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The propagation of X-ray waves through an optical system consisting of many

X-ray refractive lenses is considered. For solving the problem for an

electromagnetic wave, a finite-difference method is applied. The error of

simulation is analytically estimated and investigated. It was found that a very

detailed difference grid is required for reliable and accurate calculations of the

propagation of X-ray waves through a multi-lens system. The reasons for using a

very detailed difference grid are investigated. It was shown that the wave phase

becomes a function, very quickly increasing with increasing distance from the

optical axis, after the wave has passed through the multi-lens system. If the

phase is a quickly increasing function of the coordinates perpendicular to the

optical axis, then the electric field of the wave is a quickly oscillating function of

these coordinates, and thus a very detailed difference grid becomes necessary to

describe such a wavefield. To avoid this difficulty, an equation for the phase

function is proposed as an alternative to the equation of the electric field. This

allows reliable and accurate simulations to be carried out when using the multi-

lens system. An equation for the phase function is derived and used for accurate

simulations. The numerical error of the suggested method is estimated. It is

shown that the equation for the phase function allows efficient simulations to be

fulfilled for the multi-lens system.

1. Introduction

X-ray microscopy, a method of examining the internal struc-

tures of micro-objects, has been actively developed during the

last 20 years. The application of biconcave lenses made of light

metals is one of the most promising ways of focusing X-ray

beams (Snigirev et al., 1996; Kohn et al., 2003; Kohn, 2002).

Such lenses focus X-ray beams because the phase velocity of

X-ray wave propagation in light metals slightly exceeds the

speed of light. This is a consequence of the form of the

complex refraction index of a material, n = 1� �þ i�, where

� > 0. The imaginary part of n defines an absorption factor.

When an X-ray wave propagates through the lenses the wave

phase changes. The wave phase change is much larger for

waves that propagate near the lens’s aperture edges than for

waves that propagate near the general optic axis. This leads to

the effect of focusing of X-rays waves by lenses.

Recently, beryllium has been considered as one of the most

promising materials for manufacturing lenses because this

metal possesses low absorbing properties and a comparatively

large refraction factor. However, lenses can also be manu-

factured from other materials.

Modern X-ray lenses have concave surfaces of elliptical,

spherical or parabolic shape. In this paper the parabolic shape
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of lenses will be used. Such a form allows us to remove most of

the aberrations inherent to lenses with spherical concave

surfaces.

Since the refraction factor is small, the effect of focusing of

one lens is weak, and often a system of many lenses is applied

to achieve the essential focusing effect. If the lenses are

arranged in a row, one after another, the lens system acts

similarly as a single lens; such a system is known as a

compound refractive lens (CRL). The focal distance of one

lens is given by the formula F1 = R=ð2�Þ, where R is the radius

of curvature of the parabolic lens surface (Kohn, 2002). For a

CRL consisting of N identical lenses, the focal distance F is

approximately equal to F1 =N.

Obtaining a high-quality image and the achievement of a

high enlargement factor is one of the most important goals

of the development of X-ray optics. As a consequence, the

question of the influence of various lens defects on the image

quality is now up to date. When we speak of defects, we mean

any imperfections in the lens form and errors in the adjust-

ment of lenses along the general optical axis of a system of

lenses. We also consider any possible internal microscopic

defects, i.e. cavities or inclusions of oxides in the lens’s

material.

This paper is devoted to the theory of numerical modeling

of X-ray wave propagation in an optical system. The demands

on numerical simulation methods essentially depend on our

intentions. If one wants to explain the effects of focusing and

image formation, then coincidence of the results of compu-

tation with experiment is obviously a necessary criterion of

our simulations. Many publications of such a kind appear in

the literature (Lengeler et al., 1999; Kohn, 2009, 2012; Kohn et

al., 2003).

If numerical simulations are used for scientific and engi-

neering research (for example to investigate the influence of

defects on focusing and imaging), the requirements for the

theoretical validity of numerical methods is extremely high.

Numerical simulations are often applied in cases where real

experiments are difficult or impossible to carry out. Especially

in these cases, it is good to possess some tools of control of

simulation reliability and accuracy. The development of tools

that monitor the accuracy of numerical modeling and inves-

tigation of the actual accuracy of the numerical simulation are

important objectives of this study.

The computational complexity dependence on the optical

system and on the experimental scheme is also an important

issue. Normally the paraxial equation (2) (see x2) describes the

X-ray wave propagation. We shall show that when the X-ray

wave passes through a system of many lenses the solution of

this equation is a rapidly oscillating function of distance from

the main optical axis. Moreover, the oscillation frequency of

the wavefield increases exponentially with the number of

lenses. The higher the oscillation frequency then the more

detailed the mesh required to describe such a function, and

more computations are necessary. Although simulations for a

small number of lenses may seem quite simple, the computa-

tional complexity increases rapidly with the number of lenses.

