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Real-time processing of X-ray image data acquired at synchrotron radiation

facilities allows for smart high-speed experiments. This includes workflows

covering parameterized and image-based feedback-driven control up to the final

storage of raw and processed data. Nevertheless, there is presently no system

that supports an efficient construction of such experiment workflows in a

scalable way. Thus, here an architecture based on a high-level control system

that manages low-level data acquisition, data processing and device changes is

described. This system is suitable for routine as well as prototypical experiments,

and provides specialized building blocks to conduct four-dimensional in situ,

in vivo and operando tomography and laminography.

1. Introduction

Synchrotron-radiation-based imaging diagnostics has become

a reliable tool for systematic examination of chemical and

biological samples in various research areas. Progress in

photon flux density and advanced pixel array detectors with

high spatial resolution, low noise and fast read-out, as well as

fast and high-precision positioning manipulators, permit much

reduced measuring time compared with solutions based on

laboratory sources. Using these technologies, synchrotron

radiation computed tomography (SRCT) experiments

(Thompson et al., 1984; Stock, 2008; Westneat et al., 2008) can

be extended to achieve data acquisition (DAQ) times of less

than a second for a complete three-dimensional (3D) dataset

(Jung et al., 2012; Salvo et al., 2012; Finegan et al., 2015).

Combined with optical flow analysis, this has enabled the

development of cine-tomography, a technique that allows for

the characterization of four-dimensional (4D) spatiotemporal

structure evolution of technical and biological processes

(dos Santos Rolo et al., 2014).

Synchrotron radiation computed laminography (SRCL) has

extended the applicability of 3D synchrotron imaging to thin

plate-like objects (Helfen et al., 2011) that otherwise prohibit

homogeneous transmittance using conventional tomographic

scans. It is especially suited to flat specimens which cannot be

trimmed down (e.g. due to their uniqueness or the loss of their

function) and thus do not fit into the detector’s field of view

(FOV) (Houssaye et al., 2011; Reischig et al., 2013). Moreover,
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SRCL is suitable for in situ imaging studies of the impact of

mechanical and thermal loads, e.g. to assess damage processes

in carbon-fibre reinforced plastics (Xu et al., 2010; Bull et

al., 2013), coatings (Maurel et al., 2013) and alloy sheets

(Morgeneyer et al., 2013, 2014). Apart from in situ studies,

SRCL enables operando experiments for failure analysis and

lifetime prediction (Tian et al., 2011).

Both SRCT and SRCL are used with a large variety of

contrast modes such as phase contrast (Cloetens et al., 1999;

Weitkamp et al., 2005; Harasse et al., 2011; Altapova et al.,

2012), fluorescence (de Jonge & Vogt, 2010; Xu et al., 2012a)

and diffraction contrast (Ludwig et al., 2008; Hänschke et al.,

2012) which have many applications in materials research

(Yazzie et al., 2012; Boden et al., 2014), microsystem tech-

nology, cultural heritage, paleontology (Riedel et al., 2012)

and biology (Walker et al., 2014; van de Kamp et al., 2015;

Greven et al., 2015).

However, due to the complexity of the experimental setup,

SRCT and in particular SRCL pose challenging problems

for automation and software-controlled experiments. For a

successful automated scan, the imaging and sample apparatus

must be aligned and positioned properly, the sample be

stabilized and the measurement setup controlled during the

imaging process. Moreover, intelligent control of the imaging

process with respect to the unpredictable spatiotemporal

localization of the region of interest (ROI) and its evolution is

particularly difficult to achieve because it requires information

about the process under study. In the worst case the ROI may

be completely missed or leave the FOV during the experi-

ment. This problem becomes worse if the 4D resolution

requirements of the studied details are not known a priori

or change during the scan. Although two-dimensional (2D)

radiographs already contain sufficient information for fast

online feedback in many applications, in certain cases control

decisions must be based on quality metrics that can only be

derived from 3D or 4D image reconstruction.

