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Beam shaping is becoming increasingly important for synchrotron X-ray

applications. Although routine for visible light lasers, this is challenging for

X-rays due to the limited source coherence and extreme optical tolerances

required for the shaping mirrors. In deliberate defocusing, even surface errors

<5 nm r.m.s. introduce damagingly large striations into the reflected beam. To

counteract such problems, surface modifications with alternating concave and

convex curvature on equal segments were polished onto the surface of non-

active mirrors of fixed curvature. Such optics are useful for providing a fixed

size of X-ray beam, but do not provide the adaptability required by many

experiments. In contrast, deformable piezo bimorph mirrors permit a

continuous range of X-ray beam sizes and shapes. A new theory is developed

for applying non-periodic modifications of alternating curvature to optical

surfaces. The position and length of the segments may be freely chosen. For the

first time, surface modifications of alternating curvature are applied to bimorph

mirrors to generate non-Gaussian X-ray beam profiles of specified width. The

new theory’s freedom is exploited to choose the segments to match the polishing

errors of medium wavelength (>10 mm) and the piezos’ influence on the

mirror’s figure. Five- and seven-segment modifications of alternating curvature

are calculated and verified by visible light and X-ray metrology. The latter yields

beam profiles with less striation than those made by defocusing. Remaining

beam striations are explained by applying geometrical optics to the deviations

from the ideal surface modifications of alternating curvature.

1. Introduction

1.1. X-ray beam shaping: motives, requirements and solutions

The ability to shape the transverse profile of photon beams,

long since achieved in laser physics, is now being intensively

pursued for X-rays generated at synchrotron light sources,

including Diamond Light Source (Diamond), the UK’s

national facility. Especially desirable are optics which can

convert Gaussian X-ray beams produced by the various

synchrotron sources (bending magnets, undulators or

wigglers) into beams with a constant intensity ‘top-hat’ profile

of selectable size from <1 to 100 mm. Synchrotron experiments

often require a selectable width of X-ray beam to match to the

sample size, or to achieve a required spatial resolution. For

example, Diamond’s macromolecular crystallography beam-

lines I02, I03 and I04 and its small molecule single-crystal

diffraction beamline I19 have all been equipped with the

capability to control the beam size at the sample. All of these

beamline teams consider a flat-top profile as ideal. Beam
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shaping is also important for the free-electron laser commu-

nity, as demonstrated by the use of a deformable mirror for

this purpose at the TIMEX beamline of FERMI@Elettra

(Svetina et al., 2011). Because it is more difficult to manu-

facture aspheric lenses for X-rays than for visible light,

synchrotron beamline teams desiring top-hat X-ray beams

have generally used mirrors. Due to their very shallow grazing

angle of incidence, synchrotron X-ray mirrors can be up to

1.5 m in length. The short wavelength of X-rays, and the

requirement for very small focal spots (micrometers or even

tens of nanometers in diameter), mean that optical perfor-

mance is strongly influenced by surface errors. The quality of

synchrotron X-ray mirrors continues to improve and manu-

facturers can now routinely produce 1 m-long optics where the

surface profile deviates by <<5 nm r.m.s. (the current state-of-

the-art is�0.1 nm r.m.s.) from the required ellipse or cylinder.

Height deviations of <1 nm r.m.s. correspond to slope devia-

tions of <0.1 mrad r.m.s. However, even such extremely small

errors are still a limiting factor for beamline performance, and

hence efforts continue to create ever better X-ray mirrors.

Significant progress in X-ray beam shaping has been

achieved through the development of deformable piezo

bimorph mirrors (Susini et al., 1995; Signorato et al., 1998;

Signorato & Ishikawa, 2001), which can be locally and globally

bent by the application of controllable voltages to piezo

ceramic rods or strips glued to optical substrates. Synchrotron

bimorph mirrors typically have between 8 and 16 independent

electrodes. The effect on the mirror’s figure of applying

voltage to a given electrode is described by that electrode’s

‘piezo response function’ (PRF). Fig. 1 shows the PRFs for the

8-electrode bimorph mirror used in this study, and its polishing

errors when zero volts are applied to all piezos. (Throughout

this paper, ‘polishing errors’ will refer to surface errors of

wavelength greater than approximately 10 mm left by the

surface polishing process.) Unfortunately, when any active

synchrotron X-ray mirror is purposefully bent such that the

beam is not in focus, random polishing errors on the optical

surface introduce striations into the defocused X-ray beam.

The accurate measurement of such errors is important for

understanding why this occurs. In situ (using X-rays) and

ex situ (using visible light) metrology techniques have been

developed at many synchrotrons since the late 1990s to char-

acterize X-ray optics with sub-nanometer accuracy. Diamond

itself utilizes ex situ interferometry and deflectometry

(Diamond-NOM: Alcock et al., 2010, 2013), in addition to

in situ techniques such as pencil-beam scanning (Hignette et

al., 1997; Sutter et al., 2011), grating interferometry (Wang et

al., 2014) and X-ray speckle tracking (Berujon et al., 2014;

Wang, Kashyap et al., 2015; Wang, Sutter et al., 2015) at the

Versatile Test Beamline B16 (Sawhney et al., 2010).

1.2. Shaping of beams by shaping of mirrors

Spiga et al. (2013) were the first to determine how an X-ray

mirror should be deformed to convert an X-ray beam from

one profile to another. They calculated deformations where

the second derivative of height (i.e. curvature) was positive

along the mirror’s length. Such deformations are frequently

applied to bimorph mirrors at Diamond (Sutter et al., 2014).

However, they also highlighted that an infinite number of

deformations will also modify the beam profile in a similar

way. These other deformations, which consist of concave and

convex regions, will be called ‘re-entrant’ in the following

treatment.

Nicolas & Garcı́a (2013) showed that if a uniformily

concave or convex surface deformation is applied to a mirror,

the reflected X-ray beam’s striations depend on the unique

spatial properties of the optical polishing errors, and cannot be

adequately quantified using a single parameter. Even for state-

of-the-art X-ray mirrors, beam striations are still a limiting

factor, which necessitates novel surface modifications. The use

of re-entrant surface modifications was first proposed by

Laundy et al. (2015). These have continuous height and slope

along the mirror, but their curvature switches sign discon-

tinuously at the endpoints of segments of equal length.

