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The goal of this paper is to express simply the number of photons impinging on a

target in the framework of accelerator-based Compton X-ray sources. From the

basic kinematics of Compton sources, analytic formulas for the angular and the

spectral fluxes are established as functions of the energy spread or/and the

angular divergence of the electron and the laser beams. Their detailed

predictions are compared with Monte Carlo simulations. These analytic

expressions allow one to compute in a simple and precise way the X-ray flux

in a given angular acceptance and a given energy bandwidth, knowing the

characteristics of the incoming beams.

1. Introduction

Today, Compton X-ray sources are in full development thanks

to the exceptional improvement of high-power lasers over the

last 15 years. The principle is based on the production of X-ray

pulses of a few tens of keV in energy by Compton back-

scattering of intense laser light of micrometric wavelength

against an electron bunch of tens of MeV in energy (i.e. about

100 times less energetic than electrons used to produce

synchrotron radiation in the X-ray range). Such Compton

sources are compact installations (with areas of �100 m2)

which provide high-intensity, high-quality X-ray beams with a

tunable energy. The present most ambitious projects aim at

producing a total flux of 1012–1014 photons s�1 (Jacquet, 2014)

that gives access to experimental methods currently used at

synchrotron beamlines. For various applications, the devel-

opment of these sources will allow the use of powerful analysis

techniques in such environments as hospitals, laboratories or

museums. The diversity of the possible applications of these

sources increases the demand for a simple formulation of the

X-ray flux available at a target sample with an intuitive

understanding of its spectral and spatial properties. Our

motivation is to guide the users when evaluating the perfor-

mances of such sources in their domain of competence

(medical, materials, art history, etc.). Indeed, to our knowl-

edge, there is no analytic formulas in the literature describing

angular and spectral X-ray fluxes expected from a given

Compton source. There are some analogies between

synchrotron radiation sources and Compton sources, but the

spectral and the spatial properties are different. Thus,

Compton backscattering sources need a specific description.

Our analytic formulas provide the flux within a finite polar

angle around the electron beam direction and within a finite

bandwidth around the Compton edge. The energy spread and

the angular divergence of the electron beam and of the laser

affect the X-ray flux in the chosen kinematic region. The

estimation of such effects is the purpose of this article. The
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analytic expressions are obtained by convolving purely kine-

matic effects with expressions that characterize the laser and

the electron beam properties.

The basic principles of a Compton source, the kinematics

and our calculation framework are described in x2. The

performances of current laser systems are such that the main

impact on the Compton source characteristics comes from the

angular divergence � 0e and the energy spread �e of the incident

electron beam. The latter may vary widely depending on the

chosen accelerator complex (see x2.2). Analytic expressions

for the total X-ray flux and for its angular and spectral

dependences are established in x3 and x4 as functions of these

two electron beam parameters and compared with Monte

Carlo simulations.

2. Key parameters for the X-ray flux

This section introduces the key parameters needed to under-

stand the analytic developments that follow.

2.1. The Compton process

Fig. 1 describes the Compton scattering between a free

relativistic electron of Lorentz factor � and a photon of energy

EL which is the basic process exploited in an accelerator-based

X-ray source.

Electrons of a few tens of MeV are used in X-ray sources

whereas the laser is usually in the infrared domain. In the

laboratory frame, the scattered photon energy EX varies

quadratically with the electron energy and linearly with the

laser photon energy EL. Assuming � � 1 and the laser photon

energy is small compared with the electron rest mass energy,

we can derive from the kinematics of the process

EX ¼
Em

1þ � 2� 2
X

; ð1aÞ

Em ¼ 2� 2EL 1þ cos �cð Þ; ð1bÞ

where �c is the collision angle and �X the scattering polar angle

of the Compton photon with respect to the incoming electron

momentum. Equation (1a) implies an univocal dependence

between the energy of the backscattered photon and its

emission angle �X. Photons of maximum energy Em are those

emitted on-axis (�X = 0�). For an X-ray which is produced by

an electron of Lorentz factor �, let " be the ratio of EX and Em.