Given that these problems are solved, conventional

experiment acquisition schemes can be replaced by proactive

workflows enabling us to:

(a) Acquire sequences of tomo- or laminographic snapshots

at different user-controlled loading stages of materials and

devices.

(b) Record continuous 3D and 4D film sequences at well

defined stages of biological or technical processes.

(c) Drive an experiment based on metrics derived from 3D

and 4D reconstructions.

(d) Achieve high sample-throughput with automatic quality

assurance.

Apart from the progress made in sample throughput

(Mader et al., 2011) and user-friendly analysis tools (Gürsoy et

al., 2014), a necessity for data acquisition driven by 3D and 4D

image metrics are fast image reconstruction, metric evaluation

and feedback to the experimental set-up. Although modern

GPUs reconstruct volumes in near real-time (Chilingaryan et

al., 2011; Myagotin et al., 2013), integrating data processing

with a decision-making processes and hardware feedback is

still missing.

In this paper we address the outlined experimental chal-

lenges by developing concepts, tools and methods for smart

image recording. The abstract high-level architecture of our

system that implements these ideas is depicted in Fig. 1. It

allows the user to describe and execute computationally

intensive experiment workflows in a flexible way. These

workflows encompass self-alignment, interactive or automated

control of 3D and 4D image quality, identification, tracking

and repositioning of the 3D-ROI into the FOV and online

control of the spatiotemporal resolution during the whole

image recording process. As a proof of concept, we conducted

two image-driven experiments. The first one automatically

optimizes the temporal resolution based on the tomographic

reconstruction of the currently scanned sample. The second

experiment outlines an interactive laminography experiment

that uses online reconstruction to assess the quality of the

acquired data.

2. Experimental problems

From the list of general challenges, we outline specific

problems that need to be solved in order to run successful

automated scans.

For both SRCT and SRCL the specimen should be centered

with respect to the focal point of the scanning geometry in

order to ensure that the entire ROI is imaged. This can turn

out to be a challenging problem when the specimen is laterally

(i.e. perpendicular to the rotation axis) much larger than the

ROI to be imaged. As seen from Fig. 2, the sample ROI must

be positioned exactly at the intersection of the rotation axis

and the beam, i.e. inside the volume depicted in dark grey.

With specimens exhibiting low contrast or showing similar and

overlapping features in the projections, deduction of the exact

ROI position from projection images alone is sometimes

impossible. An incorrect positioning causes the ROI to the

leave the FOV during a full rotation which results in incom-

plete data for further reconstruction.
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Figure 1
Schematic overview of the experimental workflow. The upper part is a
regular X-ray imaging setup with subsequent data processing and storage.
The lower part is a novel classification and control step enabling feedback
loops.



We encountered this problem in a

crack propagation experiment where a

small fatigue-induced pre-crack initiates

a larger crack that develops further

under continous load (Shen et al., 2013).

For subsequent analysis both the pre-

crack as well as the crack front have to

be in the FOV during the entire time,

and thus the ROI needs to expand and

shift. As seen in Fig. 3(a), the pre-crack

is clearly visible in the 3D reconstruc-

tion; however, it could not be identified

solely from the projection images

because of its small size and lack of

contrast. Without online reconstruction

the ROI cannot be reliably identified

and the experiment has to be carried

out in a blind manner.

In a second example, shown in Fig. 4,

the ROI shifted considerably from the

initial position in Fig. 4(a) in which the

machined notch serves as a reference

position (Cheng et al., 2016). Without

3D image control the reference position

was lost in Fig. 4(b). Thus, from the data

alone, the evolution of certain damage

features can no longer be followed

directly and requires complex post-

processing.

