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The X-ray deformable mirror (XDM) is becoming widely used in the present

synchrotron/free-electron laser facilities because of its flexibility in correcting

wavefront errors or modification of the beam size at the sample location. Owing

to coupling among the N actuators of an XDM, (N + 1) or (2N + 1) scans are

required to learn the response of each actuator one by one. When the mirror has

an important number of actuators (N) and the actuator response time including

stabilization or the necessary metrology time is long, the learning process can be

time consuming. In this work, a fast and accurate method is presented to drive

an XDM to a target shape usually with only three or four measurements during

inspection. The metrology data are used as feedback to calculate the curvature

discrepancy between the current and the target shapes. Three different

derivative estimation methods are introduced to calculate the curvature from

measured data. The mirror shape is becoming close to the target through

iterative compensations. The feasibility of this simple and effective approach is

demonstrated by a series of experiments.

1. Introduction

The use of adaptive optics or deformable mirrors (DMs) has

been extensively studied for the compensation of wavefront

distortion in various applications in the visible-light domain

including human vision, space applications, optical commu-

nications, lasers and microscopy (Tyson, 2000). After years of

improvement from a theoretical concept, to the early experi-

mental stage, and finally turning into a sort of standard X-ray

optics tool, nowadays the X-ray deformable mirror (XDM) is

widely utilized at many synchrotron/free-electron laser light

sources (Idir & Mercere, 2013). The XDM is now becoming an

integral part not only in the present but also in the future large

X-ray and EUV projects and will be essential in utilizing the

full potential of new light sources currently under construc-

tion. The primary objective of using an XDM in a synchrotron

radiation or a free-electron laser facility is to correct wave-

front errors or enable variable focus beam sizes for different

experimental setups, which are important aspects of the

performance and flexibility of a beamline.

XDMs are usually long silicon (or glass) mirrors used at

grazing incidence and equipped with N voltage-controlled

actuators allowing local shape deformations. In order to

exploit the full potential of an XDM, it is commonly necessary

to perform a calibration or learning process to drive the mirror

to the desired target shape. Usually, in order to optimize the

voltages on actuators for minimized slope or height errors, the

characterization of the XDM is carried out using the following

process: an initial measurement needs to be collected, for

example with all voltages of actuators set as 0 V, and N or 2N
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measurements are then taken to extract

the influence function. The influence

function is the characteristic of an XDM

corresponding shape response to the

action of a single actuator. In the clas-

sical learning process of an XDM,

(N + 1) or (2N + 1) measures are

required in total to obtain all actuators’

influence function. However, when the

number of the actuators N is relatively

large, e.g. N = 16, and the actuator

response or the necessary metrology is

slow, e.g. 1 h, then the learning process

can be time consuming, which is neither

expected nor preferred for the day-to-

day mirror inspection in a metrology

laboratory.

In this work, we present a fast and

accurate method to drive an X-ray active bimorph mirror to

the desired target shape usually with only three or four

measurements during mirror inspection. Instead of sequen-

tially measuring and calculating the influence function of each

actuator and then predicting the voltages, the metrology data

are directly used to ‘guide’ the XDM from its current status

towards the particular target via iterative compensations. The

feedback in the iteration process is the curvature error at each

actuator location from the desired target. The curvature is

estimated from the measured slope or height data through

derivative calculation. Three methods are introduced to esti-

mate the derivative from the measured data. The paper is

organized as follows. x2 introduces the principle of the

proposed method; the experimental results are described in x3,

and section x4 discusses some potential improvements.

2. Principle

In the adaptive optics community, the measurement of the

influence function plays a vital role in assessing the perfor-

mance of a DM. As one of the most important parameters of a

DM, the influence function determines its achievable correc-

tion capability. Measuring the influence function (learning

process) can be very fast for classical adaptive optics used in

visible light (astronomy, laser, etc.). However, in the X-ray

domain, mirror metrology is often performed using a slope or

height profiler and the measuring time can be as long as 1 h for

a 500 mm-long mirror.

Unlike the classical learning process generally used for

adaptive optics (Tyson, 2000; Vannoni et al., 2015, 2016), the

proposed approach does not sequentially measure the influ-

ence functions but utilizes the metrology data to guide the

XDM towards the target shape with a closed-loop feedback

mechanism. The essential principle is to generate voltage

feedback via the curvature estimation from the metrology

data. In order to achieve the minimal shape difference from

the target, voltages applied to the actuators are adjusted until

the minimization goal is achieved. Fig. 1 illustrates a flow chart

of the whole procedure with a feedback loop.