Therefore, the simulation of X-rays propagating through many

lenses may be an extremely complicated computational

problem. Computer power is limited, and there is a specified

limit for the quantity of lenses that can be used in simulations

to obtain solutions with reasonable accuracy on the basis of

the paraxial equation (Levy, 2000; Ishimaru, 1991; Babich &

Buldyrev, 1991). Different approaches to how to increase the

speed of calculation of synchrotron radiation are an inter-

esting problem and investigation of this subject can be found

in the literature (Bahrdt, 1997; Chubar & Elleaume, 1998).

In order to achieve high-accuracy computations for

problems with many lenses, we propose another approach that

is based on the solution of the equation for the complex phase

� x; y; zð Þ instead of the solution of the paraxial equation for

the electric field A x; y; zð Þ = exp½i� x; y; zð Þ�. The phase func-

tion � x; y; zð Þ is not a fast oscillating function, and therefore it

does not require a detailed mesh for its digitization. The

computational complexity of simulations for the phase func-

tion does not depend on the quantity of lenses, and one can

easily achieve a high accuracy of numerical simulations for

many lenses. An electric field may be elementarily restored

when the complex phase function is known.

We derive our equation for the complex phase � x; y; zð Þ.

Then we perform calculations with the help of the equation for

the complex phase, investigate the accuracy of the method and

demonstrate the advantages of the suggested method for the

problem of focusing of X-ray waves by 30 beryllium lenses.

The simulation method is particularly advantageous when

the case of many lenses is considered. As an extreme example,

the simulation of focusing of X-ray waves by a system of 160

lenses has been performed.

In this paper, we set the incident wave in the form of a

simple coherent wavefront, and we do not touch on the

problem of real sources of X-ray waves, partially coherent and

non-strictly monochromatic. We analyze both known and

newly developed methods for solving the equations describing

the X-ray wave propagation. The quality of approximate

methods for solving equations is not dependent on wave

sources, and therefore idealization of the wave source is used

and attention is focused on the problems of solving equations

rather than on the problem of computation for realistic

sources. Since any wave can be represented as a superposition

of simple monochromatic waves, one can use the obtained

solutions as a base for building waves for any complex sources.

However, such questions are not considered in this paper.

2. Basic equations of X-ray wave propagation

The propagation of a monochromatic electromagnetic wave

with frequency !0 in a medium with complex refractive index

n = 1� �þ i� is described by the Helmholtz equation

(Landau & Lifshitz, 1987; Goodman, 1996; Levy, 2000; Ishi-

maru, 1991),

@2E

@x2
þ
@2E

@y2
þ
@2E

@z2
þ k2n2E ¼ 0: ð1Þ

Here E is an electric field; x, y, z are space coordinates; and k =

!0=c, where c is the speed of light. In particular, this equation
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describes the propagation of X-ray waves in a medium with a

complex refractive index n, and an independence of n on the

coordinates is assumed.

Let us consider the case where the wave propagates along

the x-axis, and the characteristic scales ly and lz of the wave

along the axes y and z are much larger than the characteristic

scale lx of the wave along the x-axis: lx � ly, lx � lz. In this

case, equation (1) can be greatly simplified. Substituting

E x; y; zð Þ = expðikxÞA x; y; zð Þ and neglecting the small term of

the second derivative of the function A x; y; zð Þ with respect to

the x-variable, we arrive at the paraxial equation (Goodman,

1996),

@A

@x
þ

k n2 � 1ð Þ

2i
Aþ

1

2 ik

@2

@y2
þ
@2

@z2

� �
A ¼ 0: ð2Þ

Equation (2) was first proposed by M. A. Leontovich in 1944

to describe the propagation of a monochromatic electro-

magnetic wave within the paraxial approach (Leontovich,

1944). As a result, the approximate equation (2) is often called

the paraxial equation. This equation is widely used not only in

X-rays optics but also in standard optics, in the theory of

propagation of radio waves and also in acoustics (Babich &

Buldyrev, 1991a,b). Equation (2) is also often called the

parabolic equation due to the external similarity of this

equation with the heat equation, despite the fact that the

equation contains an imaginary unit in the coefficients and,

strictly speaking, is not an equation of parabolic type.

In the case of electromagnetic wave propagation in vacuum

or in air, n = 1, and the second term in equation (2) disappears.

If the propagation of X-ray waves in a material is under

consideration, then the refractive index n = 1� �þ i�
depends on frequency. Moreover, �� 1 and �� �. For

example, for beryllium and for a 20 keV beam, we have � =

0.852 � 10�6 and � = 0.195 � 10�9.

X-ray waves penetrate through almost any material and

propagate practically without reflection and absorption.

Therefore, the boundary condition of continuity for function

A on the border of different media is acceptable and widely

used (Kohn, 2002, 2009; Lengeler et al., 1999; Kohn et al.,

2003). It allows us to combine equation (2) for air (n = 1) and

equation (2) for lens material (n = 1� �þ i�) into one general

equation (Kshevetskii & Wojda, 2014),

@A

@x
þ b x; y; zð ÞAþ

1

2ik

@2

@y2
þ
@2

@z2

� �
A ¼ 0: ð3Þ

Here b x; y; zð Þ = fk½nðx; y; zÞ
2
� 1�g=2i is a complex function

of the coordinates depending on the material: bðx; y; zÞ = 0 for

air and b x; y; zð Þ = ½kðn2
B � 1Þ�=2i inside the lens, where nB is

the refraction index for beryllium for a given frequency.

