
research papers

248 https://doi.org/10.1107/S1600577516017756 J. Synchrotron Rad. (2017). 24, 248–256

Received 15 August 2016

Accepted 7 November 2016

Edited by A. Momose, Tohoku University, Japan

Keywords: big data; multimodal; imaging;

mapping; tomography.

Automatic processing of multimodal tomography
datasets

Aaron D. Parsons,a* Stephen W. T. Price,a Nicola Wadeson,a Mark Basham,a

Andrew M. Beale,b,c Alun W. Ashton,a J. Frederick. W. Mosselmansa and

Paul. D. Quinna

aDiamond Light Source, Didcot, OX11 0DE, UK, bResearch Complex at Harwell, Didcot, OX11 0FA, UK, and
cDepartment of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.

*Correspondence e-mail: aaron.parsons@diamond.ac.uk

With the development of fourth-generation high-brightness synchrotrons on the

horizon, the already large volume of data that will be collected on imaging and

mapping beamlines is set to increase by orders of magnitude. As such, an easy

and accessible way of dealing with such large datasets as quickly as possible is

required in order to be able to address the core scientific problems during the

experimental data collection. Savu is an accessible and flexible big data

processing framework that is able to deal with both the variety and the volume

of data of multimodal and multidimensional scientific datasets output such as

those from chemical tomography experiments on the I18 microfocus scanning

beamline at Diamond Light Source.

1. Big data processing: a solution for modern scientific
data processing

Modern scientific investigations are producing data at an

increasing rate and volume, such that the number of proces-

sing hours required soon exceeds that which is feasible for a

single user to spend processing them. This also detracts from

the possibility of real-time analysis as the experiment

progresses, so users often cannot assess how successful the

experiment was until after they have left the beamline/facility.

Ideally, the user should be able to view the processed data as

the data collection progresses, enabling them to interactively

guide the experiment.

The IBM big data and analytics hub classifies big data

according to four criteria: volume, variety, velocity and vera-

city (IBM, 2014). For scientific applications such as multi-

modal chemical tomography, detailed in this article, we are

primarily concerned with the volume and the variety of the

data, but with extensibility to high velocity throughput in the

near future. We also need the pipeline to be usable and

extensible by as many scientists as possible.

Due to the volume of the data, we require such a pipeline to

be able to exploit data parallelism by running across a cluster.

This constraint also means that due to limits on RAM for each

node (or a typical PC) we would want to avoid loading all the

data at once and instead rely on disc I/O. We would also wish

to preserve the raw data to be archived to tape for future

analysis/validation checks.

Unfortunately, such criteria exclude a lot of the most

recently published candidates from use (Daurer et al., 2016;

Prescher & Prakapenka, 2015; Vogelgesang et al., 2016; Liu et

al., 2012).

ISSN 1600-5775

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577516017756&domain=pdf&date_stamp=2017-01-01


One of the more likely recent candidates for such a tool is

MMX-I (Bergamaschi et al., 2016). However, whilst it can deal

with a reasonable variety of data, MMX-I is written in Java

and limited to a single compute node. This places a limit on

both the volume and the velocity of the data that can be

processed. Java is also not broadly written among scientists,

making it hard for beamline staff to access. aXis2000

(aXis2000, 1997) is also limited for similar reasons.

TomoPy (Gürsoy et al., 2014) is another leading candidate

for scientific data processing for high-volume data. It is,

however, a very topic-specific framework focused on tomo-

graphy. This limits its possible applications, as it often requires

a sizeable effort to extend it to include other data reduction

processes such as X-ray fluorescence tomography (Hong et al.,

2015; Gursoy et al., 2015) or even other tomography toolboxes

(Pelt et al., 2016). As it is highly optimized for use on parti-

cular cluster architecture it is hard to roll out a performant

framework to different facilities.

1.1. Savu: an open-source Python-based scientific data
processing pipeline

Savu (https://github.com/DiamondLightSource/Savu) is an

open-source processing pipeline, capable of processing

multimodal, n-dimensional data in serial or parallel, on a PC

or across a cluster. Developed at Diamond Light Source, it is

an object-oriented Python framework that performs a list of

processing steps as specified by the user (a ‘processing chain’)

and it is targeted at dealing with a broad variety of scientific

problems (Wadeson & Basham, 2016).

The processing chain is built by the beamline staff/user prior

to execution, currently using a command line tool: a GUI is in

development. Plugins are added to the chain and the para-

meters set via this tool, which is then recorded as a config-

uration in a NeXus-formatted file. Once a configuration file

is crafted, the user can run successive datasets through this

processing chain automatically. This is particularly useful for

experiments which yield a high number of datasets with

similar, or the same, processing requirements, such as those

detailed in the work presented here. During experiments in

which this processing chain changes, users have been able to

follow the documentation to easily amend the parameters.