Missing prior knowledge that could

be acquired with online reconstruction

can also introduce noise and distur-

bance in subsequent steps such as

final high-quality reconstructions. For

example, in the second experiment local

stress relaxation caused unwanted

deformation of the structure in the ROI

that progressed during the scan and

leads to improper reconstruction with

doubled edge artifacts shown in

Fig. 5(a). Another example shows a

badly reconstructed slice, Fig. 5(b), of a

dynamic foaming experiment shown

next to a good one, Fig. 5(c). Here, the

problem is caused by the sampling time

of the volumes which was below the

process speed. Because the temporal

resolution of these dynamic processes

is not known exactly before the experi-

ment is conducted, it must be deter-

mined online.

3. System components

Due to the large variety in terms of

experimental setup and parameter

space, we need a flexible and modular

computer programs
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Figure 3
2D section of reconstructed 3D in situ laminography data where a hardly visible fatigue pre-crack
(a) initiates the subsequent crack propagation which develops into macroscopic damage (b)–(d)
under tensile loading of an AA6061 alloy fracture toughness specimen.

Figure 4
2D section of reconstructed 3D in situ laminography data showing damage in a polyamide 6
specimen. While the notch is visible in (a), it is lost when following the forming crack in (b).

Figure 2
Coverage of the real space inside a flat specimen (positioned at the origin of the z axis) for imaging
of a sample in a laminographic setup with beam angles of 30� (a), 45� (b) and 60� (c) with respect to
the rotation axis (corresponding to z). The pink bar gives the beam direction for one particular
projection direction. The regions sketched in grey are obtained by rotating this pink bar around the
rotation axis. The light grey region is covered by at least one projection and the dark grey region is
covered by the set of all projection directions. For the CT case with 90� angle, the dark grey zone
corresponds to a cylinder.



system to solve the problems stated in the previous section. As

shown in Fig. 6, our system separates data acquisition, data

processing and experiment control into distinct components.

The central control system component Concert (https://

github.com/ufo-kit/concert) forwards the acquired data to the

processing component and uses the result to further drive

control decisions. In order to respect latency and bandwidth

requirements on the one hand and provide easy access on the

other, all low-level components are written in portable C that

can communicate with the control system that is written in

Python.

3.1. Data acquisition

The development of our data acquisition library libuca

(https://github.com/ufo-kit/libuca) was driven by two central

requirements: the need for a common application program-

ming interface (API) that covers a variety of 2D pixel detec-

tors and the lowest possible latencies with the highest possible

throughput. The library is written in object-oriented C using

the GObject API, with a base camera class providing a general

interface for initialization, triggering and data readout. The

data readout uses different buffering and synchronization

modes to cover streaming and non-streaming cameras. The

device-specific camera classes inherit from the base class and

add properties to describe parameters that are not covered by

the general API. The property metadata includes type, valid

value range, textual description and an optional SI unit

describing the value in physical terms. The following example

shows how properties are accessed and a single frame is

requested:

Depending on the specific use case, we have to consider

different requirements concerning synchronous execution,

latency and throughput. Camera implementations that are

able to write into user memory allow for lowest possible

latencies. To help sustain situations where the user cannot

process the data in time, a software-side ring buffer can be

filled asynchronously by an acquisition thread. No matter how

data are acquired, the user can register callback functions to

receive data asynchronously.

For high-speed remote data acquisition, we use a secondary

InfiniBand data channel, that is independent of the TANGO

control layer (Dritschler et al., 2014). This approach provides

transparent access to the camera data at a peak throughput of

31 Gb s�1 on a 4� quad data rate network.

3.2. Data processing

Synchrotron X-ray imaging experiments employ data

processing tasks that range from simple image adjustments

such as brightness and contrast corrections to computationally

intensive algorithms like tomographic reconstruction and

high-quality image denoizing. The majority of these problems

can be described in terms of parallel stream processing.

Parallel computer architectures such as multi-core CPUs and

GPUs have become a commodity and now offer floating point

performance of 5 TFLOP s�1 and a memory bandwidth of

330 GB s�1 which rivals the specifications of a supercomputer

from the late 1990s at a fraction of the cost.