Because the curvature of these modifications does not pass

through zero, these authors avoid spikes at the edges of the

reflected beam profiles that are predicted by Spiga et al. (2013)

when sinusoidal surface modifications are used. The exact

solution is given for broadening the beam at the focus to a

specified size in the case of uniform illumination along the

mirror’s length. Ray traces by Laundy et al. (2015) indicate

that polishing errors added to re-entrant surface modifications

introduce less striation into the beam at the focus than the

same errors added to a surface modification of uniform

curvature. The X-ray beam also grows more uniform as the

number of segments increases, which can be explained by the

overlaying of striations from different segments. If the errors

have no correlated texture, the striations produced by

different segments will average out. Because a real deform-
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Figure 1
Piezo response functions (PRF), displayed as slope changes scaled
linearly to a voltage change of 500 V for easy comparison, showing how
each of the eight channels of a super-polished bimorph mirror affects
the mirror’s surface, as measured by the Diamond-NOM profilometer
(Alcock et al., 2010). The thick black curve shows the mirror’s slope error
(deviation from nominal ellipse) when all electrodes are at 0 V. The PRFs
and the residual surface errors dictate the breakpoint locations of the re-
entrant surface modifications.



able mirror can never change its curvature discontinuously at

any point, some spikes will inevitably be introduced to the

beam profile by the regions of the mirror where the curvature

of the modification passes through zero. Examples of this will

be modeled theoretically in x4.4 and compared with the

experimental beam profiles.

A fixed-shape mirror prototype was tested with X-rays by

Laundy et al. (2016). Three lanes were polished into this

mirror, two with re-entrant surfaces of four equal segments,

optimized for focusing the beam to a spot size of <1 mm, 2 mm

or 10 mm. The three-lane mirror permits rapid switching of

beam size, but only to three discrete sizes of a given shape. By

contrast, adjustment of the beam shape and size at the focus

through a continuous range can be achieved using the fine

control of local curvatures provided by deformable piezo

bimorph mirrors. For this study, an uncoated 150 mm-long

deformable piezo bimorph mirror with a silica substrate and

eight electrodes was used. The central 115 mm of the substrate

was ‘super-polished’ by elastic emission machining (EEM)

(Yamauchi et al., 2002) by JTEC (Japan) to an elliptical

cylinder of source–mirror distance 41.5 m, mirror–image

distance 0.4 m, and grazing incidence angle 3 mrad. Thales-

SESO (France) assembled the substrate into a bimorph

mirror. The mirror has been measured extensively over

>5 years (Sawhney et al., 2013) showing that its surface profile

and its PRFs have remained stable. X-ray measurements were

performed at the Diamond beamline B16, which uses a

bending magnet to generate X-ray beams of which the

intensity distributions are independent of horizontal position.

Because the mirror deflects and focuses vertically, only the

reflected beam’s vertical profile is significantly affected.

Furthermore, the mirror’s aperture, (150 mm)(3 mrad) =

450 mm, is much smaller than the vertical width of the bending

magnet beam. Therefore, the mirror is uniformly illuminated

along its length. The design of bimorph mirrors imposes two

restrictions on possible surface modifications. Firstly, the

piezos are least able to correct polishing errors at the junctions

between adjacent piezos. Secondly, the voltage difference

between adjacent electrodes cannot exceed 500 V without risk

of damage to the mirror. This makes it advantageous to

purposely choose the breakpoints between re-entrant

segments to lie at the junctions between adjacent electrodes.

However, not every junction needs to be a breakpoint. By

placing the breakpoints only at certain junctions, one can

make the re-entrant surface modification approximately

match the mirror’s figure errors at 0 V, thus minimizing the

voltages required to deform the mirror (see Fig. 1). This leads

to an innovation: re-entrant surface modification segments

that are given unequal lengths by controlling groups of elec-

trodes together. In the following, five- and seven-segment re-

entrant surface modifications will be investigated for X-ray

beam shaping. No re-entrant modifications with as many

segments have ever been tested. Furthermore, the new theory

presented here can generate re-entrant surface modifications

on any arbitrary set of segments without alteration of the

reflected beam’s size or shape, thus extending its validity

beyond the bimorph mirrors presented here as an example.

1.3. Modeling and evaluating expanded beam profiles using
measured mirror surface profiles

Simulations of the profiles of X-ray beams reflected from

real mirrors are less advanced than those of lasers because of

the synchrotron X-rays’ limited coherence. While lasers may

have temporal coherence lengths from millimeters to tens of

meters, synchrotron X-rays generally have temporal coher-

ence lengths of a few micrometers after passage through

a double-crystal monochromator (bandpass ��/� ’ 10�4).

X-rays produced by synchrotrons also do not approach perfect

spatial coherence as nearly as laser beams do, although X-ray

beams from undulators can have quite high spatial coherence

in the vertical direction at the relatively low photon energies

of this paper. Nevertheless, one should consider that unde-

sirable wavelength-dependent diffraction effects can appear

when the surface of a focusing mirror is modulated. These

arise from the resulting modulation in the path length of the

X-rays reflected from the mirror. Physical optics must there-

fore be used in principle, but Laundy et al. (2015) made some

simple calculations for the case of a periodic modification of

wavelength �, which behaves like a diffraction grating. If � is

the grazing incidence angle of the X-rays on the mirror, the

phase of the reflected wavefront is modulated with a period

�sin�. X-rays with a wavelength � will then form diffraction

peaks in the focal plane, which is at a distance q from the

mirror. The spacing of the diffraction peaks is q�/(�sin�).

If this interval is much less than the focal spot size � of

the unmodified surface, the diffraction peaks overlap and

diffraction effects in the focal plane are smeared out. This will

occur if � >> q�/(�sin�). Geometrical optics can then be used

to model the beam profile at the focus. In the examples of this

paper, X-rays of 8000 eV (� = 1.55 Å) and 9200 eV (� =

1.35 Å) were reflected from the mirror. The focal distance q is

approximately 0.4 m, the grazing incidence angle � is

approximately 3 mrad, and the focal spot size � produced by

the unmodified surface is approximately 1 mm. For the worst

case of 8000 eV X-rays, one derives the condition � >>

20.67 mm for geometrical optics to be valid in calculating the

beam profile at the focus. 9200 eV X-rays yield the corre-

sponding condition � >> 18 mm. The surface modifications of

this paper are not periodic, but they will have wavelengths �
no shorter than 30 mm. Diffraction effects are therefore not

expected to be strong.

Geometrical optics have been applied by Spiga et al. (2013)

and Nicolas & Garcı́a (2013) to explain many features of X-ray

beams reflected from imperfect mirrors. Indeed, an elemen-

tary ray-tracing model applied by Sutter et al. (2014) to the

measured figure of a bimorph mirror at Diamond yielded

theoretical reflected beam profiles in good agreement with

X-ray knife-edge measurements at the undulator beamline

I02. Measured profiles of the reflected beam will be compared

with ray tracing calculations using SHADOW (Sanchez del

Rio et al., 2011). Although perfect matches are not obtained

because of slight variations in the detector’s position and the

X-rays’ incidence angle, ray tracing explains many prominent

features of the measured profiles. Moreover, although ideal
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top-hat profiles have not been achieved, geometrical optics

provide important clues for improving X-ray profiles.

A future verification of the results of geometrical optics can

be directly obtained from the more general theory of physical

optics. The wave behavior of X-rays has been taken into

account by Laundy et al. (2016), who applied the Fresnel–

Kirchhoff equation (Born & Wolf, 1999) to a simple physical

model. A more comprehensive treatment using physical optics

to treat mirror imperfections of arbitrary scale was reported

by Spiga & Raimondi (2014) and by Raimondi & Spiga (2015).