The lenses are taken into account in the model as follows.

Let xm be the position of the center of the mth lens. Then the

surfaces of the parabolic lenses are described by functions

xm;Lðy;zÞ ¼

xm � ðR=2Þðy2
þ z2
Þ

� ðS1=2Þ

for ðR=2Þðy2
þ z2
Þ þ ðS1=2Þ

< S2=2;

xm � ðS2=2Þ for ðR=2Þðy2
þ z2
Þ þ ðS1=2Þ

� ðS2=2Þ;

8>>>>>><
>>>>>>:

xm;Rðy;zÞ ¼

xm þ ðR=2Þðy2
þ z2
Þ

þ ðS1=2Þ

for ðR=2Þðy2
þ z2
Þ þ ðS1=2Þ

< ðS2=2Þ;

xm þ ðS2=2Þ for ðR=2Þðy2 þ z2Þ þ ðS1=2Þ

� ðS2=2Þ:

8>>>>>><
>>>>>>:

R is the radius of curvature of the lens, S1 is the minimum

thickness of the lens and S2 is the maximum thickness of the

lens. The function xm;Lðy; zÞ describes the left-hand surface of

the mth lens. The function xm;Rðy; zÞ describes the right-hand

surface of the mth lens. The function b x; y; zð Þ for a system of

N beryllium lenses is as follows,

b x; y; zð Þ ¼
k n2

B � 1ð Þ

2i

XN

m¼ 1

� x� xm;Lðy; zÞ
� �

� xm;Rðy; zÞ � x
� �

;

where �ðxÞ is the Heaviside function. The deviations of the

lens’s surfaces from a parabolic shape can be taken into

account with the help of the addition of small perturbations to

the continuous functions xm;Lðy; zÞ, xm;Rðy; zÞ. The discrepancy

between the lens’s optical axis and the x-axis can be taken into

account with the help of a shift operation if the lens’s optical

axis is parallel to the x-axis. If the lens’s optical axis is not

parallel to the x-axis, then we can take into account this defect

with the help of a rotation operation. Finally, if the lenses

include cavities or inclusions, we can take into account these

defects by adding some function �ðx; y; zÞ to bðx; y; zÞ in

equation (3). This function �ðx; y; zÞ will take into account

heterogeneity of the lens material.

Equation (3) is very convenient because it allows us to carry

out thorough calculations when we solve the problem of the

X-ray wave propagation through a system of lenses and in a

vacuum. This equation allows us to easily take into account

any inclusions in the lens material or other lens defects.

Equation (3) can also be used to describe the X-ray wave

propagation through a sample. Therefore, equation (3) is a

general equation which is worth insightful discussion and

examination.

Substituting

A x; y; zð Þ ¼ exp i� x; y; zð Þ½ � ð4Þ

into equation (3), where � x; y; zð Þ is a complex function

{i.e the wave amplitude is equal to exp½�=ð�Þ�}, we obtain an

equation for a complex phase of the wave,
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@� x; y; zð Þ

@x
� ib x; y; zð Þ þ

1

2 ik

"
@2

@y2
þ
@2

@z2

� �
� x; y; zð Þ

þ i
@� x; y; zð Þ

@y

� �2

þ
@� x; y; zð Þ

@z

� �2
( )#

¼ 0: ð5Þ

If the experiment scheme is such that some sample is placed

before or after the system of lenses, then equation (5) may also

be used for simulation of the X-ray wave propagation through

the sample.

S. M. Rytov was the first to propose equation (5) in 1937

when he considered diffraction of light on ultrasonic waves

in a medium. In the Rytov theory (Rytov et al., 1988), the

suggestion that the medium parameters are slowly changing

with the coordinates has been used for deriving an equation in

the form of (5). When we derive equation (5), the assumption

of slow variation of the medium parameters was not required,

so equation (5) follows directly from equation (3). The

reduction of the requirements apparently became possible due

to the high penetration capability of X-ray waves, which leads

to a slow variation of wave parameters even when the medium

parameters are changed abruptly.

S. M. Rytov developed a perturbation theory for the solu-

tion of equation (5), the method of smooth perturbations.

Perturbation theory starts from a linearized equation, the

contribution of the nonlinear terms being taken into account

in the following orders of the perturbation theory. In any case,

the Rytov perturbation theory is hardly acceptable for solving

our problem because the nonlinear terms play a leading role in

our problem of focusing. We solve equation (5) with a finite-

difference method, without any simplifications.

If we neglect the refractive term in (5) and if we set

bðx; y; zÞ = 0, then we arrive at the geometrical optics equation

written in some special approximation. In this approximation,

only the wave along the positive direction of the x-axis is

taken into account and the scales of the wave along the y and z

axes are much larger than the scale of the wave along the

x-axis.