The dependence on " of the normalized differential cross

section pEX
can be expressed as (Telnov, 2000)

pEX
ð"Þ ¼

dp

d"
¼

3

2
1� 2"þ 2"2
� �

; ð2aÞ

" � EX=Em: ð2bÞ

Equations (1a), (1b), (2a) and (2b) will be the key relations

used to establish the analytic expressions for the X-ray flux in

a given spectral bandwidth or/and within a given angular

acceptance, and to quantify the reduction of the angular and

spectral fluxes due to the energy spread and the angular

divergence of the two colliding beams.

The Compton X-ray sources involve multi-collisions

between a laser pulse and an electron bunch. Thus, to establish

the total X-ray flux, we need to take into account the laser

pulse and the electron bunch sizes. Let ne and nL be, respec-

tively, the number of electrons per bunch and the number of

photons per laser pulse, and let xe;L, ye;L and ze;L be the

transverse and longitudinal dimensions (r.m.s.) of the electron

bunch and laser pulse at the interaction point. Assuming the

electron beam and the laser have Gaussian distributions in the

three dimensions, for electron–photon collisions taking place

with a crossing angle �c in the xz plane, the number of X-ray

produced per second is (Suzuki, 1976)

Fð�cÞ ¼
�th nenL frep

2� ðx2
e þ x2

LÞ þ tan2ð�c=2Þðz2
e þ z2

LÞ
� �1=2

y2
e þ y2

L

� �1=2
:

ð3Þ

Fð�cÞ is proportional to the Thomson cross section �th, the

luminosity and the repetition frequency of the interactions frep.

High X-ray fluxes are foreseen in various projects. For

example, ThomX (Variola et al., 2014)) foresees Fð0Þ ’

1013 photons s�1 with Em = 45 keV for a 50 MeV electron

bunch (� = 100) of 1 nC, micrometric wavelength laser pulses

of 10 mJ, frep = 20 MHz, and xe;L; ye;L ’ 40 mm.

Expression (3) will be our reference flux hereafter referred

to as F0 � Fð�cÞ.

2.2. X-ray spectral bandwidth

Relations (1a) and (1b) imply that the X-ray energy spec-

trum produced by electrons and photons whose energies are

single-valued is strictly monochromatic at a given emission

angle. But the energy dispersion and the angular divergence of

the stored electrons and, to a lesser extent, of the photons at

the interaction point lead to a significant broadening of EX at a

given scattering angle �X.

The relative energy spreads (r.m.s.) of an electron bunch

and of a laser pulse will be denoted by �e and �L, while their

angular divergences (r.m.s.) will be denoted by � 0e and � 0L
(assuming that the horizontal and the vertical divergences are

equal). The order of magnitude of the broadening �EX=EX of

the on-axis Compton spectrum due to each one of these four

parameters can be estimated from equations (1a) and (1b) by

replacing �, EL, � 2
X and �c with �ð1þ �eÞ, ELð1þ �LÞ, �

0 2
e

and �c þ �
0
L, respectively, and performing four Taylor series
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Figure 1
Schematic drawing of the scattering process between an electron and a
laser photon. xyz is the laboratory frame.



expansions of equation (1a) in �e, �L, � 0 2e and � 0L, resulting in:

�EX=EX � 2�e, �EX=EX � �L, �EX=EX � � 2� 0 2e and

�EX=EX � ðcos �c �
0 2

L =2þ sin �c �
0
LÞ=ð1þ cos �cÞ due to �e,

�L, � 0e and � 0L, respectively.

We will give now orders of magnitude for these �e, �L, � 0e
and � 0L parameters for current electron guns and pulsed lasers:

(i) The normalized horizontal and vertical emittances �xe�
0
e

and �ye�
0

e of�1 nC bunches delivered by good quality current

electron guns are 1–5 mm mrad (Arnold & Teichert, 2011;

Rao & Dowell, 2013). With these values, transverse sizes and

normalized divergences are typically xe; ye ’ 20–100 mm and

�� 0e ’ 0.01–0.25 rad, respectively.

(ii) Concerning �e, the electron beam relative energy

spread, current values at electron accelerators are of a few

10�3 up to a few percent.

(iii) On the laser side, the product of �EL, the r.m.s. energy

bandwidth of the pulse, and �tL, its r.m.s. temporal duration,

is constrained by the uncertainty principle (Donnelly &

Grossman, 1998) �EL�tL 	 h- =2. Unchirped pulses have the

minimum time-bandwidth product, i.e. close to h- =2, whereas

larger values prevail for chirped pulses. Then, let us consider a

laser with a wavelength �, and an r.m.s. pulse duration �tL.