They used their own IDL code called WISE. Other software

packages for physical optics calculations on synchrotron

radiation, such as PHASE (Bahrdt, 1997), FOCUS (Bowler &

Higgins, 2009), WAVE (Scheer, 2008) and SRW (Chubar &

Elleaume, 1998), also exist. We note, however, that modeling

the propagation of partially coherent X-rays through imper-

fect optics is a subject of active research. Software for X-ray

physical optics continues to improve, and Diamond has

assisted in the expansion of the SRW program.

Because X-ray beam shaping is in its infancy, no universally

accepted quantitative metric yet exists for judging how accu-

rately a measured beam profile approaches the desired shape.

This is not an unprecedented situation in optics. For example,

Shealy & Hoffnagle (2005) mention the lack of a quantitative

figure of merit for the propagation behavior of laser beams. In

the following, the desired shape is a top-hat, which in laser

literature has been approximated by a variety of functions.

Here, the measured X-ray beam profiles will be fitted to super-

Gaussians. Such fits produce two figures of merit: the degree

of flatness and striation. Although imperfect, they will allow

more objective comparisons of profiles than subjective judg-

ments made ‘by eye’.

1.4. Outline

Re-entrant modifications with a variable number of

segments of arbitrary length will be calculated under the

assumption that the incident X-ray intensity is uniform over

the whole mirror. This assumption is justified by the mirror’s

small aperture. Three such modifications, each determined

for a 4 mm-wide beam at focus, will then be applied to the

bimorph mirror described above, and an ex situ measurement

will show how nearly the bimorph mirror actually matches

each. Special attention will be paid to the region around each

breakpoint, since, as Spiga et al. (2013) showed, a spike will be

generated in the beam profile if the curvature passes through

zero. Any other regions of zero curvature must also be taken

into account. X-ray speckle tracking will confirm that the re-

entrant surface applied in situ approximately matches the one

applied ex situ, though small discrepancies due to slightly

varying temperature, mounting forces and angles of incidence

are expected. For two of these modifications, the beam profile

at the focus will be measured, and the quality of each will be

estimated by fitting it to a super-Gaussian,

GðxÞ ¼ y0 þ
1ffiffiffiffiffiffi

2�
p

�0

exp �
x� x0

�� ��p
2� p

0

 !
: ð1Þ

Finally, imperfections in all the measured beam profiles at the

focus will be compared with geometrical optics simulations

using measured deviations of the bimorph mirror’s actual

profile compared with the desired ideal re-entrant figure, thus

showing how future mirrors could be better manufactured.

Some additional considerations are discussed by Sutter et

al. (2016).

2. Principles

2.1. Re-entrant surface modifications on segments of unequal
length

We develop a new theory, expanding on previous work by

Laundy et al. (2015), to create re-entrant surface modifications

with segments of unequal lengths. The novelty of this

approach enables the breakpoints to be arbitrarily chosen. For

our application, using bimorph mirrors, we chose the break-

points to coincide with the location of polishing errors and

regions where the bimorph’s piezos influence the optical

surface. A schematic explaining the procedure of this section

is displayed in Fig. 2. To expand the X-ray beam at the focus to

a size B, consider a mirror of length L with n segments. Let q

be the distance from the center of the mirror to the focus, and

� be the grazing angle of the incident beam at the mirror’s

center. Let the abscissa x denote position along the length of

the mirror with positive x toward the focus, and x = 0 be the

center of the mirror. Define the breakpoints xj where j =

0, . . . , n such that

�
L

2
¼ x0; xj < xjþ1; xn < þ

L

2
: ð2Þ

x1 to xn–1 are initially selected as the junctions between adja-

cent electrodes. The center of each electrode is defined as the

midpoint between the maximum and minimum slope of its

PRF, as illustrated in Fig. 1. Note, however, that the theory is

flexible in that the breakpoints can be iteratively shifted to

better fit the PRFs without any effect on the beam size. For

each segment, define Si where i = 1, . . . , n such that
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Figure 2
Schematic showing how the variables defined in x2.1 are associated with
the application of a re-entrant surface modification to a bimorph mirror.
This example has nine electrodes that are used to apply a re-entrant
modification of six segments. The breakpoints of the surface modification
A(x) are indicated by the + symbols. They are located at the points of
maximum and minimum values of A0(x). See text for details.



S1 ¼
B

2 x1 � x0ð Þ
; Si ¼

B

xi � xi�1ð Þ
; Sn ¼

B

2 xn � xn�1ð Þ

for i ¼ 2; . . . ; n� 1: ð3Þ

The figure of the mirror will be given by a function y(x):

y xð Þ ¼ P xð Þ þ A xð Þ þ � xð Þ: ð4Þ

P(x) is an ideal pre-ground shape of the mirror. In this paper,

it will be equal to Epq�(x), the ellipse specified by the source–

mirror distance p, the mirror–image distance q, and the

grazing incidence angle � at the center of the mirror. The

formula for Epq�(x) is given in equation (15) of Sutter et al.

(2010), with the sign of the abscissa switched to account for the

reversed direction of the x-axis:

Epq� xð Þ ¼
pþ qð Þ sin �

pþ qð Þ
2
� p� qð Þ

2sin2�

�
2pq� p� qð Þ cos �½ �x

� 2ð pqÞ1=2 pq� p� qð Þ cos �½ �x� x2
� �1=2

�
: ð5Þ

A(x) is a purposely induced change in the mirror’s figure from

the simple function P(x). In this paper, A(x) will be the re-

entrant surface modification. Finally, �(x) is the surface error

left behind by imperfect figuring. It will be assumed equal to

zero for the following treatment.

In this model, the detector will be placed at the focus of the

ideal ellipse and oriented at right angles to the central

reflected ray. The X-ray source’s horizontal and vertical

profiles are Gaussian with r.m.s. widths of 34.5 mm and 7.0 mm,

respectively. With p = 41.5 m and q = 0.4 m as stated in x1.2,

the demagnified r.m.s. vertical source size at the mirror’s focus

is (7.0 mm)(q/p) = 0.067 mm, less than the step size of the knife-

edge scans that will be reported in this article. Therefore the

source size is not expected to affect the measured profiles

significantly, and the source may be treated here as a point.

Finally, because the mirror is very far from the source and

because its aperture of approximately 450 mm is much smaller

than the vertical width of the bending magnet beam (see x1.2),

the illumination of the mirror will be assumed uniform over

the mirror’s surface. Note, however, that the treatment of this

section can easily be generalized to other spatial distributions

of X-ray flux on the mirror, although the resulting differential

equations may not necessarily have analytical solutions.

