P., King, A., Nervo, L., Viganó, N., Guilhem, Y., Palenstijn,
W. J., Batenburg, K. J., Preuss, M. & Ludwig, W. (2013). J. Appl.
Cryst. 46, 297–311.

Roelandts, T., Batenburg, K. J., Biermans, E., Kübel, C., Bals, S. &
Sijbers, J. (2012). Ultramicroscopy, 114, 96–105.

Sakdinawat, A. & Attwood, D. (2010). Nat. Photon. 4, 840–848.
Van Eyndhoven, G., Batenburg, K. J., Kazantsev, D., Van Nieuwen-

hove, V., Lee, P. D., Dobson, K. J. & Sijbers, J. (2015). IEEE Trans.
Image Processing, 24, 4446–4458.

Vo, N. T., Drakopoulos, M., Atwood, R. C. & Reinhard, C. (2014).
Opt. Express, 22, 19078–19086.

Xu, F. & Mueller, K. (2006). 3rd IEEE International Symposium on
Biomedical Imaging: Nano to Macro 2006, pp. 1252-1255. IEEE.

computer programs

J. Synchrotron Rad. (2016). 23, 842–849 Daniël M. Pelt et al. � Integration of TomoPy and the ASTRA toolbox 849

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5084&bbid=BB37