Assuming unchirped pulses, one derives from the uncertainty

principle: �L � �EL=EL = �=ð4�c�tLÞ, where c is the speed of

light. It follows that infrared fs–ps pulses have a relative

energy spread �L of a few 10�5 (for 10 ps pulses) up to a few

10�3 (for 100 fs pulses).

(iv) In good quality lasers with Gaussian pulses, the relation

between the r.m.s. transverse pulse sizes xL, yL and the angular

divergence � 0L is xL�
0

L = yL�
0

L = �=ð4�Þ (Schmüser et al., 2008),

leading to the following typical values: xL; yL ’ 10–100 mm

and � 0L ’ 1–10 mrad (infrared laser).

Table 1 summarizes these orders of magnitude and the

corresponding broadening of the Compton spectrum

�EX=EX. The spectrum broadening due to the laser band-

width �L is negligible, as well as the broadening due to the

laser divergence if the product sin �c�
0
L is smaller than

�1 mrad, which is the case in almost all current Compton

projects where electrons and laser photons collide head-on

(Jacquet, 2014). We conclude that �EX=EX is mainly governed

by the angular divergence and the relative energy spread of

the electron beam.

2.3. Input and notations

In this section, we introduce the probability distributions

used to establish the analytic expressions of x3 and x4. The

nominal Lorentz factor of the electron beam will be referred

to as �0. Then the Lorentz factor of a given electron is written

as � = ð1þ ��Þ�0, where �� is the difference in energy of this

electron with respect to the nominal beam energy (E0) divided

by E0. With �c being the nominal value of the crossing angle

between the electron beam and the laser in the xz plane (see

Fig. 1), we define �ex, �ey, �c þ �Lx and �Ly as the angles to z axis

of the projections of the momentum of a given electron and of

a given laser photon in the xz and yz planes. The probability

distributions of ��, �ex;ey and �Lx;Ly are assumed to be Gaussian

with standard deviations �e, �
0
ex;ey and � 0Lx;Ly, respectively. We

further assume � 0ex = � 0ey = � 0e and � 0Lx = � 0Ly = � 0L. �eLx (�eLy,

respectively) is defined as the convolution of the �ex and �Lx

distributions (of �ey and �Ly, respectively) and follows a

Gaussian distribution whose standard deviation is � 0eL =

ð� 0 2e þ �
0 2

L Þ
1=2.

We introduce also the polar and azimuthal angles with

respect to the z-axis direction (see Fig. 2), �e and ’e, of an

electron momentum (�ex = �e cos ’e, �ey = �e sin ’e, �2
e =

�2
ex þ �

2
ey), and similarly �X and ’X for a photon scattered by

this electron. For small �e and �X (i.e. when sin �e ’ �e and

sin �X ’ �X), the polar angle �X of the backscattered photon

with respect to the electron momentum is � 2
X = �2

e + �2
X �

2�e�X cosð’e � ’XÞ. Summing over azimuthal angles we obtain

� 2
X ¼ �

2
e þ �

2
X: ð4Þ

The �X angle averaged over ’e and ’X expressed in (4) is the

one that appears in equation (1a).

Explicitly, the probability distributions of ��, �eLx;eLy and

�2
e defined in the ranges 
�1;þ1½ , 
�1;þ1½ and

½0þ1½ , respectively, are

dp

dð��Þ
¼

1ffiffiffiffiffiffi
2�
p

�e

exp �ð��Þ2=2�2
e

� �
; ð5aÞ

dp

d�eLx;eLy

¼
1ffiffiffiffiffiffi

2�
p

� 0eL

exp �ð�eLx;eLyÞ
2=2� 0 2eL

� �
; ð5bÞ

dp

dð�2
eÞ
¼

1

2�0 2e

exp ��2
e=2� 0 2e

� �
: ð5cÞ

In the following sections we will obtain analytic expressions

for the ratios Rtot = Ftot=F0, R	 = F	=F0, Rbw = Fbw=F0 and

R	;bw = F	;bw=F0, where Ftot is the total flux, F	 the flux in a

given angular acceptance 	 (of a few milliradians) around the
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Table 1
Orders of magnitude of the relative energy spread and divergence of
electron and laser beams at the interaction point, and associated
broadening of the Compton spectrum.