3. Analysis of the equation obtained from the paraxial
approximation for X-ray waves propagation

The last term of the paraxial equation (3) is comparatively

small (Kohn, 2009, 2012). If we neglect it, we obtain an

approximate formula (6) for the function A x; y; zð Þ. This

formula describes the behavior of the wave A x; y; zð Þ that has

passed through a system of N lenses (Kohn, 2009, 2012),

Aðx; y; zÞ � Að0; y; zÞ exp i’ y; zð Þ½ �;

’ y; zð Þ ¼ y2
þ z2

� 	
=l 2:

ð6Þ

Here l 2 = cR=!0�N = ð2c=!0ÞF; F = R=ð2�NÞ is the focus

distance for a system which consists of N lenses; R is the radius

of curvature of the parabolic lenses. Here Að0; y; zÞ is an

electric field before the lenses. For estimation purposes we

used function Að0; y; zÞ = exp½�y2 þ z2=ð2�2Þ�, � = 297 mm.

For simplicity we use the value � = 0. Even though taking into

account the process of attenuation is quite straightforward, it

is of no importance for our estimates.

When the multi-lens system is used, then the denominator

l 2 may be small because the frequency is high and the radius of

curvature of the lenses is small.

For an optical system of 30 beryllium lenses with R = 50 mm

and for the energy of the X-ray waves being equal to 12.4 keV,

then l ’ 3 � 10�6 m.

When equation (3) is solved numerically, then some mesh

with nodes ðyn; zmÞ is always used in order to write the field

A x; y; zð Þ at these nodes. It is a standard step which is inde-

pendent of the numerical method applied for solving the

problem. We denote the mesh space step by h. It is obvious

that in the numerical simulations the phase ’ in (6) should be

varied insignificantly at one step h of the difference mesh. This

means that the conditions jð@’=@zÞhj � 1, jð@’=@yÞhj � 1

should be satisfied within the limits of the lens aperture. If we

take into account the lens aperture d ’ 0.5 mm, we obtain the

condition h� ðl 2=dÞ ’ 2� 10�8 m. Within the aperture, M	

25000 mesh nodes along each spatial axis must be realised. The

obtained estimate of the number of nodes required for a high-

quality solution of the problem is not exact but it is roughly

true.

The phase ’ becomes a fast growing function when the wave

passes through the system of 30 lenses. Correspondingly, the

function Aðx; y; zÞ becomes a fast oscillating function, and

therefore we have to use a very detailed difference mesh for

presentation of such a function. The field ReðAÞ for the wave

that has passed through the system of one-dimensional lenses

depends on the number of lenses in the system; it is shown in

Fig. 1, which clearly clarifies why a very detailed mesh should

be used for the multi-lens case. A very detailed grid is required

to approximate a fast oscillating function, but it is not

connected to any peculiarities of the applied mathematical

methods.

Even in the case of one-dimensional lenses, computer

simulation of the problem with the number of nodes

M 	 25000 takes considerable time. The time required to

solve the problem with two-dimensional lenses is at least M

times longer.

We suggest using equation (5) for simulations because,

while the function A x; y; zð Þ is quickly oscillating, the phase-

function � x; y; zð Þ is a usual, large-valued, but non-oscillating

function. Therefore, if we simulate the behavior of the phase

function � x; y; zð Þ, then the difference grid requirements are

significantly lower, which allows us to easily reach a high

accuracy of calculation of �. Then we can easily calculate the

electric field Aðx; y; zÞ by means of formula (4).

Owing to the reasons described above, equation (5) easily

allows us to fulfill a high-accuracy calculation of the X-ray

wave propagation through the system of lenses. We expect that

this equation is especially efficient for the multi-lens case.

If the experiment scheme is such that some sample is placed

before the system of lenses, then equation (5) should also be

used for simulating the X-ray wave propagation through the

sample.
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4. Numerical simulation of the X-ray wave propagation
through the system of lenses and focusing of an X-ray
beam

4.1. A numerical method for solving equation (3)

On the basis of equation (3), we can solve the problem of

X-ray wave propagation through a system of lenses and

focusing of an X-ray beam. There are several methods of

solving the problem of X-ray wave propagation through a

multi-lens system. For example, Kohn (2002) developed and

applied an efficient method based on replacement of the

system of lenses with one long lens with an average refraction

index. Also, some approximate solution can be obtained by

the consequent combining of the solutions of equation (2)

without the refraction term with the solutions of equation (2)

for n = 1 (Kohn, 2009). All of these approaches are acceptable,

but they are not exact, and tools for controlling their accuracy

and reliability are necessary. So, we attempt to develop

accurate methods and to obtain reliable estimates of the

method accuracy.

We solve equation (3) numerically using finite-difference

methods and considering equation (3) in the parallelepiped �
of sufficiently large size. This parallelepiped � includes all

lenses and a space before the focus, by supposition. The

scheme of � and the grid is shown in Fig. 2. Finite-difference

methods may not be the most efficient but they are quite

flexible and universal. They are also good for obtaining

general information about the solution behavior.