Because the ray deflection from X-ray mirrors is always

small, to first order in x a ray reflected from the mirror at x

reaches the detector at

xD xð Þ ¼ 2A0 xð Þ q� x cos �ð Þ: ð6Þ

If the flux on the mirror from x to x + dx is Imirr(x)dx, and if the

flux on the detector from xD to xD + dxD is Idet(xD)dxD, then

these two fluxes can be set equal on any segment of the re-

entrant surface modification, since there dxD/dx is either less

than zero or greater than zero along the segment’s entire

length excluding the breakpoints. Suppose one examines the

ith segment, which extends along the range (xi–1, xi). In this

range one would obtain a differential equation

Imirr xð Þ

K xð Þ
�� �� ¼ Idet xD xð Þ

� 	
ð7Þ

where

K xð Þ ¼
dxD

dx
¼ 2 q� x cos �ð ÞA00 xð Þ � 2 cos �ð ÞA0 xð Þ ð8Þ

is determined by applying the chain rule to equation (6).

Since the illumination is uniform, Imirr(x) = 1 for�L/2� x�

+L/2. For a top-hat beam of width B, K(x) on the ith segment

is set equal to (�1)i+1Si, with Si given by equation (3). By

substituting this value of K(x) into equation (8), one obtains a

differential equation of which the terms in x and A0(x) can be

separated and integrated. The resulting slope A0iðxÞ on the ith

segment is thus

A01ðxÞ ¼
1

2 cos �

C1i

q� x cos �
þ �1ð ÞiSi


 �
ð9Þ

and a second integration over x yields the height Ai(x) of the

ith segment:

Ai xð Þ ¼
1

2 cos �
�

C1i

cos �
ln q� x cos �ð Þ þ �1ð ÞiSixþ C2i


 �
;

ð10Þ

where the 2n constants of integration C1i and C2i are deter-

mined by the boundary conditions

A1 x ¼ �
L

2

� 

¼ 0; ð11Þ

An x ¼ þ
L

2

� 

¼ 0; ð12Þ

Ak x ¼ xkð Þ ¼ Akþ1 x ¼ xkð Þ; ð13Þ

A0k x ¼ xkð Þ ¼ A0kþ1 x ¼ xkð Þ; ð14Þ

and where k = 1, . . . , n � 1. Thus there are 2n equations to

determine the 2n constants of integration, calculated using

MATLAB (MathWorks, 2004). Note that equation (13)

guarantees continuity of the height across segments, while

equation (14) guarantees continuity of the slope. However, the

curvature A00(x) is allowed to be discontinuous at the break-

points.

Note that equation (10) can be expanded in a Taylor series

about xi. Since L/2 << q in this paper, one need expand only to

second order, since quadratics are the lowest-order poly-

nomials from which re-entrant modifications of continuous

height and slope can be constructed. The result is as follows:

Ai xð Þ �
1

2 cos �

(
�

C1i

cos �
ln q� xi cos �ð Þ þ �1ð ÞiSixi þ C2i


 �

þ
C1i

q� xi cos �
þ �1ð ÞiSi


 �
xi�1 � xið Þ

þ
C1i cos �

2 q� xi cos �ð Þ
2

xi�1 � xið Þ
2

)
: ð15Þ
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The re-entrant modification thus reduces to a series of para-

bolic arcs connected at the breakpoints.

It should be stressed that, even though this calculation has

been developed with bimorph mirrors in mind, it is not limited

to bimorph mirrors because the breakpoints xj can be arbi-

trarily chosen. Thus, for example, one could imagine a mirror

of fixed shape like the prototype tested by Laundy et al.

(2016), but with its breakpoints distributed in any arbitrary

configuration. The equations of this section would still be

valid. It is only the design of a bimorph that forces the

breakpoints to be set at the junctions, as will be done in x2.2.

2.2. Re-entrant surface modifications applied to a bimorph
mirror

Re-entrant surface modifications applied to the EEM

bimorph mirror were chosen by examination of the mirror’s

surface polishing errors and the piezo response functions as

measured using the Diamond-NOM (Alcock et al., 2010). The

PRFs were determined according to the procedure described

by Hignette et al. (1997) and Sutter et al. (2011), beginning

with all voltages set to 0 V and using a +200 V increment.

Voltage optimization was performed by the linear algebra

method of least-squares minimization.

On a bimorph mirror, it is not useful to place a breakpoint

within the area influenced by any

particular electrode, because the figure

within that area can be corrected simply

by applying a suitable voltage, and also

because the curvature within that area

will be uniform to a good approxima-

tion. The only useful sites for break-

points are at the electrode junctions, for

only there can the bimorph mirror

approach the ideal discontinuous switch

in the curvature’s sign. This require-

ment sets a finite limit on the number of

re-entrant surface modifications with a

given number of segments that can be

applied to a bimorph. Once the possible

breakpoints have been determined from

the PRFs in Fig. 1 as the midpoints

between the centers of adjacent elec-

trodes, the first breakpoints must be

placed at those junctions where the

derivative of the slope error at 0 V most

abruptly switches sign. For the mirror of

this experiment, these will be at the

junctions between electrodes 2 and 3

and electrodes 6 and 7. If one proceeds

no further, one has already generated a

three-segment modification. For more

segments, additional breakpoints can be

placed so as to follow the figure error

when all electrodes are at 0 V, because

the mirror can be deformed to that

shape with the least voltage change. A

somewhat subjective judgment of the best re-entrant modifi-

cation has been made, and therefore the possibility that better

modifications exist is still open, but selected surface modifi-

cations are displayed in Fig. 3(a), along with the measured

slope error at 0 V after subtraction of the best-fit line

(curvature). For comparison, Fig. 3(b) shows the more

common type of surface modification for beam enlargement:

a simple concave defocus. All modifications are designed to

expand the beam size to 4 mm at the mirror’s focus.

3. Measurements of surface modifications with the
Diamond-NOM

The next tasks are to measure the accuracy with which the

bimorph mirror can reproduce each requested re-entrant

surface modification, and to understand the limiting factors.

The simplest three-segment re-entrant modification is shown

in Fig. 4. The list of voltages in Fig. 4(a) confirms that all

voltage differences between adjacent electrodes remain within

the 500 V limit. The breakpoints, including the ends, are at

16.75, 40.5, 100.75 and 129 mm.

The bimorph mirror could not always be deformed exactly

to the re-entrant modification given the initially selected

breakpoints, but it could more nearly approach a different re-
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Figure 3
(a) Bottom to top: mirror slope error at 0 V, then theoretical three-, five- and seven-segment surface
modifications to try to mimic the slope error at 0 V. Each plot has been shifted upward by 5 mrad
from the one before for easy comparison. (b) Theoretical simple concave surface modification with
expected best approximation achieved by mirror as calculated from its slope error at 0 V and its
measured PRFs. The calculated voltage settings first remove the polishing errors and then add the
desired modification. Intended beam size is 4 mm for all cases.

Figure 4
(a) Three-segment surface modification: theoretical, predicted and measured using the Diamond-
NOM. (b) Slope error (deviation of measured surface modification from theoretical one).



entrant modification yielding the same

beam size but with slightly shifted

breakpoints. In these cases, the closest

achieved modification was measured,

then compared with a new theoretical

re-entrant modification of which the

breakpoints are displaced to the

maxima and minima of the measured

slope.