Each step of the chain is implemented in a modular ‘plugin’

format that is abstracted from the rest of the framework,

making plugins very easy to write, extend and use. The

framework can be separated into three distinct layers: the

plugin layer, the data layer and the control layer.

1.1.1. The plugin layer. The plugin layer performs the actual

processing of the data. Each plugin performs a specific,

independent task, such as filtering or tomographic recon-

struction, which can be applied on the central processing unit

(CPU) or graphics processing unit (GPU). The plugin task

must be parallelizable across a data dimension, where the

smallest potential unit of data parallelism is known as a frame.

A frame can be any shape or rank and is referenced by setting

a ‘pattern’ keyword that describes the data. Plugins need only

specify which pattern they will input and output, and the

framework organizes the rest.

The plugin layer is not concerned with the transport of the

data, which allows plugins to be easily slotted into the existing

framework. Each plugin simply requests the type and amount

of data it requires, and the framework organizes the move-

ment of these chunks of data (where a chunk is one or more

frames). It is the job of the plugin to process the requested

frames and return the output to the framework. The key result

of this abstraction is that the scientist need only contribute the

part of the code that performs the process, which usually they

already have in the form of a script.

There are also two special categories of plugins known as

loaders and savers, which must start and end the processing

chain, respectively, allowing a variety of different data formats.

1.1.2. The data layer. The data layer holds all the infor-

mation relating to each of the datasets associated with the

current processing chain. The framework is capable of holding

(and processing) multiple datasets at a time, creating and

deleting them as the processing chain is traversed. Each

dataset can experience its own unique list of processing steps

because only the desired plugins need to be applied to each

dataset and vice versa. The data layer also deals with the data

slicing (i.e. organizes and extracts the relevant data in the

order required by the plugin), data padding as well as orga-

nization of the associated metadata, i.e. axis information.

1.1.3. The control layer. The control layer runs and controls

the processing chain, as well as the interaction between the

plugin layer and the data layer. It is responsible for the

management of available datasets and controls the passing of

data to the plugin.

1.1.4. Backends. The data and the control layers encompass

the movement and access of the data with further abstraction,

creating a sub-layer known as the transport layer. The trans-

port layer interfaces the plugins to the different ‘backends’: a

term used here to describe the mechanism responsible for data

parallelism. The framework is designed to allow easy extrac-

tion of the transport layer, allowing interchangeable backends,

and currently offers Parallel HDF5 (The HDF group, 2014a)

and DistArray (Enthought Canopy, 2015), providing a trade-

off between memory and speed. Parallel HDF5 is particularly

useful for large datasets, as the data can be accessed by

parallel reads/writes directly to/from a file, but speed is limited

by MPI (Message Passing Interface) I/O. DistArray distributes

the data across the processes, providing fast access to the data

during processing, but memory is limited to available RAM.

Current backends under investigation include HDF5 virtual

dataset (The HDF group, 2016) and HDF5 SWMR (The HDF

group, 2014b).

It is useful to note here that the package dependencies of

Savu are merely MPI, the Anaconda distribution of Python

(Anaconda, 2016) containing the packages relevant to the

desired plugins and the dependencies necessary for the

backend.

2. Application: multimodal chemical tomography

Biological and material science problems are often investi-

gated by a single microscopy/spectroscopy technique.

research papers

J. Synchrotron Rad. (2017). 24, 248–256 Aaron D. Parsons et al. � Automatic processing of multimodal tomography datasets 249



However, such investigations using a single technique do not

provide the complete solution to the problem. Therefore, it is

often beneficial and instructive to collect data from multiple

modalities simultaneously (Price et al., 2015a,b). The conti-

nuing development of chemical tomography techniques,

yielding spatially resolved information on, for example,

elemental and phase distribution, is able to provide a more

detailed picture of the nature of a material than the corre-

sponding bulk measurements.

2.1. Catalyst investigation

Catalytic activity and selectivity are determined not just by

the chemical composition of the catalyst but, in the case of

supported catalysts, the distribution of the catalyst on the

support. Conventional bulk measurement techniques such as

X-ray fluorescence (XRF), X-ray diffraction (XRD) and

X-ray absorption spectroscopy are able to determine the

catalyst (chemical) composition; however, the information

provided is an average of all components detected. The

combination of these X-ray characterization techniques with

computed tomography (CT) enables the location of chemical

components within or on a support. This spatially resolved

data provides superior information on the nature and location

of the active state of the catalyst, the nature and stability of the

support, and any changes that may occur during pre-treatment

and activation.

2.1.1. An example catalyst sample. This specific example is

a metal nanoparticle catalyst supported on graphitic carbon.