Variable Typical values �EX=EX

�e 10�3–10�2 2� 10�3–2� 10�2

�L 10�5–10�3 10�5–10�3

�� 0e ðradÞ 0.01–0.25 10�4–10�1

� 0L ðmradÞ 1–10
10�7–10�3 (sin �c�

0
L
<
� 1 mradÞ

10�3–10�2 (sin �c�
0
L ’ 1–10 mrad)

Figure 2
Polar angles of an electron momentum (�e) and of a Compton photon
(�X) scattered by this electron with respect to the z-axis, and polar angle
�X of the Compton photon with respect to the electron momentum. Note
that the electron momentum is practically not affected by the collision.



z-axis direction, Fbw the flux in a given energy bandwidth (bw)

centered at the on-axis X-ray energy E 0
m = 2�2

0 ELð1þ cos �cÞ,

and F	;bw the flux in a given angular acceptance and a given

energy bandwidth. We will study the dependence of these

ratios on the � 0e and �e parameters which govern the broad-

ening of the Compton angular spectrum as discussed in x2.2,

and we will confront our formulas with simulations performed

with the CAIN code (Yokoya, 2003) generated with several � 0e
and �e values, all other parameters (ne, nL, frep xe, ye, xL, yL, ze

and zL) remaining fixed. In the CAIN simulations, we use �0 =

100 (i.e. the order of magnitude to produce Compton back-

scattered photons in the X-ray domain), a laser wavelength

� = 1 mm, and we assume a pulse waist of 40 mm. For a full

range coverage of the electron beam parameters in current

accelerators (see Table 1), the � 0e and �e ranges used for this

work are �� 0e ’ 0.01–0.25 rad (i.e. � 0e ’ 0–2.5 mrad for � ’
100) and �e ’ 0–2%.

3. Spectral or angular selection

In this section, we will obtain the expression of the X-ray flux

when one selects either the energy or the emission angle of

the X-rays.

3.1. Dependence of the total flux Ftot on the electron and the
laser beam angular divergences

Since we assume here that no cut is applied to the X-ray

energy, the electron beam energy spread does not come into

this calculation. Thus we treat here only the electron beam and

the laser beam divergences. We consider the collision of an

electron with a photon at a nominal crossing angle �c in the

horizontal plane xz. The effect of the two �eLx and �eLy vari-

ables (defined in x2.3) can be treated as an additional contri-

bution to �c. Indeed, for small �eLx and �eLy (i.e. when sin �eLx ’

�eLx and sin �eLy ’ �eLy) and by making the approximation that

�eLx and �eLy are awarded only to the electron (see Fig. 3), a

geometrical calculation leads to an effective electron–photon

crossing angle �c such that �c = acosf�eLx sin �c +

cos �c½1� ð�
2
eLx þ �

2
eLyÞ


1=2
g:

Then, for an electron bunch and a laser pulse of r.m.s.

angular divergence � 0e and � 0L, respectively, the total flux Ftot �

Fð�cÞ is obtained by integrating Fð�cÞ, weighted by the

Gaussian probabilities of �eLx and �eLy [see equation (5b)].

Keeping up to the second-order terms in �eLx and �eLy results

in the following expression for the ratio Rtot � Ftot=F0:

Rtot ¼ 1�
1þ tan2ð�c=2Þ
� �2

1� 1
2 rxz tan2ð�c=2Þ

� �
4 1þ rxz tan2ð�c=2Þ
� �2

� rxz �
0 2
e þ �

0 2
L

� �
; ð6Þ

where rxz = ðz2
e þ z2

LÞ=ðx
2
e þ x2

LÞ. For xe = 72 mm, xL = 40 mm,

ze = 4.8 mm, zL = 3 mm and � 0L = 2 mrad (i.e. the laser beam

divergence value corresponding to a 40 mm waist size), Rtot is

shown in Fig. 4 as a function of � 0e, for �c = 0�, 1� and 2�, and

compared with results obtained with the CAIN simulation

program. The analytic expression reproduces well the differ-

ences between the various collision angle cases. A reduced

collision angle amplifies the divergence impact on the total

flux but only to a small extent, less than 1% for head-on

collisions.