This process is demonstrated in

Fig. 5 for the five-segment modification.

Fig. 5(a) compares the initial theoretical

surface modification with the predicted

and the measured ones. Fig. 5(b) shows

a large peak in the slope error at 60 mm

along the mirror. Therefore the break-

points were shifted onto extrema of the

final achieved modification. Figs. 5(c)

and 5(d) show that the EEM bimorph

matched the new modification much

better. The voltage on electrode 5 was

raised by 8.6 V and the voltage on

electrode 6 was lowered by 9.8 V in

order to keep the voltage differential

below the 500 V limit. This adjustment

slightly shifts the maxima and minima of

the achieved slope modification, but still

keeps the voltages close to the theore-

tical optimum. The final breakpoints,

including the ends, lie at 16.75, 38, 55,

68.5, 103.25 and 129 mm.

The seven-segment modification was the most difficult to

achieve because sharp changes in curvature are necessary

between every pair of adjacent electrodes except 4 and 5,

which are joined together. Finding the optimal seven-segment

modification required the same adjustment of the breakpoints’

positions to match the measured data as was done for the five-

segment modification. Fig. 6(a) compares the final seven-

segment modification with the adjusted theoretical one and

the one predicted using the PRFs. The slope error of the final

measured modification with respect to the adjusted theoretical

is shown in Fig. 6(b). To keep within the

maximum voltage differential of 500 V,

the voltage on electrode 3 was lowered

by 42 V and the voltage on electrode 4

was raised by the same amount. Also,

the voltage on electrode 8 was lowered

from 626.7 V to 445.7 V, although this

alteration at the end of the mirror is less

significant than one near the center. As

before, these adjustments will shift the

slope maxima and minima upward

or downward. The final breakpoints,

including the ends, lie at 16.75, 25.25, 38,

55.75, 84, 101, 118.5 and 129 mm.

Agreement of the final measured

surface modifications with the adjusted

theoretical ones is good throughout. The slope errors are

0.19 mrad r.m.s. for three segments, 0.29 mrad for five segments

and 0.44 mrad for seven segments. Further reduction of these

slope errors by additional iterations appears unlikely as a good

match to the theoretical modification has already been

produced in all three cases. As one might expect, a truly

discontinuous change in the sign of the curvature at the

breakpoints is not achieved; some rounding of the slope

extrema is always present in the measured modifications.

Finally, the measured seven-segment modification is flattened

at the junction between electrodes 4 and 5. A similar, though

research papers

J. Synchrotron Rad. (2016). 23, 1333–1347 John P. Sutter et al. � Creating flat-top X-ray beams 1339

Figure 6
Seven-segment surface modification. (a) Adjusted theoretical, predicted and measured. (b) Slope
error (final minus adjusted theoretical). Arrows in the voltage list in (a) show where the voltages
had to be shifted away from the theoretically optimal values in order to keep the voltage
differentials below the 500 V limit.

Figure 5
Five-segment surface modification. (a) Initial breakpoints: theoretical, predicted and as measured.
(b) Difference between theoretical and measured for the initial choice of breakpoints. (c)
Breakpoints adjusted to improve the match between theoretical and measured. (d) Difference
between theoretical and measured for the final choice of breakpoints. Arrows in the voltage lists in
(a) and (c) show where ideal voltages had to be compromised to ensure voltage differentials remain
below the 500 V limit.



less pronounced, flattening is visible at the center of the mirror

when the three-segment modification is applied. This is an

‘imprint’ effect caused by the finite width of electrodes, as

previously observed by Alcock et al. (2013) and discussed

more fully by Sutter et al. (2014).

4. Measurements of X-ray beam striation introduced by
re-entrant surface modification

4.1. Experimental procedures

Following ex situ profilometry using the Diamond-NOM,

five- and seven-segment modifications were examined with

X-rays at the Diamond Light Source Versatile Test Beamline

B16 (Sawhney et al., 2010). The experimental setup is shown

schematically in Fig. 7. X-rays with a photon energy of

9200 eV were selected by a Si (1 1 1) double-crystal mono-

chromator (DCM). A series of slits downstream of the DCM

selected a 0.03 mm (horizontal) � 0.3 mm (vertical) section of

the X-ray beam produced by the bending magnet source. The

EEM bimorph mirror was oriented for upward deflection

inside a closed chamber that was continually flushed with N2

gas at a rate of 1 L min�1 to prevent the generation of reactive

hydrocarbon atoms which can contaminate the optical surface.

Kapton windows allowed the X-rays to enter and exit the

sealed chamber. At a grazing incidence angle of 3 mrad, the

incident beam illuminated the entire mirror’s active area.

For each surface modification, striations in the X-ray beam

were measured by knife-edge scans using a horizontal gold

wire. The 200 mm-diameter wire was scanned through the

reflected beam, at distances in 0.2 mm intervals from 384 to

388 mm downstream from the center of the mirror. Previous

measurements had shown that the focus of the mirror was

within this range. In this way, the dependence of the beam size

and striations on detector distance from the mirror in the

neighborhood of the focus is clearly observed. The wire was

vertically translated in 100 nm steps by a piezo stage. The

narrow horizontal width of the slits upstream of the mirror

ensures that the striations are not blurred by sagittal slope

errors on the mirror, or by accidental inclination of the gold

wire. X-ray intensity behind the gold wire was measured by a

PIPS detector with a current amplifier.

Results are compared with knife-edge scans of the reflected

beam striations produced when the surface modification was a

simple variation of curvature. These scans had been collected

with a step size of 0.2 mm using X-rays of 8000 eV, but all other

experimental conditions were the same except for possible

slight variations in temperature and mounting forces. Because

striations of the experimental plots extend over widths several

times greater than 0.2 mm, the difference in scan step size is

not expected to influence the results substantially. As will be

shown later, the main striations in the wire scans for the re-

entrant modifications can be explained by geometrical theory

and therefore should be very similar for X-rays of 8000 eV

or 9200 eV. In addition, although the earlier wire scans were

taken two and a half years before the current ones, repeated

Diamond-NOM examinations of the mirror within that time

showed no change in the mirror’s figure or electrode

responses.

Because experimental beam profiles are determined by

calculating the derivatives of the knife-edge scans numerically

using finite differences, one may ask how susceptible they are

to measurement noise. Each knife-edge scan for the simple

mirror curvature changes was repeated three times. Compar-

ison of their derivatives showed they were reproducible;

therefore, the three scans were averaged. This averaging was

not performed on the knife-edge scans when re-entrant

modifications were applied to the mirror. However, the fact

that in consecutive data sets the striations and the peak shape

change only gradually clearly shows that the measured struc-

ture is real and not random experimental noise. Additional

data sets (not shown here) taken with other mirror surface

modifications corroborate this. The reader should note that no

smoothing of the numerical derivative was performed in any

of the knife-edge scans in this paper.