Graphitic carbon is the support of choice for many precious

metal catalysts. Importantly the precious metal can be readily

reclaimed by combustion of the support and the carbon is

inert under acidic and alkaline conditions. Furthermore, the

precious metal precursors can be reduced at low temperatures

(often at room temperature) in flowing hydrogen. However,

graphitic carbon is less frequently employed as a support for

base metals because these normally require higher calcination

temperature for graphitization, often leading to oxidation of

the support material, or else in the presence of hydrogen at

relatively high temperatures leads to hydrogenation of the

support material; oxidation and hydrogenation often resulting

in the collapse of the carbonaceous support. Graphitic carbon

is produced by pyrolysis and subsequent graphitization (e.g.

with steam) of naturally occurring carbon sources (wood, peat,

nutshells), after which a catalytic precursor in the form of

a soluble metal salt (often a metal nitrate) is applied via

impregnation. Calcination and reduction procedures are

subsequently employed to produce the final catalyst. The

catalyst studied here was synthesized by a novel method to

obtain carbon-supported base metal nanoparticles in a single

pyrolysis treatment (Hoekstra et al., 2015a,b).

2.1.2. Techniques. mXRF-CT reveals the location of

elements in the particle but not their chemical structure or

extent of interaction; that is, whether the elements are just co-

located on the micrometre scale or in fact alloyed, what the

particle sizes are and whether they are non-crystalline

or crystalline. Besides the inability to resolve the chemical

structure present, mXRF-CT measurements are limited by the

energy of incident and fluorescent X-rays, i.e. if the incident

X-ray energy is below the binding energy of a core electron of

a given element, then the element will not be detected as no

fluorescence will occur. Hence, the mXRF-CT signal is affected

by the attenuation of the probe radiation. Conversely, if the

energy of the fluorescent X-ray of an element is very low (or

the sample density and volume are sufficiently large) then the

fluorescent X-ray will be attenuated and not able to penetrate

the sample beyond a few micrometres and, therefore, not be

representatively detected.

mXRD-CT on the other hand is not limited by the identity

of the elements in the sample, rather the crystallinity and,

therefore, provides a good complement to mXRF-CT, giving

information on interaction of elements present (Beale et al.,

2014). Whilst crystalline structure is a necessity, the elemental

mass is less important; thus mXRD-CT can detect much

lighter/heavier elements than would be visible by mXRF-CT

with a given incident X-ray energy. Absorption-CTenables the

identification of pore structure and voids that may be present

within a sample. These can appear as empty regions in both

mXRF-CT and mXRD-CT.

However, when using these methods it may be that there is

an element that is too light/heavy and/or in a physical state

that does not possess ordering on the scale of the beam size

which will be more difficult to detect. It is from the comple-

mentary information provided by an absorption measurement

that this detail is revealed.

A secondary use of collecting absorption-CT with a corre-

sponding mXRF-CT dataset is that the absorption data may be

used to correct for sample absorption effects. This is often

manifest as shadowing of the fluorescence signal on the side of

the sample furthest from the detector, particularly if the

element of interest has a low atomic mass, or the sample

volume/density is large. However, even without obvious

shadowing, correction for sample absorption improves the

quality of the reconstructed image by improving quantification

and distribution estimates. This same correction can also be

used to correct for beam hardening of mXRD-CT data, but we

do not pursue this in the current work.

The collection of these datasets in parallel not only reduces

the duration (and hence required dose) of the experiment, but

also guarantees that the sample is in the same state for each

measurement, something of crucial importance when imaging

a dynamic system, such as an industrial catalyst during

operation.

For this particular sample, only a two-dimensional slice is

shown; however, in many cases the structural information of

interest will be three-dimensional. This, therefore, necessitates

imaging of larger three-dimensional volumes at each stage

rather than a time series of two-dimensional slices. As such,

the processing pipeline must be able to handle large volumes

of multidimensional data.

2.1.3. Experimental. The experiment was performed at the

I18 microfocus spectroscopy beamline at Diamond Light

Source (Mosselmans et al., 2009).

research papers

250 Aaron D. Parsons et al. � Automatic processing of multimodal tomography datasets J. Synchrotron Rad. (2017). 24, 248–256



A catalyst sample was loaded into a 400 mm outer diameter

quartz capillary (10 mm wall thickness). The capillary was

mounted on top of a motorized Gothic arch bearing stage with

XY travel to allow for centring of the particle on the axis

of rotation. mXRF-CT data was collected by a Vortex ME-4

silicon drifts detector and XSPRESS-3 electronics. The X-ray

beam was focused to a 2.5 � 3.0 mm spot (V � H) using

Kirkpatrick–Baez mirrors and the sample was rastered across

the beam in a translate–rotate data collection scheme with a

mXRF spectrum collected at 2 mm intervals with a collection

time of 1.0 s per pixel. mXRD-CT data was collected concur-

rently with the mXRF-CT data with a collection time of 650 ms

and 350 ms readout time per pixel. The images were recorded

using a Photonic Sciences CMOS-based X-ray imaging

detector. The detector was calibrated using a LaB6 reference

material. Absorption-CT data was also collected at the same

time by use of an ion chamber positioned behind the sample.