To process image streams on a heterogeneous computer

system consisting of multi-core CPUs and GPUs we use the

UFO data processing framework (Vogelgesang et al., 2012).

With this framework, algorithms are specified as pipelines

computer programs
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Figure 6
High-level system architecture with the Concert core component using
TANGO and EPICS devices for slow motor control and the UFO
framework for fast data processing.

Figure 5
Unsatisfactory reconstructions due to sample movement caused by local stress relaxation (a) and insufficient sampling in time (b) and (c). Online
reconstruction would have revealed issues in the left example early on and helps determining the best sampling time leading to fewer reconstruction
artifacts as in (c).



or graphs of simple atomic filters which process data flows.

Depending on the specific task, massively parallel filter

implementations use OpenCL kernels to execute code on

accelerators such as GPUs or the Xeon Phi coprocessor from

Intel1. At run-time, a scheduler distributes the work among

available hardware resources such as CPUs, GPUs and remote

network nodes to achieve almost linear scalability with respect

to the number of processing units. The UFO framework is

written in C and uses the GObject type system to provide an

object-oriented interface to the subsystems similar to our data

acquisition library. Using GObject introspection, the end user

can access the high-performance computing system from a

Python environment.

3.3. Reconstruction benchmarks

To establish workflows that solve the aforementioned

problems such as following the scan or sequence of scans of a

sample, we need to evaluate an updated subset of the recon-

structed cross-section slices after every nth projection. Such

real-time 3D imaging scenarios are only possible by processing

the data stream on-the-fly using efficient reconstruction

algorithms.

The filtered backprojection (FBP) algorithm is the best

choice for two reasons: (i) it inherently provides a refined 3D

image and (ii) the backprojection part requires only OðN 2Þ

operations to process one X-ray projection of N � N pixels

per slice. On the other hand the direct Fourier inversion

method requires OðN 2 log NÞ operations because the 2D

inverse fast Fourier transform is needed every time a slice

is updated.

We optimized the tomographic and laminographic FBP for

current-generation GPUs to achieve the throughput required

for online reconstruction. The tomographic FBP algorithm

reconstructs individual slice pixels independently by using a

large number of GPU compute units and individual slices

independently using multiple GPUs, i.e. we employ fine- and

coarse-grained parallelization to reduce the reconstruction

time. The laminographic FBP algorithm is based on the work

presented by Myagotin et al. (2013) and is parallelized in the

same way as the tomographic case. However, the data are

backprojected to a partial 3D volume instead of individual

2D slices.

For a realistic impression about latency and throughput

behaviour we present benchmark data for tomographic and

laminographic reconstruction and compare their effective

performance. We swept across N which determines both the

number of projections, a projection size of N � N pixels and

a reconstruction size of N � N pixels per slice. For lamino-

graphic reconstruction, we used an axis tilt angle � of 65�. We

conducted the benchmarks on a system with seven NVIDIA1

GeForce GTX TITAN GPUs that are based on NVIDIA’s

Kepler GK110 architecture. On this system we measured both

the time to transfer data from the host to the GPU and to

actually process the data. We excluded the time to transfer the

resulting slices back to the host because subsequent metrics

needed for control can be derived from the reconstructed

volume in GPU memory. In most cases, such metrics are scalar

values (e.g. if to repeat a scan, change a parameter to a new

value, . . . ), which require only a few bytes compared with the

input data and therefore justifies neglecting the time spent for

downloading the scalar value. On this particular hardware

architecture, processing 16 projections per kernel invocation

yielded best performance with an execution throughput of

about 90 Giga-updates per second (GUPS) (Myagotin et al.,

2013) on a GTX TITAN, which is similar to computed

tomography (CT).