Previous attempts to measure the mirror surface using

X-ray pencil-beam scans were limited by the insensitivity to

surface slope at the short focal length of 0.4 m. The X-ray

speckle scanning technique (Berujon et al., 2014; Wang,

Kashyap et al., 2015) was therefore used. It is not expected that

the Diamond-NOM and X-ray speckle tracking will produce

exact agreement, partly because the latter technique is still

being perfected, and partly because the mirror is not under

precisely the same experimental conditions. However, the two

datasets confirm that the application of the voltages deter-

mined by the Diamond-NOM produced sufficiently similar

mirror surface modifications at B16. A diffuser consisting of

P3000 sandpaper was placed upstream of the EEM bimorph

mirror to generate a speckle pattern in the reflected beam. The

position of the sandpaper relative to the mirror was not

critical, but was placed in close proximity to the mirror to

minimize wavefront spread caused by the incident beam’s

divergence. Then, with the horizontal width of the upstream

slits opened to 0.5 mm, the sandpaper was translated vertically

in 0.25 mm steps with a piezo stage. At each of the 80 steps, an

image of the speckle pattern in the reflected beam was

measured by a Photonic Science PSL-FDS X-ray camera

(pixel size: 6.45 mm) placed 3.6 m downstream from the

mirror. Motion of the speckles during each scan was tracked to

determine the deviation of the mirror surface slope from that

required for exact focusing.
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Figure 7
Schematic of the experimental setup used to measure the reflected X-ray
beam profiles in the vicinity of the focus of the bimorph mirror at
Diamond’s Versatile Test Beamline B16 (Sawhney et al., 2010). (The
figure is not to scale.) The incidence angle of the beam on the mirror is
shown here for clarity as much larger than its true value of 3 mrad.



4.2. Figures of merit for experimental
beam profiles: the super-Gaussian
function

The super-Gaussian function G(x)

in equation (1) is frequently used to

describe higher-order laser beam modes

that approach a rectangular cross-

section. For p = 2, G(x) is an ordinary

Gaussian function. Small values of p

yield a function with a sharp peak and

long tails, while large values of p

produce a flat top. The full width at

half-maximum (FWHM) of G(x) is

2
ffiffiffiffiffiffiffiffiffiffi
2 ln 2p
p

�0. In the following discussion,

the experimental X-ray beam profiles

are fitted to super-Gaussians with free

parameters x0, y0, �0 and p. Three figures of merit emerge:

(i) �0, which determines the width of the profile;

(ii) p, which determines the flatness of the profile’s top;

(iii) R2, the ‘adjusted R squared’ value. Values from 0 to 1

indicate how well variance in the experimental data is

explained by the model (0 not at all, 1 entirely).

Given a general set of measured data points (Xi, Yi), i =

1, . . . , N and a fitting function Y = f(X,�), where (�1, . . . , �k) is

the set of fitting parameters, the formula for R2 is

R2
¼ 1�

1
N�k�1

PN
i¼ 1

Yi � f Xi; �ð Þ
� 	2

1
N�1

PN
i¼ 1

Yi �
�YY

� �2
; ð16Þ

where �YY is the mean of the data points Yi. R2 thus includes the

mean square deviation from the fit, but is a more reliable

measure of the goodness of fit because it is adjusted for the

number of data points, the number of fitting parameters and

the magnitude of the data points.

The ideal experimental beam profile would be a flat top of

some desired width without striations. A measured profile

approaches this most closely if its best-fit super-Gaussian has

the correct width, a large p, and R2 approaching 1. To a good

approximation, if the tails are neglected, R2 will be closely

related to the amount of striation in the experimental profile:

the closer it is to 1, the less striation is present. Fits were

performed using Origin Pro 9.0.0 (OriginLab Corporation,

2012).

4.3. Surface modification data and X-ray beam profiles
at focus

Figs. 8(a) and 8(b) compare, respectively, the five- and

seven-segment surface modifications with measurements on

the Diamond-NOM and X-ray speckle tracking at B16.

Although in good agreement, they deviate most from the

theoretical curves, and from each other, close to the break-

points where the measured curvature is significantly rounded.

The imprint effect observed in the central segment of the

seven-segment modification on the Diamond-NOM is also

visible, though less pronounced, in the X-ray speckle tracking

data.

To investigate the beam size and striations, the derivatives

of the knife-edge scans need to be plotted and examined.

Representative subsets of the results for the five- and seven-

segment modifications are displayed in Figs. 9 and 10, along

with their best-fit super-Gaussians. The structure of the

reflected beam at the focus when the five-segment modifica-

tion is applied is dominated by intense spikes at both edges.

Such ‘hot edges’ are typical of continuous (rather than

piecewise continuous) slope modifications, such as sinusoids.

They arise from the regions of minimum and maximum slope

where the position of the reflected ray on the detector varies

minimally with the position of the corresponding incident ray

along the mirror. This indicates that the rounding of the

curvature close to the breakpoints of the five-segment curve

strongly affects the beam profile. However, aside from this,

very little striation is evident in the X-ray beam near focus.

The structure of the beam profile remains very stable when the

knife-edge’s distance from the mirror is varied. The hot edges

are much less severe in the reflected beam produced by

the seven-segment modification. This is partly because the

measured extrema in Fig. 8(b) are not all at the same value of

the slope, but also because of the sharper change in curvature

at the breakpoints.

Qualitatively, the experimental beam profile closest to a flat

top with minimal striation is obtained using the seven-segment

modification in Fig. 10(d) when the knife-edge is placed

385.6 mm downstream from the center of the mirror chamber.

Fig. 11 contrasts it with both a typical profile obtained using

the five-segment modification and a beam profile measured

when a surface modification of uniform curvature was applied

to the EEM bimorph mirror. Because the curvature no longer

needs to change sign at the electrode junctions, the beam can

be enlarged far more than with the re-entrant surface modi-

fication without unacceptably large voltage differentials

between adjacent electrodes. Examples are shown in Fig. 12.

However, even at a beam size of 5 mm, only slightly larger than

that achieved using the re-entrant modifications, the beam at

the nominal focus created by the modification of uniform
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Figure 8
(a) Five-segment and (b) seven-segment surface modifications: comparisons of theoretical with
measurements by Diamond-NOM and by X-ray speckle tracking at B16. The data measured on B16
are represented by the smooth curve with the rounded extrema.



curvature clearly shows three peaks and is not a good match to

the relatively flat super-Gaussian obtained by fitting the wire

scan for the best seven-segment modification, as seen by

comparing the R2 values (Fig. 11c). At larger beam sizes the

striations are even more visible. The best profiles achieved

with the seven-segment modification are smoother. Moreover,

unlike the five-segment modification, which produces mainly

hot edges and little other structure in the reflected beam at the

focus, the modification of uniform curvature produces stria-

tions throughout the beam. Finally, the hot edges produced by

a re-entrant modification are easily seen to arise from the

rounding of the curvature close to the breakpoints of that
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Figure 9
Five-segment surface modification: survey of beam width and striation near focus. Derivatives of knife-edge scans taken at labeled distances downstream
from the center of the mirror chamber. Black curves with dots are measured profiles. Thick solid red curves are best-fit super-Gaussians.