Each sinogram consisted of ca 100 points per row. A total of

52 projections were imaged, in 7� rotational steps, which,

although coarser than for a typical full-field tomography

dataset, was sufficient to provide a good quality tomography

reconstruction.

2.2. The processing chain

To process these different modes of data we must pass

through a number of different reduction and filtering steps

(Fig. 1). The mapping of the number of input to output data-

sets can vary between one-to-one, many-to-one, one-to-many,

many-to-many and one-to-none where metadata such as frame

statistic can be added but no output data provided. As we will

see in the following example processing chain, the plugin

structure of Savu can deal with all of these mappings with no

extra work required by users, and very minimal work required

for plugin developers.

The two key parts to any processing chain are the methods

for loading and saving data. In Savu these are represented as

specific types of plugin of which there are a pre-written

selection, or can easily be manufactured according to the data

source.

2.2.1. Loader. For the processing chain used in this work,

the data is mostly read in from NeXus (Könnecke et al., 2015)

formatted HDF5, whereby the different modalities are orga-

nized by application definitions. Whilst HDF5 format is

preferential due to the sliceable and chunkable nature of their

datasets, in this instance the XRD data is output from the

detector in TIFF (tagged image file format) for which we make

use of the functionality of FabIO (FabIO, 2016) to read.

Hence, Savu currently supports all file types which are

supported by FabIO, and is extensible to most other file types.

The output data and user-definable metadata from the

processing is also output into HDF5 files via a standardized

‘saver’ plugin.

2.2.2. Monitor correction. The first step in the processing

chain involves correcting the datasets by an I0 measurement.

In the process list used for this work we do this in one of two

ways. The first involves using a bespoke plugin, which takes

the I0 dataset and another dataset and outputs a single,

corrected dataset normalized to the input beam flux. Another

way to do this would be to use a plugin that performs basic

operations. This plugin can take in, and output, any number of

datasets, and subjects them to basic linear operations (avail-

able from NumPy) by parsing an input string of the command.

Here the former of these choices are used because it stan-

dardizes the procedure.

2.2.3. Data reduction: XRD azimuthal integration. The

process to be applied to the data in the chain is to reduce the

XRD images via azimuthal integration to representative

patterns (Fig. 2). This is an example of a one-to-one I/O

mapping, but where the data changes shape. Here, we have

written a plugin using the CPU implementation of the ESRF

package pyFAI (Kieffer & Karkoulis, 2013). This choice

demonstrates one of the central tenets of Savu; that we should

not reinvent the wheel for processes that already have heavily

optimized solutions. The CPU version of pyFAI reduces each

image into line profiles taking 300 ms per 2083 � 4150 frame.

We rely on input from the user in the form of a NeXus cali-

bration file for the detector geometry. In this instance, this is

generated using DAWN (Basham et al., 2015) via a LaB6

calibrant.

2.2.4. Background subtraction. The next step in the

processing chain is to remove the background from all the

data again in a many-to-many mapping because we take in

both XRD patterns and XRF spectra and return the patterns/

spectra minus the background. A plugin was written to do this

which uses the same concept as that of the strip background

method in PyMca (Solé et al., 2007), whereby a moving

wireframe window is averaged as it is iterated over the spec-

research papers

J. Synchrotron Rad. (2017). 24, 248–256 Aaron D. Parsons et al. � Automatic processing of multimodal tomography datasets 251

Figure 1
The processing chain used for this analysis. Four datasets are loaded from
both NeXus-formatted HDF and a folder containing TIFFs. The images at
the top are a reference for the output of the tomography stage of the
processing described in this section. A new dataset is created when we
perform the XRF absorption correction so that we may assess its impact
on the output.



trum. One hundred iterations were used for each pattern/

spectrum to remove the peaks. The resultant continuum was

subtracted from the patterns/spectra before they were

returned. The process takes around 20 ms per pattern/spec-

trum. This demonstrates the accessibility of Savu: it is very

easy and quick to assemble prototype methods for testing.

Other background subtraction methods are currently being

implemented, for example, by directly including PyMca in a

plugin.

2.2.5. XRF curve fitting. The XRF spectra were fitted with

Gaussian line shapes. The positions of the fluorescence lines,

escape and sum peaks were calculated using the xraylib library

(Schoonjans et al., 2011). The detected rate of fluorescent

photons was high, meaning that the dataset was subjected to

pileup effects. To combat this during the fitting the peak width

was refined in combination with the weights in order to take

into account the peak broadening. Pileup peaks were also fit to

improve the stability of the model. Fig. 3 shows an example fit

and background subtraction for a fluorescent spectrum.