Let us denote by @� the boundary of the parallelepiped that

is intersected by the y and z axes. We denote by S the square

that is the intersection of the parallelepiped with the plane

Oyz. Within the square S we define a difference grid, with the

nodes and a constant step h along the axes y and z.

We approximate equation (3) by the following system of

ordinary differential equations,

@An;m

@x
þ b x; yn; zmð ÞAn;m

þ
1

2ik

 
Anþ1;m � 2An;m þ An�1;m

h2

þ
An;mþ1 � 2An;m þ An;m�1

h2

!
¼ 0: ð7Þ

The boundary condition @A=@lj@� = 0 on the border @� is

imposed. Here l is a normal to the boundary @�.

The stability and convergence of the suggested method (7)

has been proved by Kshevetskii & Wojda (2014). The proof of

the stability is standard for equations of this type and is based

on the relation

@

@x
A xð Þ


 

 
 0;

where

A xð Þ


 

 ¼ P

�

An;m xð Þ
�� ��2h2

� �1=2

:

This relation is derived by multiplying

equation (7) by A�nmh2 and by adding

up all obtained relationships and the

complex conjugate relations over all

nodes n;mð Þ within �. Equation (7) is

linear and approximates the original

equation (3). Then convergence of the

numerical solution to an exact solution

of equation (3) automatically follows

from the proven stability, in agreement

with the Lax theorem (Richtmayer &

Morton, 1967).
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Figure 2
Schematic representation of the field � of numerical integration. The figure shows only two lenses
for simplicity. In simulations all 30 lenses are included in the parallelepiped �. The wave before the
system of lenses has the form Að0; y; zÞ = ð1=2��2Þ expð�y2 þ z2=2�2Þ. Then the wave propagates in
a heterogeneous medium, and lenses create the heterogeneity of the medium. The mesh is
schematically pictured with parallel lines in crimson. The real mesh is more dense and contains
100000 parallel lines.

Figure 1
The field ReðAÞ immediately after the wave has passed through one beryllium lens (graph on the left), the system of ten beryllium lenses (graph in the
middle) and the system of 30 beryllium lenses (graph on the right). The calculations are made with the use of equation (6). R = 50 mm and the energy of
the X-ray waves is equal to 12.4 keV.



The system of ordinary differential equations (7) can be

solved using any standard numerical method appropriate for

this purpose: for example, we can apply the Runge–Kutta

method of the second order of accuracy.

4.2. A numerical method for solving equation (5)

Equation (5), despite its many advantages, has one major

drawback: it is more complicated from a mathematical point of

view than equation (3). First of all, it is a non-linear equation,

and, as far as we know, the mathematical theory and numerical

methods for solving such nonlinear equations have not been

developed until now.

To construct a numerical method that is converging, we use

the following non-standard approach. Let us use the substi-

tution

An;m ¼ exp i�n;m

� 	
ð8Þ

in equation (7), where �n,m is a complex number {i.e the wave

amplitude is equal to exp½�Imð�n;mÞ�}, and use the expansions

exp i�n�1;m

� 	
¼ exp i�n;m

� 	
exp i �n�1;m ��n;m

� 	� �
’ exp i�n;m

� 	h
1þ i �n�1;m ��n;m

� 	
�

1

2
�n�1;m ��n;m

� 	2
i
;

exp i�n;m�1

� 	
¼ exp i�n;m

� 	
exp i �n;m�1 ��n;m

� 	� �
’ exp i�n;m

� 	h
1þ i �n;m�1 ��n;m

� 	
�

1

2
�n;m�1 ��n;m

� 	2
i
:

ð9Þ

After simplifying, we obtain a system of ordinary differential

equations,

@�n;m

@x
� ib x; yn; zmð Þ

þ
1

2ik

( 
�nþ1;m � 2�n;m þ�n�1;m

h2
þ

�n;mþ1 � 2�n;m þ�n;m�1

h2

!

þ i

"
�nþ1;m ��n;m

� 	2
þ �n;m ��n�1;m

� 	2

2h2

þ
�n;mþ1 ��n;m

� 	2
þ �n;m ��n;m�1

� 	2

2h2

#)
¼ 0: ð10Þ

Convergence and stability of the system (10), at least starting

from a certain sufficiently small h, follows from stability and

convergence of the system (7), provided that �ðx; y; zÞ is

continuous in the variables y and z.

The system of ordinary differential equations (10) can be

solved by the usual Runge–Kutta method of the second order

of accuracy, as is done in this paper. For non-linear equations,

different versions of the Runge–Kutta method may differ

considerably in their effectiveness. Here we use the simplest

version of the Runge–Kutta method of the second order of

accuracy that allows us to obtain a solution if h is sufficiently

small. However, mathematical estimates show that it is

possible to develop a much more efficient method for solving

equation (10) than we use here. We hope to develop a more

effective method for solving equations (10) or (5) in the near

future.

The code of all the programs for the calculations has

been posted at https://sourceforge.net/projects/X-rays-wave-

propagation.