To compare both algorithms we measured the throughput

and the latency. The throughput is quantified by dividing the

number of additions for every voxel by the measured time and

is given in GUPS. The latency is the time in milliseconds to

copy a required projection region to the GPU and backproject

it onto a slice. The throughput and latency results for

1024 � N � 4096 are shown in Fig. 7.

Due to the geometry of a laminographic setup, the number

of detector rows that need to be copied to the GPU depends

on the axis tilt angle �. To reconstruct the relevant area in a

slice for a given �, we have to backproject from a rectangular

region of height N cosð�Þ, whereas in CT one row from every

projection is sufficient. That means we need 846 detector rows

for 2000 projections and a tilt angle of � = 65� (e.g. the data

of Fig. 3). As a consequence, laminographic backprojection

cannot hide memory transfers completely as seen in the

decreasing throughput. This behavior is pronounced for large

N because more data must be copied yet the amount of work

cannot be increased. This is caused by the memory limitation

of 6 GB on a GTX TITAN.

Although our algorithm maximizes the compute-to-

transfer-time ratio by copying only the required projection

parts and backprojecting to 3D volumes instead of 2D slices,

this does not remedy the problem completely. Due to the

memory limitation, the tomographic backprojection outper-

forms the laminographic one both in throughput and latency.
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Figure 7
Data throughput (top) and latency (bottom, in logarithmic scale)
measured for tomographic and laminographic filtered backprojection
algorithms on a machine with seven GPUs.



3.4. Experiment control

To model and run different types of experiments conducted

at an imaging beamline, a beamline scientist has to control

hardware devices and describe process sequences using these

devices. Moreover, for online and feedback-driven experi-

ments, integration of the presented high-throughput data

acquisition and high-performance computing facilities is

required. To fulfil these different requirements, we designed

and developed the Concert experiment control system

(Vogelgesang et al., 2013).

The entire system is written in Python and uses the widely

deployed TANGO/PyTango infrastructure to access the

majority of high-latency hardware devices such as motors. It is

based on an asynchronous execution model to parallelize slow

device access of motors and shutters, thus reducing overall

experiment run-times. A typical example illustrates the

benefits: during CT scans image sequences are acquired with

closed and opened shutter as well as with and without a

sample. Instead of sequencing the motor movements, we can

move the sample into the FOV and start rotating the sample

while the shutter is closed. Moreover, Concert forwards

acquired data to the processing facilities and uses derived

measures to control the process itself, thus closing the feed-

back loop.

4. Experiment workflows

In this section we will outline how the Concert experimental

control system is used to define and run workflows and how

the low-level facilities are integrated.

4.1. Implementation

Using automatically generated language bindings, our low-

level data acquisition and computing libraries can be used

within Python, thus allowing us to move time-critical tasks

to external, accelerated C and GPU code. Instead of using

these low-level libraries directly, we integrated them into a

coroutine-based workflow system to enforce decoupling of

independent subsystems and increase modularity. A coroutine

is a function that can pause at defined program points and

resume later, thus preserving internal program state (Moura &

Ierusalimschy, 2009). Using coroutines, arbitrary workflows

are defined by passing a target coroutine as an argument to

a source coroutine; as an example, an online reconstruction

pipeline can be written as:

This scheme allows for flexible re-arrangement of the pipeline.

For example, pre-viewing and writing the reconstructed slices

during the reconstruction at the same time is achieved by

broadcasting the received data to two different target corou-

tines:

Although the coroutine-based approach provides flexibility

for defining workflows, coroutines are not reusable within the

same process such as a long-running experiment session. To

remedy this situation, we wrap coroutines in reusable func-

tions and Acquisition classes as explained in x4.3.