2.2.6. XRF sample absorption correction. One cause of

artefacts in mXRF-CT stems from absorption of both the

probe radiation and the softer fluorescent X-ray photons by

the sample itself. Here we just consider the attenuation of the

fluorescent X-ray photons. The fluorescent X-ray photon

measured at a point on the sample furthest from the detector

has a longer exit path through the sample compared with a

point measured nearest the detector. Whilst this can be miti-

gated somewhat by the data collection strategy, it is common

that the sample absorption may cause shadowing for some

projections, leading to a reduction in contrast or, worse still,

tails forming around high-density

features (Ruiz-Martı́nez et al.,

2013).

Whilst the high energy of the

cobalt K lines, combined with the

low metal loading and low-density

support of the sample, very much

reduce this effect for this sample, we

demonstrate it is possible to correct

for this in Savu by implementing a

simple version of McNear’s absorp-

tion correction (McNear et al.,

2005). The absorption-CT data and

the mXRF-CT data are both input into the plugin along with

a user input of the sample composition, which is passed

to xraylib to work out default parameters for the relative

absorption coefficients at the XRF energies. The sample

absorption corrections are calculated using the XRF fit areas

and absorption in sinogram space, and are demonstrated in

Fig. 4. A very slight change can be seen in the distribution of

intensities. We generate a new dataset by branching the

workflow at this point so that we can compare the impact of

this correction at the end of the pipeline.

The implementation of this plugin demonstrates how, by

abstracting away the data-handling processes, it is very easy

for the scientist to move from techniques seen in a journal

article to the process being implemented in an MPI-capable

unit-tested framework.

research papers

252 Aaron D. Parsons et al. � Automatic processing of multimodal tomography datasets J. Synchrotron Rad. (2017). 24, 248–256

Figure 3
An example fit of the XRF pattern showing the underlying XRF peaks
and background superposed onto the data.

Figure 4
Sample absorption correction. (a) The sinogram of the cobalt K� peak
area as collected. (b) The correction factor calculated from the
absorption-CT dataset collected simultaneously. (c) The corrected cobalt
K� peak area.

Figure 2
(a) Raw log10 plot of two-dimensional X-ray diffraction image, (b) the corresponding calibrated and
azimuthally integrated log10 one-dimensional diffraction pattern.



2.2.7. Tomography. Each of the datasets is now passed

through a tomography plugin to carry out the reconstruction.

Currently in Savu there are a few different options available,

including home-written methods for different algorithms using

SciKit projections as well as the Astra Tomography Toolbox

(GPU and CPU versions are available) (Palenstijn et al., 2011;

van Aarle et al., 2015). Other versions may also be imple-

mented and are straightforward to contribute via a simple

extension.

For the work detailed in this paper we use a plugin imple-

menting the GPU version of the Astra Tomography Toolbox

filtered back projection (FBP) reconstruction routine to

reconstruct the sinograms from all three data modalities.

Absorption-CT. The absorption-CT was reconstructed as

detailed above with the result shown in Fig. 5. Due to the

reduced sampling of the dataset (a feature of the dwell times

in the current experimental setup), some artefacts are seen in

the corners of the reconstructed slice. These artefacts also

cause issues with traditional auto-centring methods. There-

fore, instead of automatically finding the centre we use the

parameter scanning functionality in Savu to run the same

reconstruction but with five centres of rotation. This adds an

extra slice dimension to the data at the output, allowing us to

quickly find the best value for the parameter, the best of which

is shown in Fig. 5.

It should be added here that any user-exposed parameters

can be scanned in this manner for all plugins. This includes

being able to scan the reconstruction method across all those

available in a suitable toolbox, e.g. the Astra Tomography

Toolbox.

�XRF-CT. The areas from both the absorption-corrected

and the raw XRF fit are now also passed to the same plugin

(without taking the log of the data), and the tomography

reconstruction carried out as previously detailed. The results

for the fit of the cobalt K� line are shown in Fig. 6.

As we branched the workflow at the point that the

correction filter was applied, we can now assess its impact. At

first glance it would appear that not much improvement is seen

in the reconstruction as expected; there was not much

shadowing in the un-corrected data due to the high energy of

the XRF photons and the low density of the sample. However,

on closer inspection we can see that there has indeed been a

slight contrast improvement, and that pores features that

represent voids in the support which are not visible in the

uncorrected data are apparent in the corrected version. By

looking at the histogram of the reconstructed data we can also

demonstrate that contrast has very slightly improved. Here

this is seen as a slight ‘sharpening’ of the peak around zero

density.