The starting voltages could be any applicable values. The

initial voltages for the actuators are usually set to the

suggested values either from XDM fabricator or by simula-

tions, or even just simply set as zero volts. The XDM under the

present voltages is then measured with a slope- or height-

measurement instrument, e.g. NOM/LTP (Qian et al., 1995;

Takacs et al., 1987; Siewert et al., 2004) or an interferometer

(Yamauchi et al., 2003). In Fig. 1, the symbol S t stands for the

target shape, which can be the slope or height depending on

the metrology tool, and Si is the shape measurement result in

the ith iteration. If the root mean square (RMS) of the shape

error Si � S t is under the specified value �1 or the shape

update Si � Si�1 is within the measurement uncertainty �2 of

the metrology instrument, then the iteration stops. Otherwise,

the loop continues by calculating voltage updates. The

curvature difference �Ca at each actuator location compared

with the target is estimated after comparing the difference

between the current and the target shape. Applying the

hypothesis that there is the same linear-dependent voltage–

curvature relationship of all actuators, see equation (1), the

voltage feedback �U can be calculated,

�U ¼ K �C; ð1Þ

where the coefficient K links the necessary voltages to have

a curvature change on the mirror. The value of K can be

sometimes provided by the XDM fabricator or experimentally

determined by calculating the changes of curvature from two

measurements with different input voltages. Once the voltage

feedback �U for each actuator is determined, a new set of

voltages Ui+1 = Ui + �Ui can be updated to close the loop as

illustrated in Fig. 1 and the next iteration begins with applying

the new voltages to the XDM for measurement.

The measurement data from metrology instruments are

commonly the slope or height, not directly the curvature, so it

is necessary to estimate the curvature from the measured slope

dz/dx or height z. The curvature can be expressed as
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Figure 1
A feedback loop minimizes the shape error from the target.



C ¼
d2z=dx2

1þ dz=dxð Þ
2

� �3=2
: ð2Þ

Since the slope of the X-ray mirror dz/dx is usually rather

small compared with unity, the curvature can be expressed as

the first derivative of the slope, i.e. the second derivative of the

height, as described by

C � d2z=dx2: ð3Þ

Once the first derivative has been accurately estimated, it is

straightforward to push it to the second derivative; therefore

in this work we focus on curvature estimation from the

measured slope. Since the limited number of actuators can

only correct low-frequency shape errors, the curvature esti-

mator should have the capability of extracting local curvature

from measurement data with high-frequency components (e.g.

the surface roughness and the measurement noise). Three

methods are introduced here to complete the curvature esti-

mation.

2.1. Windowed Fourier ridges

The first method, ‘windowed Fourier ridges’ (WFR), was

originally proposed for fringe analysis (Kemao, 2004; Huang et

al., 2010). The WFR method has the capability of calculating

the local angular frequency, which is the first derivative of the

fringe phase. If we consider the slope data as the fringe phase,

the one-dimensional (1-D) WFR method can provide the

curvature (the first derivative of slope). In implementation, we

construct a 1-D plural fringe f(x) which can be described as

f xð Þ ¼ exp is xð Þ½ �; ð4Þ

where exp[ . . . ] is the exponential function, s(x) stands for the

measured slope, and i is the imaginary unit with i2 = �1. The

1-D WFR can be presented as

Sf u; �ð Þ ¼
R1
�1

f xð Þ g x� uð Þ exp �i�xð Þ dx; ð5Þ

where Sf(u, �) is the two-dimensional spectrum for 1-D WFR,

x and u are spatial coordinates, � is the angular frequency, and

the window function g(x) is usually chosen to be a normalized

Gaussian function for kg xð Þk2 = 1 as

g xð Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi
�
p

�
p exp �

x2

2�2

� �
; ð6Þ

where � is the standard deviation. The local angular

frequencies ! at position u can be expressed as

! uð Þ ¼ arg max
�

Sf u; �ð Þ
�� ��: ð7Þ

As a result, the first derivative of the slope, or the curvature C,

can be determined as

C ¼ !=�x; ð8Þ

where �x stands for the spatial sampling step in the x-direc-

tion. Fig. 2 demonstrates that the first derivative of a given 1-D

data set can be calculated using the 1-D WFR method. The

grayscale in the bottom image in Fig. 2 shows the amplitude of

Sf, and its maxima along the x-direction are called the ‘ridge’.

The values of the first derivative are achieved at the ridges for

each lateral coordinate.

An interpolation procedure may be required to obtain the

curvature values at the actuator locations. In practice, the

locations where the actuators are installed can be known from

the mechanical design of the XDM.

2.2. Weighted polynomial fitting

Another method is the ‘weighted polynomial fitting’ (WPF).