4.2. Data management

Complex imaging experiments require structured storage of

acquired data and metadata describing these data. We provide

a generic Walker mechanism to write structured data decou-

pled from the storage format. To outline a hierarchical data

structure, the user descends and ascends along a path and

marks data for storage at the desired locations:

Depending on the requirements, data are either written as flat

files in a newly created directory hierarchy or stored in a

HDF5 file (Folk et al., 1999) with HDF5 groups that reflect the

hierarchical experiment structure:

4.3. Experiment composition

During an experiment users typically acquire normal-

ization, sample and metadata. Each acquisition type is

modeled by a separate Acquisition object allowing users to

run experiments several times to investigate the outcome of

parameter changes. An Experiment class comprises multiple

acquisitions and executes them in a defined order. To react to

changing requirements, acquisitions can be added, removed

and re-arranged at run-time. This way we can create flexible

experiment workflows that represent a single ‘run’ of an

experiment. Addon objects can be attached to an experiment in

order to process data on-the-fly. Current addon implementa-

tions cover tasks such as live preview, data storage and online

reconstruction.

To avoid redundancies and allow users to work with the

system without knowing the underlying architecture we have

prepared experiment classes and data acquisition routines that

can be combined in order to run standard synchrotron

experiments like radiography, CT and others. For example, to

conduct a CT experiment with online reconstruction, we

create a Setup object which encompasses an experiment’s

devices and their parameters as well as a TomographyScan

object which rotates the sample with the proper angular

velocity:
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Then we feed both objects and a set of basic parameters to a

Radiography object (subclassing Experiment) that connects

the acquisition steps and ensures that dark and flat fields as

well as the projection data are recorded properly.

Last, we create a CTReconstruction addon to reconstruct

slices from the incoming projections:

Instead of using a single Tomography object to describe a

tomographic experiment, we separate the data acquisition

using the TomographyScan object from the sequencing of

events represented by the Radiography object. This separa-

tion eases composition of experiments with different scan

characteristics, e.g. step or continuous scans. Otherwise the

user would have to create specific experiment classes to

handle special scan modes.

5. Case study workflows

In this section we present two use cases that demonstrate the

need for an experiment control framework that is capable of

processing acquired data on-the-fly. In the first case we show

how to improve time-resolved tomography by determining

acquisition parameters during a scan. In the second case we

show an improvement of data quality by continuous quality

assessment of a laminography scan.

5.1. Online control of acquisition parameters for
time-resolved measurements

To demonstrate automatic process parameter determina-

tion we conducted a CT experiment that investigates the

change of structural properties of a liquid foam over time.

Bubbles in this foam rupture and merge to form larger bubbles

at unknown rates. With such a highly dynamic sample, a data

acquisition that is too slow causes noticeable reconstruction

artifacts due to inadequate sampling. As seen in Fig. 5(a), such

artifacts impede any quantitative measurements in subsequent

post-reconstruction analyses. However, unnecessarily

lowering exposure times to shorten acquisition decreases the

signal-to-noise ratio and therefore degrades image quality

which again complicates subsequent analysis. Moreover,

superfluous frame rates are at the expense of the intermediate

buffer capacity.

Hence, our workflow tried to find an optimum between

foam stability and imaging quality in an automatic way. To

determine an optimum quantitatively, we reconstructed slices

online on-the-fly and evaluated the similarity between

consecutive measurements. The experiment workflow was

driven by a feedback loop following the concept shown in

Fig. 1 closely. It consists of (i) continuous acquisition of two

sets of tomographic projections that are initially acquired with

a low exposure time (providing reasonable dynamic range)

causing a slow acquisition speed, (ii) immediate reconstruction

on GPUs, (iii) comparison of the reconstructed slices and (iv)

a final step that may or may not adapt the acquisition speed.

The comparison is based on the correlation coefficient

r ¼

P
i xi � �xxð Þ yi � �yyð Þ

P
i xi � �xxð Þ

2
� �1=2 P

i yi � �yyð Þ
2

� �1=2
; ð1Þ

which was used to estimate the similarity between two slices.

If r did not exceed a specified threshold, we doubled the

acquisition speed and repeated the process, otherwise we

stopped the process. Doubling the acquisition speed decreases

the relative sample motion but also increases the noise level

due to the lower exposure time. Our objective was therefore

to find the slowest DAQ speed at which no noticeable 3D

reconstruction artifacts occur.