�XRD-CT. At this stage, the XRD data has already been

reduced to one-dimensional patterns and background

subtracted, and if we wanted we could try to fit the data

according to theoretical line-shapes. However, this is not

necessarily the most efficient way to solve this problem initi-

ally. For the dataset under study here, the data is fairly

complex, with many overlapping peaks, which leads to

problems detecting peaks that appear as ‘shoulders’ to other

peaks. This is in part due to the nature of a tomographic

dataset in that the pattern which we measure is a projection

and, hence, an integrated version of not only the many phases

present but also the contribution along an entire ray through

the sample.

As an alternative approach we look to simplify the datasets

by first performing the tomography reconstruction for each

sinogram in the spectrum stack (4150 bins, each processed in

parallel), using the GPU version of the Astra Tomography

Toolbox implementation of FBP. This is a reasonable

approach because the data in this case exhibit little ‘spotti-

research papers

J. Synchrotron Rad. (2017). 24, 248–256 Aaron D. Parsons et al. � Automatic processing of multimodal tomography datasets 253

Figure 5
Tomography reconstruction using filter back projection of the absorption-
CT data. The bright circle present in the reconstruction is the capillary
wall. The scale bar represents 20 mm.

Figure 6
(a) Tomography reconstruction by filtered back projection of the
Gaussian area of the fitted cobalt K� peak. (b) The reconstruction of
the same data processed after absorption correction of the sinogram.
Insets of (a) and (b) show a slight sharpening of the features in the
absorption corrected image. The scale bar represents 20 mm. (c)
Histograms of both corrected and uncorrected data showing a slight
improvement in contrast.



ness’; that is, we are in the approxima-

tion where the beam is much larger

than the average crystallite size, with

the result that our two-dimensional

diffraction data contain smooth powder

rings.

The result from this is shown in the

hyperspectral plot in Fig. 7. This part of

the data reduction, although it has

increased the size slightly, has simplified

the signal per voxel.

We can now isolate the contribution

by windowing or fitting individual peaks

in the one-dimensional pattern domain

and viewing them in the volume domain

as shown in Fig. 7. However, because

for this particular dataset we are not

primarily concerned with the quantita-

tive information about each phase, but

more the distribution of the phases

present with respect to each other, we

prefer instead to apply a cluster analysis.

2.2.8. Principal component analysis.
Principal component analysis (PCA) is a

technique for clustering data that has

begun to be increasingly more used in

scientific data processing and has a

dominant position in the business world

(Jolliffe, 2002). The technique provides

quantitative information about the

distribution of data that can be orga-

nized into groups. In our case, this data

is mXRD-CT patterns, and we use it to

reduce the complexity to more clearly

define areas of similar crystalline

composition.

For our first implementation in Savu

we directly use those methods that are

available in the scikit-learn package for

Python. This implementation took six

lines of Python code, and as we can see

from Fig. 8, has produced two instantly

interesting and intuitive results.

Firstly, we can see from the loadings

that the sample has two main detectable

components [Figs. 8(a) and 8(b)]. By

thresholding these loadings and

applying them back as a mask on the

XRD-CT dataset in Fig. 7, we can

reduce the data down to a few clusters

of similar crystalline composition, and

sum the XRD patterns from each of

these clusters, greatly reducing the

amount of data and simplifying the

interpretation. Three main crystal-

lographic phases are identifiable as

graphitic carbon (3.40 Å), CoO (1.51,

research papers

254 Aaron D. Parsons et al. � Automatic processing of multimodal tomography datasets J. Synchrotron Rad. (2017). 24, 248–256

Figure 7
(a) Reconstructed mXRD-CT slice of the windowed area of the spatial spectrum shown in (b).
(b) An averaged mXRD pattern over the area inside the red box in (a). The scale bar represents
20 mm.

Figure 8
The results of the PCA analysis of the reduced mXRD patterns. (a)–(c) The loadings for the first
three components. These show the three main clusters of the data. Panel (a) shows the mean
average, panels (b) and (c) show the main deviations from it. Panel (d) shows the sum of the
remaining loadings. These are indicative of a single-crystal artefact in the data, which the PCA has
identified. The scores for these states are shown in (h). The loadings were then thresholded and
applied as a mask to the tomography result in order to give representative mXRD patterns of each
region identified. Panels (e)–(g) show these results next to their respective spatial clustering. Panel
(g) shows a definite shoulder appearing on the large graphite peak at 3.42 Å. This suggests an
expansion of the support. Panels (f) and (g) also show very different composition, the former being
mostly in CoO, whereas the majority of the particles imaged are a mixture of CoO and metallic Co.



2.13, 2.46 Å) and cubic Co (1.77 and 2.05 Å). It is also possible

[Figs. 8(c) and 8(g)] to see the expansion of the graphite

support appearing as a shoulder peak to the main graphite

peak at 3.42 Å.