Figure 10
Seven-segment surface modification: survey of beam width and striation near focus. Derivatives of knife-edge scans taken at labeled distances
downstream from the center of the mirror chamber. Black curves with dots are measured profiles. Thick solid red curves are best-fit super-Gaussians.



modification. They will therefore be similar for every mirror

(assuming that the polishing errors are not larger than the

modification). The striations produced by a modification of

uniform curvature, however, do not arise from the modifica-

tion itself, but from the mid- to long-wavelength polishing

errors, which are uncontrolled and different for every mirror.

An examination of the figures of merit determined by the

super-Gaussian fits will place the observations above on a

quantitative basis. Fig. 13 shows FWHM, p and R2 for all sets

of data, including the fits reported in Figs. 9–12. The FWHM in

Fig. 13(a) confirms that the beam size in the center of the

range of distances from the mirror is indeed 4–5 mm as

required for all surface modifications applied to the mirror in

this paper. The trend of the FWHM with increasing distance

from the mirror (decreasing for the five-segment modification

and increasing for the seven-segment modification) arises

from the single long segment around the center of the mirror,

which curves in opposite directions in the two modifications.

The values of p and R2 allow the surface modifications to be

clearly ranked according to their ability to produce a flat-

topped beam without striation. The uniform curvature modi-

fication for 5 mm beam yields the lowest value of p (i.e. the

most triangular super-Gaussian) and the middle value of R2

(i.e. medium striation). The five-segment modification yields

the highest value of p (i.e. the most flat-topped super-Gaus-

sian), but its R2 is the lowest of all, evidently because of the

strong hot edges it produces. The seven-

segment modification produces profiles

of medium p, but this is still better than

the modification of uniform curvature,

and Fig. 11(a) shows that the best-fit

super-Gaussian for this case is still

quite flat. Moreover, the seven-segment

modification consistently produces the

highest value of R2 and hence the best

fit to the super-Gaussian model. All

considered, the uniform curvature

modification performs least well and the

seven-segment modification performs

best. The best profile from the seven-

segment modification scores well in

both flatness (p = 3.463) and low stria-

tion (R2 = 0.962).

4.4. Modeling of beam striations using
geometrical optics

Fig. 14 shows theoretical calculations

of reflected beam profiles at or near the

mirror focus (0.4 m downstream from

mirror center) applying the geometrical

optics program SHADOW (Sánchez del

Rı́o et al., 2011) to various surface
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Figure 11
(a) Seven-segment for 4 mm beam, (b) five-segment for 4 mm beam, (c) simple concave for 5 mm beam: comparison of fits to super-Gaussians of
representative knife-edge scans. Maximum experimental intensity normalized to unity for easy comparison of plots. Wire distance from center of mirror
chamber, p and R2 are in the labels. Black curves with dots are measured profiles. Thick solid red curves are best-fit super-Gaussians. Thick dashed red
curve in (c) is best-fit super-Gaussian for which p is fixed at the value in (a). This is done for comparison of flatness and striation with (a). Note the
decreasing goodness of fit R2 as the number of segments decreases.

Figure 12
Simple concave modification: beam expansion to (a) 5 mm, (b) 10 mm, (c) 15 mm and (d) 21 mm at
mirror’s focal point (approximately 0.4 m downstream from center of mirror). Black curves with
dots are measured profiles. Thick solid red curves are best-fit super-Gaussians. Values of p and R2

are shown in labels. Note the large beam sizes, but also the high striation level indicated by the low
goodness of fit R2.



modifications on the mirror. The r.m.s. size (34.5 mm hori-

zontal � 7.0 mm vertical) and emittance (2.6 nm rad hori-

zontal � 0.008 nm rad vertical) of the electron beam source

have been included. The theoretical profiles are similar to, but

do not exactly match, the measured profiles for three reasons.

First, the exact position of the mirror focus during the

experiment was uncertain to within several millimeters

because the precise center of the mirror was hidden inside the

chamber, and Fig. 14(c) shows that the striations predicted for

a measured re-entrant surface modification are strongly

affected by even a 1 mm displacement of the detector off the

focus. Second, the temperature and mounting conditions of

the mirror on B16 are inevitably less well controlled than

those on the Diamond-NOM, which is inside a stabilized

cleanroom. The shape of the mirror could therefore have been

distorted. Third, the X-ray speckle tracking technique used

with the upstream diffuser conveniently provides the slope

error of the mirror directly, but is known to be slightly less

accurate than other versions of this technique which provide

only curvature of the reflected wavefront. In addition, it

should be mentioned that the optical components on the

beamline may show some vibration introduced by their

environment. If it were large enough, it would expand and

smooth out the measured reflected beam profiles. However,

the comparisons of this section indicate that the vibrations are

not in fact influencing the profiles significantly.

Nevertheless, much about the experimental reflected beam

profiles can be understood from the simulations. The number

and strength of the spikes within each profile predicted by

geometrical optics for the measured five-segment and seven-

segment modifications are in accordance with those measured

in the knife-edge scans, indicating that geometrical optics can

at least qualitatively explain the measured beam profiles.

Theoretical profiles in Fig. 14 do not reproduce the measured

positions of the spikes very well, but geometrical optics even

explains this discrepancy by providing a simple formula for

the positions of the spikes: if q << L, S(x) is the measured

slope modification, and xc is a point on the mirror such that

S0(x = xc) = 0, then a spike will appear in the reflected beam

profile at a distance 2qS(xc) from the profile’s center, as shown

by Nicolas & Garcı́a (2013) and Sutter et al. (2014). This

occurs because in the neighborhood of x = xc the curvature is
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Figure 13
Figures of merit determined from the best-fit super-Gaussians of experimental beam profiles. (a) FWHM is 4–5 um as required, (b) p (higher value shows
a flatter top super-Gaussian), (c) R2 (closer to 1 indicates lower striation). As expected, the seven-segment modification provides a better approximation
to a flat-top intensity profile. The crosses show the results for the earlier set of knife-edge scans displayed in Fig. 12. The label for each cross shows the
beam size. The placement of the crosses at 386 mm on the graphs is only to allow them to be compared with the results for the re-entrant modifications.