Although the correlation of a projection at 0� and the

flipped projection at 180� approximates general foam changes

very well, a projection consists of absorption values in the

beam propagation direction thus any information perpendi-

cular to that direction is lost during the absorption. However,

in this illustrative experiment we were interested in the

forming and destruction of bubbles which might be obstructed

by non-essential features in any direction as seen on the left in

Fig. 8. Hence, we have to reconstruct slices from the data and
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Figure 8
Tomographic slices T depicting the same region at different stages of the foaming process and the corresponding slice- and projection-based correlation
coefficient r between the first and the nth tomogram.



correlate consecutive tomograms to obtain information about

bubbles in pre-defined ROIs. As seen in the quantitive

comparison, the slice-based correlation decays smoothly as the

bubble in the ROI, depicted by the solid rectangle, disappears.

The projection-based correlation, applied on the same

projection row, disagrees with this situation because the

disturbing events depicted by the dotted rectangles at

T = 7 are superimposed on the ROI in the direction of the

projection.

To test whether our hypothesis held and we could success-

fully determine the optimal acquisition speed in an automatic

fashion, we set the correlation threshold that stopped the

speed adjustment to an empirically determined value of 0.7.

The process settled after three iterations acquiring data at 200,

400 and 800 frames s�1 with corresponding correlation coef-

ficients between slice crops of 0.295, 0.397 and 0.744, i.e. we

were able to converge towards stable, similar reconstructions.

Thus, our slice-based feedback approach allowed us to capture

bubble formation and rupture events in a specific ROI, which

was not feasible with projection-based correlation due to the

lack of the third dimension.

5.2. Interactive control of ROI positioning and data quality
for in situ measurements

The aim of this case study is to follow in situ damage

evolution in engineering materials as a function of an applied

load force. SRCL allows us to measure the damage evolution

(Kahziz et al., 2015) in a relatively small region of interest

in the material bulk while maintaining engineering-relevant

mechanical boundary conditions. Using different large and flat

specimens, damage mechanisms for different associated levels

of stress triaxiality (ranging from shear to highly triaxial stress

states) can be imaged in 3D and in situ at high resolution.

In the given example the material microstructure is resolved

by a detector based on an optical microscope (Douissard et al.,

2012) which magnifies the image of a 8.7 LSO:Tb scintillator

onto a scientific CMOS camera (pco.edge), yielding an effec-

tive pixel size of 0.65.

The main goal of the workflow was to acquire, store and

reconstruct the data in an online fashion to assess the quality

of the acquisition during the scan in order to avoid recording

problematic or unusable data as outlined in x2. To achieve this,

the control system broadcasts the incoming data stream

simultaneously to the data storage and our compute frame-

work for saving raw data and reconstructing slices for feed-

back. The reconstructed central slice is investigated right after

the scan to judge whether the acquired data are not blurred

and the scan successful.

Fig. 9 shows a properly aligned AA21xx alloy for a local

shear loading case, without loading (a) and under shear load

(b). Despite the presence of inherent laminographic artifacts

(Xu et al., 2012b), one can observe the elongation of the

materials’ pores into shear cracks under load. These cracks are

aligned roughly along the principal shear force direction

marked with arrows. The change in notch shape due to large

plastic deformation can also be discerned.

6. Discussion

The two reconstruction-based workflows presented in x5.1 and

x5.2 demonstrate the applicability of our high-throughput and

low-latency experiment control system introduced in x3. With

this system we are able to control the correct tomographic

acquisition speed in a timely fashion as well as the ROI

position and the image quality in an in situ laminography

experiment. As a matter of fact, the fast GPU reconstruction

not only helps to assess the acquisition quality in near real-

time but is also used to automatically optimize reconstruction

parameters before processing the data offline. The routine

optimizes parameters such as the rotation center in the

projections and the optimal inclination angles between rota-

tion axis and beam and towards the detector coordinates.