The second useful result is that streak artefacts have been

filtered out from the clusters (Fig. 8d). These are caused by the

presence of single crystals of similar scale to the incident

beam. Nanocrystalline samples will produce diffraction rings

at all rotations measured, whereas the single crystals will

produce diffraction spots at certain rotations corresponding

to the rocking curve of the crystal which, when azimuthally

integrated and reconstructed, result in streaks across the

reconstruction. Traditionally these peaks would be filtered out

of the raw, unreduced XRD patterns, which is very time

consuming. Here they come out of the data analysis as a by-

product. It would be possible to use this information to index

the single-crystal at this point; however, it was not of interest

for the present experiment.

Although just a first approach at clustering, we have

demonstrated that Savu can not only implement PCA but that

it can be directly useful in the interpretation of the data.

3. Summary

The described processing chain has been used to demonstrate

the flexibility and power of the multimodal processing aspect

of the Savu framework. This particular configured processing

chain is currently in regular use at the I18 microfocus spec-

troscopy beamline at Diamond Light Source, with further

required plugins being developed for use on the beamlines I14

and I13. The total run time for the processing exhibited here

was around 10 min over two nodes of COM10 of the Diamond

cluster. This cluster comprises of 12 Dell PowerEdge C4130

HPC nodes, each containing 2� Intel Xeon E5-2650 v3 @

2.30 GHz which support 20 threads each. Each node has

256 GB RAM (DDR4 @ 2133 MHz) and 2� nvidia Tesla K80

GPGPUs. The file system is a GPFS (general parallel file

system) networked to the cluster via FDR infiniband

(Mellanox Technologies MT27500 Family [ConnectX-3])

(56 Gbits s�1). This cluster specification was chosen to give the

best total FLOPS per GBP across the cluster rather than

maximizing the performance of each element.

The time taken to collect this dataset was 90 min. The

processing chain demonstrated here is under test using both

Travis and Jenkins continuous integration, and is available

here: https://github.com/DiamondLightSource/Savu/blob/

master/test_data/process_lists/multimodal_tomo_i18.nxs.

We are currently investigating the process to make it available

via the Anaconda Python distribution as well as Docker. The

total coverage of the Travis tests at the time of writing is 76%

of the available code with an overall health of 84%.

One of the next stages in the development of Savu is to

implement a HDF5 SWMR/Virtual dataset backend, which

will allow the processing to happen as the data is being

collected. This will pave the way towards truly real-time

processing. We also plan to implement PyMca for the fluor-

escence fitting as well as provide integration for various

packages for coherent X-ray imaging processes such as

ptychography and coherent diffractive imaging. The pipeline

will also be interfaced with the existing DAWN processing

perspective, allowing users to switch between both with

minimal effort.

4. Conclusions

In conclusion, we have demonstrated that Savu is an easy

to use plugin-based tool for multimodal big-data processing.

By abstraction, the underlying data transport is hidden from

the scientific developer/user which makes prototyping new

processing steps easy and allows the integration of all Python-

based software libraries with minimum effort. The software

is open source and is readily applicable to all cluster archi-

tectures. Existing backends for live data processing are

currently being implemented.

Acknowledgements

The authors thank Jacco Hoekstra for supplying the sample

used to provide the test datasets and also Jacob Filik for his

help in interpreting the PCA results.

References

Aarle, W. van, Palenstijn, W. J., De Beenhouwer, J., Altantzis, T., Bals,
S., Batenburg, K. J. & Sijbers, J. (2015). Ultramicroscopy, 157, 35–
47.

Anaconda, P. (2016). Python Anaconda, https://www.continuum.io.
aXis2000 (1997). aXis2000, http://unicorn.mcmaster.ca/aXis2000.

html.
Basham, M., Filik, J., Wharmby, M. T., Chang, P. C. Y., El Kassaby, B.,

Gerring, M., Aishima, J., Levik, K., Pulford, B. C. A., Sikharulidze,
I., Sneddon, D., Webber, M., Dhesi, S. S., Maccherozzi, F., Svensson,
O., Brockhauser, S., Náray, G. & Ashton, A. W. (2015). J.
Synchrotron Rad. 22, 853–858.

Beale, A. M., Jacques, S. D. M., Gibson, E. K. & Di Michiel, M. (2014).
Coord. Chem. Rev. 277–278, 208–223.

Bergamaschi, A., Medjoubi, K., Messaoudi, C., Marco, S. & Somogyi,
A. (2016). J. Synchrotron Rad. 23, 783–794.

Daurer, B. J., Krishnan, H., Perciano, T., Maia, F. R. N. C., Shapiro,
D. A., Sethian, J. A. & Marchesini, S. (2016). ArXiv preprint
1609.02831.

Enthought Canopy (2015). DistArray, http://docs.enthought.com/
distarray/.

FabIO (2016). FabIO Package, http://pythonhosted.org/fabio/api/
modules.html.

Gürsoy, D., Biçer, T., Lanzirotti, A., Newville, M. & De Carlo, F.
(2015). Opt. Express, 23, 9014.