4.3. Estimation of accuracy of numerical simulations:
the modified Runge rule for evaluation of errors of
numerical simulations

The accuracy of a finite-difference simulation can be found

by means of comparison of calculations made under various

steps of difference meshes. The Runge rule (Kraus & Langer,

2007) of practical estimation of a numerical error is popular in

numerical calculations. Initially the Runge rule was formu-

lated for approximate calculations of integrals; however, this

rule is also applicable for estimating the accuracy of other

quantities. The Runge rule is applicable to estimating the

accuracy of quantities independent of coordinates whereas the

electric field we calculate depends on coordinates. Both the

position of the best focus and the FWHM (full width at half-

maximum of the intensity distribution perpendicular to the

lenses axis) are independent of coordinates and are important

characteristics of an optical system; therefore, they can be

used for estimation of simulation error with the help of the

Runge rule. The position of the best focus is obtained for such

an x where the intensity distribution reaches maximum (or,

equivalently, where the FWHM takes minimum).

There are other important characteristics of optical systems;

for example, the intensity distribution of the wavefield.

Although the distribution of the field intensity is obviously

calculated in our work, it cannot be used as a tool for auto-

matically controlling the computational accuracy because it

depends on coordinates. Numerical experiments show that the

FWHM of the intensity distribution is significantly more

sensitive to the simulation accuracy than the position of the

best focus. Therefore, the FWHM is a better tool for automatic

control of high-precision quality of simulations than the

position of the best focus. Our goal is the development of a

simulation method with tools for controlling high-precision

quality. Two utilized characteristics, the FWHM and the

position of the best focus, are enough to achieve this goal.

However, in the future the tools for controlling the simulation

accuracy can be improved, and other wavefield characteristics

independent of coordinates can be included in monitoring and

adjustment of the simulation accuracy.

In a classical variant of the Runge rule, calculations carried

out with a fixed and double steps are used. In our case, the

steps in both cases are not very different. Therefore, we

modify the classical Runge rule to a more general case when

the steps are not necessarily equal, i.e. h and h=2.

Let us consider an approximate calculation of some Z value

that is an exact value of any of the searched characteristics. We

assume that Zh1
and Zh2

are the results of approximate

calculations of Z performed with the steps h1 and h2, respec-
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tively (h2 < h1). Let us also assume that the main error term Q

has a structure Q = Chk, where h is a step, C is some constant

and k denotes an accuracy order of the method. Then we can

write Z = Zh1
+ Chk

1 + Oðhkþ1
1 Þ and Z = Zh2

+ Chk
2 + Oðhkþ1

2 Þ.

We neglect the small Oðhkþ1
1 Þ, Oðhkþ1

2 Þ and equate these two

different expressions for Z. Then, solving the resulting equa-

tion, we obtain

Qðh1Þ ¼ Chk
1

�� �� ¼ Zh1
� Zh2

h2=h1ð Þ
k
� 1

����
����: ð11Þ

The numerical methods (7) and (10) are methods of the

second order of accuracy; therefore we have to take k = 2 in

equation (11).

4.4. Estimation of accuracy of numerical simulations:
comparison of computational errors and volumes of
calculations for both methods

We have provided computation of X-ray propagation and

X-ray focusing using the parameters given below:

(i) Number of beryllium lenses N = 30.

(ii) Radius of curvature of the lenses R = 50 mm.

(iii) Energy = 12.4 keV (!0 = 6� � 1018 s�1).

(iv) � = 2.2156 � 10�6, � = 3.1801 � 10�10.

(v) Form of A before lenses: Að0; yÞ = (1/2��2)exp(�y2/

2�2), � = 297 mm.

For the case of equation (7), the results of the simulations of

X-ray propagation through the one-dimensional lenses

depending on the number of nodes and the grid step h are

shown in Table 1. Results of computation obtained with the

help of equation (7) with the described parameters are shown

in Fig. 3.

The focal length is calculated as follows. Within the Runge–

Kutta method, some mesh fxig of nodes on the x-axis, xiþ1 =

xi + hx, is used. The step hx along the x-axis must be chosen in

such a way that the computational error associated with the

finiteness of hx is insignificant and does not affect the result.

(This computational error is controlled with the help of the

Runge rule, but is formulated with respect to the step hx.) The

requirement that the error associated with the finiteness of hx

is small leads to the fact that hx� kh2. At each step xi after the

lens we find

ai ¼ max
ðn;mÞ

Anm xið Þ
�� ��2:

After finalization of the calculations, we find xi at which the

maximum of ai is achieved. The position of the best focus is

determined by the value of xi.

The results of simulations of X-rays propagating through

one-dimensional lenses which depend on the number of nodes

and the grid step h are shown in Table 1.

We apply the Runge rule (11) to the results of computations

in Table 1 and we find out that the error of computation of the

FWHM is approximately 20% and the error of computation of

the best focal distance is 0.4%. Therefore, even the number

M = 100000 of mesh nodes is insufficient for obtaining the

FWHM with fully satisfactory precision.