Similar to the WFR method, a window centred at the actuator

location is used to select the data for analysis as shown in Fig. 3.

Only the slope data inside the window region are analysed.

The windowed data are then fitted with polynomials (usually

no more than seven orders to avoid overfitting), see

equation (9),

dz

dx
¼
^

s xð Þ ¼
PN

n¼ 0

pn x n: ð9Þ

Once the polynomial coefficients pn are determined by the

least-squares method, the first derivative can be expressed in a

form of polynomials,

CðxÞ �
d2z

dx2
¼
^ ds xð Þ

dx
¼
XN

n¼ 1

pn nx n�1: ð10Þ
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Figure 2
The WFR method can estimate the first derivative of given slope data.

Figure 3
The measured slope can be fitted with polynomials section by section, and
the curvature is then represented through the determined polynomial
coefficients.



Finally, a weight function (commonly a normalized Gaussian

function) is applied when averaging the curvature results

within a section to enhance the noise resistance of the method.

2.3. B-spline based method

Instead of using window-based methods, we can use B-

splines (Unser et al., 1993) to estimate curvature values from

the measured slopes in order to achieve automatic data

analysis. In particular, we can represent the slope data with a

uniform cubic B-spline (UCBS) as

dz

dx
¼
^

s xð Þ ¼
XJ

j¼ 1

cjNj xð Þ; ð11Þ

where Nj(x) is the UCBS basis function which is fully deter-

mined with a known sampling position x, and the coefficients cj

are estimated in a least-squares sense with the measured slope

data. It is straightforward to calculate the derivative with B-

splines as demonstrated in Fig. 4, because the derivative of a

B-spline of degree d can be expressed as a linear combination

of B-splines of degree d � 1,

dNj;dþ1 xð Þ

dx
¼ d

Nj;d xð Þ

kjþd � kj

�
Njþ1;d xð Þ

kjþdþ1 � kjþ1

� �
; ð12Þ

where kj � kj+1 � . . . � kj+d � kj+d+1 are the selected knots.

Therefore, the curvature can be expressed as

C xð Þ �
d2z

dx2
¼
^ ds xð Þ

dx
¼
XJ

j¼ 1

cj

dNj;dþ1 xð Þ

dx
: ð13Þ

Once the curvature C has been estimated, the voltages can be

accordingly updated for the next iteration, if necessary. In the

next section, we will demonstrate several experiments to show

the feasibility of the iterative approach. The three proposed

methods for curvature estimation are used in these mirror

inspection experiments.

3. Experiments

In this section we show a series of experiments where a

Stitching Shack–Hartmann (SSH) metrology system (Idir et

al., 2014) is used to control and inspect the XDMs towards

target shapes (see Fig. 5).

In the first series of experiments the curvatures are then

estimated using the WFR method from the slope data taken

with the SSH. In the second experiment the WPF method is

employed, and the B-spline method is applied in the third

experiment.

3.1. Experiment using the WFR method

In the first experiment, the XDM under test is a 700 mm-

long bimorph mirror with 12 actuators. There are two target

ellipses for this piece of XDM. The first ellipse parameters are

p = 37.35 m, q = 13.65 m, � = 3.5 mrad, and the parameters for

the second are p = 37.35 m, q = 22.65 m, � = 3.5 mrad. The

starting voltages for the first ellipse (p = 37.35 m, q = 13.65 m,

� = 3.5 mrad) are suggested by the XDM fabricator. However,

maybe due to mirror transportation and the difference in

measurement conditions, the suggested voltages do not drive

the mirror to the target shape with the expected specified

value of 0.5 mrad r.m.s., whereas it is still a good initial point to

start the iteration.

The slope of the mirror is measured by SSH after voltages

are applied. Comparing the current slope with the target one,

the slope residual is 1.03 mrad r.m.s. as plotted in Fig. 6. Using

the WFR method, the curvature residual can be estimated.

The suggested voltages in Fig. 6 are calculated with the value
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Figure 4
B-splines can fit the measured slope and estimate its derivative as well.

Figure 5
XDMs are inspected with our stitching Shack–Hartmann system in the NSLS-II metrology laboratory.



of K that is also provided by the XDM fabricator and then

updated to the XDM for the next measurement. Fig. 7 shows

that the slope residuals are reduced to 0.46 mrad r.m.s. after

applying the suggested voltages, which indicates that the

feedback is effective. The 0.46 mrad r.m.s. slope error

converted to height profile error is about 15.1 nm r.m.s. and

67.1 nm peak-to-valley (PV).