Gürsoy, D., De Carlo, F., Xiao, X. & Jacobsen, C. (2014). J.
Synchrotron Rad. 21, 1188–1193.

Hoekstra, J., Beale, A. M., Soulimani, F., Versluijs-Helder, M., Geus,
J. W. & Jenneskens, L. W. (2015). J. Phys. Chem. C, 119, 10653–
10661.

Hoekstra, J., Versluijs-Helder, M., Vlietstra, E. J., Geus, J. W. &
Jenneskens, L. W. (2015). ChemSusChem, 8, 985–989.

Hong, Y. P., Chen, S. & Jacobsen, C. (2015). Proc. SPIE, 9592,
95920W.

IBM (2014). The Four V’s of Big Data, http://www.ibmbigdatahub.
com/infographic/four-vs-Big-Data.

Jolliffe, I. (2002). Principal Component Analysis. New York: John
Wiley and Sons.

Kieffer, J. & Karkoulis, D. (2013). J. Phys. Conf. Ser. 425, 202012.

research papers

J. Synchrotron Rad. (2017). 24, 248–256 Aaron D. Parsons et al. � Automatic processing of multimodal tomography datasets 255

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB17


Könnecke, M., Akeroyd, F. A., Bernstein, H. J., Brewster, A. S.,
Campbell, S. I., Clausen, B., Cottrell, S., Hoffmann, J. U., Jemian,
P. R., Männicke, D., Osborn, R., Peterson, P. F., Richter, T., Suzuki,
J., Watts, B., Wintersberger, E. & Wuttke, J. (2015). J. Appl. Cryst.
48, 301–305.

Liu, Y., Meirer, F., Williams, P. A., Wang, J., Andrews, J. C. & Pianetta,
P. (2012). J. Synchrotron Rad. 19, 281–287.

McNear, D. H., Peltier, E., Everhart, J., Chaney, R. L., Sutton, S.,
Newville, M., Rivers, M. & Sparks, D. L. (2005). Environ. Sci.
Technol. 39, 2210–2218.

Mosselmans, J. F. W., Quinn, P. D., Dent, A. J., Cavill, S. A., Moreno,
S. D., Peach, A., Leicester, P. J., Keylock, S. J., Gregory, S. R.,
Atkinson, K. D. & Rosell, J. R. (2009). J. Synchrotron Rad. 16,
818–824.

Palenstijn, W. J., Batenburg, K. J. & Sijbers, J. (2011). J. Struct. Biol.
176, 250–253.

Pelt, D. M., Gürsoy, D., Palenstijn, W. J., Sijbers, J., De Carlo, F. &
Batenburg, K. J. (2016). J. Synchrotron Rad. 23, 842–849.

Prescher, C. & Prakapenka, V. B. (2015). High Pressure Res. 35, 223–
230.

Price, S. W. T., Geraki, K., Ignatyev, K., Witte, P. T., Beale, A. M. &
Mosselmans, J. F. W. (2015a). Angew. Chem. 127, 10024–10027.

Price, S. W. T., Ignatyev, K., Geraki, K., Basham, M., Filik, J., Vo, N. T.,
Witte, P. T., Beale, A. M. & Mosselmans, J. F. W. (2015b). Phys.
Chem. Chem. Phys. 17, 521–529.

Ruiz-Martı́nez, J., Beale, A. M., Deka, U., O’Brien, M. G., Quinn,
P. D., Mosselmans, J. F. W. & Weckhuysen, B. M. (2013). Angew.
Chem. Int. Ed. 52, 5983–5987.

Schoonjans, T., Brunetti, A., Golosio, B., Sanchez del Rio, M., Solé,
V. A., Ferrero, C. & Vincze, L. (2011). At. Spectrosc. 66, 776–
784.

Solé, V. A., Papillon, E., Cotte, M., Walter, P. & Susini, J. (2007).
At. Spectrosc. 62, 63–68.

The HDF group (2014a). PHDF5, https://www.hdfgroup.org/HDF5/
PHDF5/.

The HDF group (2014b). SWMR, https://www.hdfgroup.org/projects/
SWMR/.

The HDF group (2016). Virtual Dataset Overview, https://www.
hdfgroup.org/HDF5/docNewFeatures/NewFeaturesVirtualDataset
Docs.html#Overview.

Vogelgesang, M., Farago, T., Morgeneyer, T. F., Helfen, L., dos Santos
Rolo, T., Myagotin, A. & Baumbach, T. (2016). J. Synchrotron Rad.
23, 1254–1263.

Wadeson, N. & Basham, M. (2016). ArXiv preprint 1610.08015.

research papers

256 Aaron D. Parsons et al. � Automatic processing of multimodal tomography datasets J. Synchrotron Rad. (2017). 24, 248–256

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5150&bbid=BB34