We see that the computational error in the value of FWHM

is about 50 times greater than the computational error in the

position of the best focus; that is, the FWHM is more

demanding to simulation quality, while the position of the best

focus can be found even by rough calculation. Consequently,

the FWHM is more suitable for controlling the accuracy of

computations than the position of the best focus.

The number M = 100000 is chosen here because the

calculations were performed using a personal computer (PC).

The simulations for greater M are very difficult using a PC

because simulations for M = 100000 already take several

hours.

Thus, we come to the conclusion that more than 100000

points of a difference mesh should be used along each axis to

accurately calculate the parameters of a focal spot to two

significant figures. It also means that high-accuracy simulations

of the electromagnetic wave propagation through a system of

30 two-dimensional beryllium lenses require long calculations

with a powerful supercomputer.

Below we solve equation (5) using a finite-difference

method. The results of the calculations are shown in Figs. 4

and 5. One can see that the real part of � changes almost

linearly, though it changes extremely fast after the set of

lenses.

For investigation of the calculation error, we performed

simulations with 4000 points and 8000 points and the calcu-

lation error was evaluated using the Runge rule (11). The

results of the calculation of the FWHM and the position of the

best focus are shown in Table 2.

research papers

J. Synchrotron Rad. (2016). 23, 1305–1314 S. Kshevetskii et al. � X-ray propagation through a multi-lens system 1311

Table 1
Results of computation of the focal distance and FWHM for different
values of h.

Number
of points h

FWHM at 0.34 m
after CRL

Focal
distance

1 6 � 104 0.06 mm 22.8864 mm 0.368319 m
2 8 � 104 0.0125 mm 20.0654 mm 0.367792 m
3 105 0.01 mm 18.5089 mm 0.367297 m

Figure 3
Dependence of the absolute value jAj on the distance from the optical
axis. Blue: incident wave; red: results 4 cm after the set of lenses; yellow:
results 20 cm after the set of lenses; green: results 36 cm after the set of
lenses. Calculation provided for 100000 points.



Analysis of the calculation results in Table 2 shows that the

calculation error of the best focus distance is less than 0.07%.

The calculation error of FWHM at a distance of 34 cm is less

than 0.2%.

Thus, using equation (5) we achieved high-accuracy results,

despite the fact that the grid used in this simulation contains

25 times fewer points along each direction than in the previous

case. For the case of two-dimensional lenses, equation (5)

allows 625 times fewer grid points to be used. The benefits are

extremely high and application of equation (5) lives up to

expectations.

Moreover, thanks to the use of a 25 times larger step h with

respect to the previous case, we can also use at least 25 times

fewer steps along the OX-axis without loss of accuracy.

Therefore, we have a 104-fold decrease in the amount of

calculations in the case of two-dimensional lenses.

For each lens we have at least 4000 points in the direction

perpendicular to wave propagation and at least 160 space

steps in the longitudinal direction (in accordance with the

condition hx � kh2). This enables the forms of lenses to be

modeled with high precision. To clearly demonstrate the

benefits of the proposed new method, we have solved the

problem of propagation of the X-ray waves through 160

beryllium lenses. In this problem, the wavefield is oscillating

more rapidly than in the case of 30 lenses, and the problem is

computationally extremely difficult if one solves it with the

help of equation (3). However, the use of the equation for the

complex phase (5) makes it possible to solve this problem

using a PC. The results of simulating the problem with 160

lenses are shown in Fig. 6.

4.4.1. Recommended range of applicability of the complex
phase method. The focal spot is very small, and only a small

number of mesh nodes belong to the focal spot. Accordingly,

the resolution of the mesh in the focal spot is low, and the

numerical approximation error increases significantly during

passage through the focal spot. The Runge–Kutta methods are

sequential; that is, the values of �ðxi; y; zÞ on the plane x = xi

completely determine the field �ðxiþ1; y; zÞ at the plane x =

xiþ1. If a sequential method loses accuracy at any xi, then the

calculation accuracy cannot be high for the following points.

Therefore, despite the fact that the parameters of the focal

spot are calculated with high accuracy, the numerical simula-

tion accuracy significantly drops at the distances where the

wave has passed through the focal spot. For this reason, we do

not recommend the use of the numerical method (10) to

perform calculations at distances greater than the focal length.

If one is interested in the far-wavefield after the focal spot,

we recommend performing the calculation using the high-

accuracy method for equation (10) only up to distances where

the wave has completely overcome all of the lenses. Then we

recommend using the obtained complex phase after passing all

the lenses as input data for further calculations with use of

another high-accuracy method. This recommended method is

based on an analytical solution of equation (2) for n = 1 and

describes the propagation of the wave in a vacuum. The
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Table 2
Results obtained with numerical solution of equation (5) for the FWHM
at distance 0.34 m from the system of lenses and the focal distance.