It is possible to continue driving the mirror from the present

shape to the second target ellipse (p = 37.35 m, q = 22.65 m, �=

3.5 mrad). As shown in Fig. 8, it is

obvious that the slope residual will be

rather large (10.49 mrad r.m.s.) once we

change the target shape from the first

ellipse to the second one.

The curvature residual estimated

with the WFR method in Fig. 8 indicates

a large curvature variation along the full

mirror size due to the modification of

the target. The voltage change calcu-

lated from equation (1) is used as

feedback in the loop. The suggested

voltages shown in Fig. 8 are updated

to deform the mirror and the iteration

continues.

Fig. 9 shows that the iterations can

effectively reduce the root mean square

error (RMSE) of the updated slope

data. With two more iterations, the

RMS of slope residuals was successfully

reduced from 10.49 mrad to 0.43 mrad as

shown in Fig. 9, which is already similar

to the performance for the first ellipse
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Figure 6
Voltages are suggested by calculating the curvature residuals using the
WFR method.

Figure 7
The second mirror iteration gives smaller slope residuals.

Figure 8
Curvature needs to be changed accordingly, once the target changes.

Figure 9
Slope residuals reduce along iterations. The slope residual drops from 10.49 mrad r.m.s. to less than
0.5 mrad r.m.s. with three iterations.



target shown in Fig. 7. The 0.43 mrad r.m.s. slope error

converted to height profile error is about 12.6 nm r.m.s. and

50.6 nm PV. The results in Figs. 7 and 9 indicate that the WFR

method can successfully calculate the curvature from the

measured slope data and provide the correct feedback to

guide the mirror towards the targets.

3.2. Experiment using the WPF method

In this section, we demonstrate another experiment of

controlling an XDM to show the effectiveness of the proposed

approach with the WPF curvature estimator. The bimorph

mirror under test is about 740 mm long with 16 actuators and

two 4 mm-wide stripes (Pd-coating and Si). The Shack–Hart-

mann optical head used as a metrology tool has about a 12 mm

� 18 mm field of view in a single shot, so both stripes can be

measured during one scan. The target shape for both stripes is

the same ellipse with p = 40.69 m, q = 11 m, � = 2.5 mrad with

0.2 mrad r.m.s. residual slope error.

Starting with the fabricator-suggested voltages, the Pd-

coating stripe is analysed first and the RMSE of the slope is

about 0.33 mrad. With a polynomial fitting section by section,

the coefficients of polynomials are determined to represent

the slope data as shown in Fig. 10.

In addition, the curvature values at the 16 actuator locations

can be estimated through the determined polynomial coeffi-

cients according to equation (10). The voltage updates are

then determined and applied to the XDM for the next round

of metrology.

Fig. 11 shows that the slope is reduced to 0.21 mrad r.m.s. in

two iterations. The 0.21 mrad r.m.s. slope error converted to

height profile error is about 4.4 nm r.m.s. and 17.4 nm PV. It

is not difficult to notice that the slope residuals seem quite

similar to each other during the optimization, except for the

changes of the local curvature (local tilts in slope).

If we move our analysis to the Si stripe, due to the differ-

ence in location of the stripes in the mirror, the optimized

voltages used for the Pd-coating stripe will not work perfectly

(see Fig. 12; the Si strip is at 0.43 mrad r.m.s. with the same
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Figure 10
Voltages are updated with WPF-estimated curvatures.

Figure 11
Curvature estimation using the WPF method guides the slope error on
the Pd-coating stripe down to a lower level.

Figure 12
Optimal voltages found for the Pd-coating stripe do not provide the same
level of slope error on the Si stripe. Additional iterations are needed to
obtain the optimal voltages for the Si stripe.



target ellipse). In order to find the optimal voltages for the Si

stripe, an additional iteration needs to be performed.

One of the advantages of the proposed method is that the

initial voltages for a new loop can be any applicable voltages

(satisfying the voltage constrains), which means the iteration

for the Si stripe can start from the optimized voltages for the

Pd-coating stripe.

After one iteration, the slope error for the Si stripe is

reduced to 0.22 mrad r.m.s. (see Fig. 13), which is close to the

result of the Pd-coating stripe. Just to be sure whether there

is some room to improve the shape, one more round is

conducted. The resultant slope residuals become 0.23 mrad

r.m.s. (see the last iteration in Fig. 13). The 0.23 mrad r.m.s.

slope error converted to height profile error is about 10.1 nm

r.m.s. and 35.3 nm PV. Comparing with the previous round,

the RMS of the slope residuals keeps at the same level with no

obvious improvement and the slope variation is less than our

measurement uncertainty, which indicates that it could be

treated as the optimized status for this XDM under investi-

gation with the particular metrology, mirror surface and

degree of freedom by these actuators.