Although we are able to analyze data online with low

latencies and provide feedback to the experiment, the online

GPU data processing is still currently two times slower than

the offline version because of additional data transfers

between the control system and the data processing stage. To

solve this problem we will investigate ways to hide the

memory transfer time better, e.g. using pinned memory tech-

niques and GPUs with larger memory. Moreover, the lami-

nographic backprojection algorithm is subject to further

performance optimization in order to reduce memory transfer

overheads.

As an outlook and with even faster data processing in mind,

we will integrate specialized and robust metrics for event

detection (so-called change detection), such as optical flow,

image registration and pattern matching analysis. We will also

work on a decision-making scheme which evaluates such

metrics and provides feedback to the experiment without user

interaction. These parts are necessary for further automation

of high-speed dynamic experiments and to increase their

robustness. A more robust approach will also help to reduce

the present jitter which enables soft real-time operation.

7. Conclusion

In this paper, we have presented a flexible system composed

of a high-performance computational backend, a fast, generic

computer programs
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Figure 9
2D section of an in situ laminographic scan showing two well aligned
notches at mid-thickness in a 1 mm-thick Al-alloy sample and a
magnification of the smaller structures (a) in the undeformed state, and
(b) in situ after local shear loading induced by force F.



data acquisition library and a high-level experiment control

system to build flexible feedback workflows. We have eval-

uated the entire system at two independent experiments

carried out at ANKA’s IMAGE beamline and the ID19

beamline of the ESRF. The experiments have shown that tight

integration of data acquisition, data processing and experi-

ment control allows for fast optimization of experimental

parameters and in situ quality assessments based on fast

feedback from image analysis. In the particular examples, the

system helped us to assess the interactions between notches

and internal damage, in situ and in a non-destructive way, by

using online laminography. Most importantly, we can instantly

validate experimental parameters, the image acquisition

quality as well as sample environments such as loading

apparati. This allows the user to concentrate on the scientific

questions such as optimization of the load steps, fast and even

automated spatiotemporal ROI identification which in turn

improves efficiency of allocated beam time. In essence, our

online analysis framework will greatly simplify the transition

from traditional in situ experiments to interactive, real-time

image-processing driven smart 4D imaging.
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Trans. Nucl. Sci. 58, 1447–1455.

Cloetens, P., Ludwig, W., Baruchel, J., Van Dyck, D., Van Landuyt, J.,
Guigay, J. & Schlenker, M. (1999). Appl. Phys. Lett. 75, 2912.

Douissard, P. A., Cecilia, A., Rochet, X., Chapel, X., Martin, T., van
de Kamp, T., Helfen, L., Baumbach, T., Luquot, L., Xiao, X.,
Meinhardt, J. & Rack, A. (2012). J. Instrum. 7, P09016.

Dritschler, T., Chilingaryan, S., Farago, T., Kopmann, A. &
Vogelgesang, M. (2014). Proceedings of the 10th International
Workshop on Personal Computers and Particle Accelerators
(PCAPAC ’14). In the press.

Finegan, D. P., Scheel, M., Robinson, J. B., Tjaden, B., Hunt, I.,
Mason, T. J., Millichamp, J., Di Michiel, M., Offer, G. J., Hinds, G.,
Brett, D. J. L. & Shearing, P. R. (2015). Nat. Commun. 6, 6924.

Folk, M., Cheng, A. & Yates, K. (1999). Proceedings of Super-
computing, Vol. 99.

Greven, H., van de Kamp, T., dos Santos Rolo, T., Baumbach, T. &
Clemen, G. (2015). Vertebr. Zool. 65, 81–99.

Gürsoy, D., De Carlo, F., Xiao, X. & Jacobsen, C. (2014). J.
Synchrotron Rad. 21, 1188–1193.
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