Number
of points h

FWHM at 0.34 m
after CRL

Focal
distance

4000 0.25 mm 17.3315 mm 0.36575 m
8000 0.125 mm 17.3056 mm 0.365938 m

Figure 6
Imaginary part of � (it can be also described by� ln jAj on y). Focal spot
for 160 lenses (focal distance is 7 mm after the last lens). Calculation
provided for 4000 points.

Figure 5
Real part of �. Blue: incident wave; red: results 4 cm after the set of
lenses; yellow: results 20 cm after the set of lenses; green: results 36 cm
after the set of lenses. Calculation provided for 4000 points.

Figure 4
Imaginary part of � (it can also be described by � ln jAj on y). Blue:
incident wave; red: results 4 cm after the set of lenses; yellow: results
20 cm after the set of lenses; green: results 36 cm after the set of lenses.
Calculation provided for 4000 points.



method is based on the Filon method of calculating rapidly

oscillating integrals. It is specially designed so that the

complex phase �ðxn; y; zÞ, known at some xn, is input data

to this method. This high-accuracy calculation method was

published by Kshevetskii & Wojda (2015). The use of the

complex phase allows numerical calculations to be performed

with high accuracy for a large number of lenses for any

distance.

The question of comparing the efficiency of the phase

equation method with that of Fourier optics methods which

are widely used now is interesting. The volume V of calcula-

tions in the fast Fourier transform (FFT) method is estimated

as O½M log2ðMÞ� in one-dimensional and two-dimensional

cases. For the finite-difference methods described in the paper,

V = OðM1L=hxÞ, where L is the distance for which calculations

need to be performed. In our most trivial algorithm, hx might

be estimated as hx = Oðh2kÞ; this means V = O½M 3
1 L=ðkd 2Þ�

in a one-dimensional case and V = O½M 2
1 L=ðkd 2Þ� in a two-

dimensional case, where d is the lens aperture. We use

different notations M, M1 here because different fields are

treated in computations and correspondingly different M, M1

are necessary for achievement of the same accuracy by

different methods.

We have shown in this paper that for 30 beryllium lenses it

is necessary to take M = 105 in the one-dimensional case and

M = 1010 in the two-dimensional case for high-precision

computations with any method where the electric field is

calculated; in particular, it might be true also for the standard

FFT method. In this case, for the FFT method, V ’ 2 � 106

in the one-dimensional case and V ’ 3 � 1011 in the two-

dimensional case.

For the finite-difference method developed in the paper,

M1 = 4 � 103 in the one-dimensional case and M2 = 1. 6 � 107

in the two-dimensional case, for the same accuracy of

computations. Correspondingly, if we take L = 0.3 m (distance

to the best focus), then V ’ 2 � 106 in the one-dimensional

case and V ’ 8 � 109 in the two-dimensional case.

We see that the complex phase method for problems with

many lenses is somewhat more effective for high-precision

computations than the standard FFT method. Nevertheless,

for overcoming the difficulty of a great number of points for

high-precision calculations with the FFT method, Chubar et al.

(2007, 2008) and Canestrari et al. (2014) suggested some

powerful formal transformation allowing mitigating very

effectively the effect of the fast phase increase and to reduce

M considerably by means of analytical treatment of the

quadratic phase term. This transformation, however, demands

preliminary knowledge of approximate values of the wave-

front radius and the center. We hope also that the effective-

ness of the phase equation method will increase with time; the

modern FFT is a result of a long evolution and optimization,

but the complex-phase equation method is new and does not

have a history of improvement.

For simulation of X-ray wavefront propagation through a

CRL, the SRW code exists which utilizes the Fourier optics

and compatible methods (Bahrdt, 1997; Chubar & Elleaume,

1998).

The combined use of the complex phase method with

methods conventional for X-ray optics (Bahrdt, 1997; Chubar

& Elleaume, 1998) to increase the calculation accuracy of a

far-wavefield after a focal spot could be another interesting

aspect of investigation.

5. Conclusions

We have developed a high-accuracy method for simulating the

propagation of X-ray waves through many lenses and focusing

the waves. The simulation method is equipped with tools for

monitoring the accuracy of the simulations. The simulation

method uses a finite-difference approximation of the proposed

equation for the complex phase of the wave.

We have also estimated the number of mesh nodes neces-

sary to obtain a high-accuracy solution by conventional

methods based on the solution of the parabolic equation. We

have shown that for the case of 30 beryllium lenses the

necessary dimension of the mesh is more than 100000 nodes

along each of the axes perpendicular to the optical axis of the

lens system (the mesh step must satisfy the condition h 


10�8 m). The use of the equation for the complex phase allows

the mesh dimension to be reduced by at least 25 times along

each axis perpendicular to the main optical axis. In the case

of two-dimensional lenses, it reduces the amount of required

computer memory by 625 times and reduces the computation

time by more than 104 times. It makes possible some simula-

tions that are impossible without using this method.

The developed high-accuracy method of simulation is

designed to investigate the influences of various defects in the

lenses (cavities, inclusions, violations of forms) on focusing

and image. Also, the new method allows solving problems with

the complex shapes of lenses, or calculating the propagation of

X-ray waves through a sample with complex internal structure.
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