3.3. Experiment using the B-spline method

In this section we demonstrate that the B-spline based

method can be used to estimate the curvatures and then

feedback voltages to control the XDM towards the right target

from all-zero voltages as our starting point. In this experiment

the XDM under test is a 500 mm-long bimorph mirror with N =

16 actuators. The target shape is a cylinder with a radius of

curvature R = 5390 m.

As shown in Fig. 14, starting with all actuators at zero volts,

the measurement shows that the mirror slope error is

0.94 mrad r.m.s. from the cylinder target. By using the B-spline

to estimate the ‘curvature distance’ using as a break number

the actuator number N = 16, a new voltage combination is

suggested.

The suggested voltages in Fig. 14 are then updated to the

XDM for the next iteration. Fig. 15 shows that the slope

residuals drop down to 0.27 mrad r.m.s. after applying the

suggested new voltages, which indicates that the iteration

process is effective. A fine adjustment on voltages is suggested

from B-spline based curvature analysis.

By using the newly updated voltages, the residual slope

error further reduces to 0.19 mrad r.m.s. after one more round

as shown in Fig. 16. Since the slope residual meets the speci-

fication (<0.2 mrad r.m.s.), the iteration stops. The 0.19 mrad

r.m.s. slope error converted to height profile error is about

4.5 nm r.m.s. and 17.8 nm PV.

Fig. 17 shows that the iterations can effectively reduce the

RMSE of the updated slope data. With two iterations, the

slope residuals are reduced from 0.94 mrad r.m.s. to 0.19 mrad

r.m.s. The results indicate that the B-spline based method

successfully estimates the curvature from the measured slope

data and offers the correct feedback to control the mirror

towards the target shape.

4. Discussion

It is meaningful to discuss the limitations and merits of the

proposed approach with the three derivative estimators to
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Figure 13
The Si stripe is investigated from the optimal voltages for the Pd-coating
stripe, and it converges to 0.23 mrad r.m.s.

Figure 14
Voltage updates are suggested via the curvature estimation using the B-
spline method.



identify some potential improvements. Generally speaking,

the proposed approach has the following limitations and

merits.

Limitations:

(i) This approach can inspect the XDM for quality check,

but it is not able to predict voltages for an arbitrary target

shape, since the influence function is not measured.

(ii) The proposed method assumes that all actuators are

similar with the same coefficient K. A reliable way to deter-

mine the localized parameter K (each actuator may have a

different K value) may be needed for

further improvement.

Merits:

(i) There is no need to measure all of

the influence function for each actuator,

which saves metrology time.

(ii) During the iteration, the slope or

height is monitored by the metrology

tool. The resultant performance under

the optimal voltages is always double-

checked with measurement.

The three methods for derivative

estimation have their advantages and

disadvantages as well. The WFR and

WPF methods are window-based

methods, so the window size becomes a

parameter which may need adjustment

in handling different XDMs according

to different actuator numbers, and

mirror length, as well as scanning steps.

In addition, the WFR method is not

good for calculating the derivatives at

the two boundary regions of the mirror,

because zero padding at the data

boundaries will yield error in estimation. In contrast, the data

processing with the B-spline based method is highly automatic

with no human–computer interaction, so the issue of window

size selection in the WFR and WPF methods is avoided in

principle, but the WFR and WPF methods are relatively easier

to implement.

5. Conclusion

In this work, a practical scheme is presented to control and

inspect the XDM with a feedback mechanism. The mirror

shape is measured under a closed-loop control by adjusting

the applied voltages. By estimating the curvature residual

according to the slope or height metrology data, the voltages

are updated based on the relation between the changes of

voltage and curvature. Three methods (WFR, WPF and B-

spline) are introduced to estimate the derivative in order to

obtain the curvature from the measured slope or height data.

A series of experiments demonstrates that the proposed

approach is able to control the XDMs towards the desired
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Figure 15
The mirror with updated voltages has smaller slope residuals.

Figure 16
Curvature needs to be changed accordingly, once the target changes.

Figure 17
Slope residuals reduce along the iterations. The slope residual reduced from 0.94 mrad r.m.s. to
0.19 mrad r.m.s. with two iterations.



target shapes. The iteration commonly converges with three or

four measurements. This technique is effective and efficient in

day-to-day XDM inspection in an optical metrology labora-

tory. It should be noted that this approach can also be used

in situ with an X-ray wavefront sensor (pencil beam, Hart-

mann, grating shearing, or curvature sensor).
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