Figure 14
(a) Simple concave defocusing for a 5 mm beam size at focus (400 mm from center of mirror), (b) five-segment for 4 mm beam size at focus, (c) seven-
segment for 4 mm beam size at focus. Beam profiles calculated by SHADOW (Sánchez del Rı́o et al., 2011). Black (bottom) curves represent perfect
mirrors with no polishing errors. Slight non-uniformities are due to restriction of illumination over super-polished length, leaving the far edges of the re-
entrant modifications dark. Subsequent curves in each plot are based on measurements of the mirror’s real surface (including polishing errors) using
Diamond-NOM and X-ray speckle tracking on B16. For the B16 data, ray traces were performed with the detector at 399 mm and 400 mm from the
center of the mirror.



exactly that of the ideal elliptical arc for focusing on the

detector, but the local slope is slightly changed from that of

the ideal ellipse so that the rays from that part of the mirror

are deflected to a focus at a slightly different point. Looking at

the measured five-segment and seven-segment surface modi-

fications, one would predict that the main creators of spikes

are the areas of the mirror near the breakpoints, which are

rounded (that is, have finite curvature throughout) and not

sharp as are the desired ideal modifications. This explains the

concentration of intensity at the edges of the profiles produced

by the five-segment modification, where the rounding near the

breakpoints is strong. It also explains why these ‘hot edges’ are

so much less prominent in the profiles produced by the seven-

segment modification: the change in curvature around the

breakpoints is more abrupt and therefore closer to the ideal

behavior.

The absence of other structure than the hot edges in the

measured five-segment profiles can be explained by the

absence of regions other than those near the breakpoints

where the derivative of the measured slope modification in

Fig. 8(a) becomes zero. It can also be explained by a fortuitous

lining up of the slope modification’s maxima and minima. Only

in Figs. 9(d) and 9(e) does a somewhat more complex struc-

ture, similar to the theoretical calculation in Fig. 14(b), start to

appear. There, spikes produced by the slope minima no longer

coincide on the detector, and neither do those produced by the

slope maxima. The slope minima and maxima of the measured

seven-segment modification do not line up so well, and so their

spikes do not overlap. This no doubt is responsible for the

more complex beam structures measured for this modification

in Fig. 10. The asymmetric ‘sawtooth’ spikes in Fig. 10(d)

match the theoretical example in Fig. 14(c) (second trace from

top), which appears due to the partial overlap of a stronger

spike with a somewhat weaker one. The strong central spike in

Fig. 10(e) is certainly due to the flat region at the center of

the measured seven-segment slope modification of Fig. 8(b),

which here produces a focus at the detector. This lies at the

junction between the joined electrodes 4 and 5 and is certainly

an imprint effect. The largest discrepancy between theory and

experiment is in the profile for the simple concave modifica-

tion [compare Fig. 12(a) with Fig. 14(a)]. This is probably

caused by an uncertain distortion of the mirror’s surface due

to the less well controlled environment at B16. However, the

larger beam expansions in Figs. 12(b)–12(d) show well sepa-

rated spikes much more like those calculated in Fig. 14(a).

Fig. 15 compares three selected measured beam profiles

generated by a simple concave, five-segment and seven-

segment surface modification with theoretical profiles of the

same width calculated using SHADOW on mirror figures

measured by the Diamond-NOM and by X-ray speckle

tracking at B16. Although striations within each plot do not

precisely agree, they are of similar strength. For the simple

concave modification, the 21 mm beam size was chosen on the

assumption that any distortion of the mirror on B16 due to

mounting and temperature would have been small and of

gradual spatial variation, and hence could be neglected more

easily for a large modification than for the small modification

that produced the 5 mm beam. For the five-segment and seven-

segment modifications, the measured plots selected were those

that best matched simulations at focus in Fig. 14.

Spikes in the beam profile at the focus could in theory be

introduced by locally flat regions of the mirror that are too

short to be corrected by setting the voltages. However, neither

the NOM data nor the X-ray speckle tracking data in Fig. 8

give convincing evidence that such regions actually exist.

Furthermore, the beam profiles produced by the five-segment

modification show little striation other than the hot edges. The

profiles produced by the seven-segment modification are

somewhat more difficult to evaluate, but the simulated profiles

of Fig. 15(c) show six distinct peaks, one for each breakpoint.

The measured profile shown in that figure does not have

significantly more structure than the simulations.

As a final remark, it is clear that the observed X-ray beam

striations are due to the polishing errors on the mirror, which

continue to limit performance even when at the state-of-the-

art nanometer level. Visible light laser beams present much

lower levels of striation when shaped because their longer

wavelengths make optical polishing errors less significant.
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Figure 15
(a) Simple concave for 21 mm beam size at focus, (b) five-segment for 4 mm at 384.6 mm from center of mirror chamber, (c) seven-segment for 4 mm at
385.6 mm from mirror chamber: comparisons of measured beam profiles (bottom) with SHADOW simulations using measured slope modifications from
NOM and (where available) X-ray speckle tracking at B16, displayed in each plot.



5. Conclusions

This article expands on previous research into re-entrant

surface modifications applied to a mirror for beam expansion

with three innovations: the construction of re-entrant modi-

fications on segments of any possible length and location, the

deliberate choice of breakpoints to coincide with the position

of the piezos and the polishing errors of a real deformable

bimorph mirror, and the application of well suited re-entrant

surfaces to such a mirror. Although the largest achievable

beam size at the focal position is smaller with the re-entrant

modification than with uniform curvature, the expanded beam

profile has a better combination of flatness and lower stria-

tion, especially when a larger number of segments are used. In

addition, striations that do appear when a re-entrant surface

modification is used depend chiefly on the rounding of the

curvature at the segment endpoints, rather than on the

random polishing errors as is the case with a modification

of uniform curvature. The re-entrant surface modifications

therefore offer greater predictability when applied to

different deformable bimorph mirrors. Finally, the new type of

re-entrant surface modification permits the beam size at the

focal position to be varied through a continuous range by

applying appropriate permissible voltages to the bimorph

mirror.

A few general statements may be made about the factors to

consider in order to optimize the number of segments. For a

chosen beam size at the focus, the maximum and minimum

slope of the re-entrant modification is independent of the

number of segments. However, the height of the re-entrant

modification will decrease as the number of segments

increases. A practical limit on the number of segments is

therefore reached when the height of the re-entrant modifi-

cation drops to a level comparable with the height variation of

the polishing errors. Laundy et al. (2016) point out that a

periodic surface modification will behave like a diffraction

grating if its period is too short. A pattern of diffraction fringes

would then appear in the beam profile and would vary

depending on the selected photon energy. However, here too

the possibility of applying non-periodic re-entrant surface

modifications may be useful as they will break up the

diffraction patterns.

The EEM bimorph mirror tested for this article is actually

quite restricted in its range of possible beam sizes because its

PRFs are considerably smaller than those of other deformable

bimorph mirrors that have been measured at Diamond.

Deformable bimorph mirrors with larger PRFs could expand

the beam more. Some of these mirrors have PRFs that lack the

strong overshoot and undershoot of the EEM PRFs around

the region of the electrode; it is possible that they would

experience less rounding of the curvature at the segment

endpoints and hence be less likely to cause hot edges. The

maximum achievable beam size at the focus would be limited

by the magnitude of the PRFs, the maximum and minimum

voltages allowed, and the maximum allowed difference

between voltages on adjacent electrodes. The experience

reported here with the EEM bimorph mirror shows clearly

that the last factor becomes more and more restrictive as the

number of segments is increased.
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