3.2. X-ray flux in a given energy bandwidth (Fbw)

In this section we look at the number of X-rays produced

when an energy cut is applied. For this, the electron energy

spread is decisive whereas Fbw=Ftot is independent of the

electron beam angular divergence since no angular selection is

assumed here. Also, we do not take into account the broad-

ening of the Compton spectrum (�EX=EX ’ 10�3–10�2) that

occurs in the particular case where both the laser divergence

and the collision angle are large (see Table 1).

Let us consider an electron of Lorentz factor � = �0ð1þ ��Þ.
The energy of a photon which is backscattered by this electron

is EX and, according to equation (1b), the maximum value of

EX is Em = E 0
mð1þ ��Þ

2 where E 0
m = 2�2

0 ELð1þ cos �cÞ. The
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Figure 3
Nominal (�c) and effective (�c) electron–photon crossing angles
assuming that �eLx and �eLy are awarded only to the electron.

Figure 4
The ratio Rtot = Ftot=F0 as a function of � 0e for a laser divergence � 0L =
2 mrad, for �c = 0� (black bullets, black line), 1� (red squares, red line) and
2� (blue open circle, blue line). Points are CAIN simulations. For each
point, the error bar indicates the statistical uncertainty calculated from
the number of generated events (namely �4.7 � 105, 4.1 � 105 and 3.1 �
105 events for each of the eight points generated with �c = 0�, 1� and 2�,
respectively). Lines illustrate the analytic formula [equation (6)] results.



ratio EX=E 0
m is denoted by "0. Fbw is the flux of photons whose

"0 lies in the interval between 1 � bw and 1 + bw. The energy

probability distribution (2a) expressed as a function of "0

becomes

pEX
ð"0Þ ¼

3

2
1�

2"0

ð1þ ��Þ2
þ

2"2
0

ð1þ ��Þ4

� �
1

ð1þ ��Þ2
: ð7Þ

Fig. 5 shows this distribution for three different cases: �� < 0,

�� = 0 and �� > 0. Since pEX
is a quasi-linear function for "0

larger than �0.65, the integral of pEX
between "01

and "02
can

be approximated by pEX
½ð"01
þ "02
Þ=2
ð"02

� "01
Þ. Thus Fbw is

calculated in the following way (see Fig. 5):

(i) Electrons with �� such that ð1þ ��Þ2 < 1 � bw do not

contribute to Fbw.

(ii) The contribution to Fbw of electrons having a relative

energy difference �� such that 1 � bw < ð1þ ��Þ2 < 1 + bw is

denoted by f s
bwð��Þ and is equal to the integral of pEX

between

"01
= 1 � bw and "02

= ð1þ ��Þ2 (green area): f s
bwð��Þ =

pEX
f½ð1� bwÞ þ ð1þ ��Þ2
=2g½ð1þ ��Þ2 � ð1� bwÞ
. These

electrons are denoted by ��s in Fig. 5.

(iii) The contribution of electrons whose �� satisfies 1 + bw

< ð1þ ��Þ2 is denoted by f L
bwð��Þ and is equal to the integral of

pEX
between "01

= 1 � bw and "02
= 1 + bw (area hatched in

green): f L
bwð��Þ = pEX

ð1Þ 2bw. These electrons are denoted by

��L in Fig. 5.

Assuming that the �� variable follows the Gaussian distri-

bution (5a) where �e ’ 0–2%, one can make the approx-

imation ð1þ ��Þ2 ’ 1þ 2�� and Rbw can be written

Rbw ¼ Rtot

" Z bw=2

�bw=2

1ffiffiffiffiffiffi
2�
p

�e

exp ��� 2=2�2
e

� �
f s

bwð��Þ dð��Þ

þ

Z þ1
bw=2

1ffiffiffiffiffiffi
2�
p

�e

exp ��� 2=2�2
e

� �
f L

bwð��Þ dð��Þ

#
:

Performing a first-order Taylor expansion in ��, the calcula-

tion of the above integrals leads to

Rbw ¼
3

2
Rtot bw

n
1� bw � bw2=2

� �
ERF bw=ð2

ffiffiffi
2
p
�eÞ

h i
� 6

ffiffiffiffiffiffiffiffi
2=�

p
�e exp �bw2=8�e

� �o
; ð8Þ

and is shown in Fig. 6 as a function of �e, for three energy

bandwidths: (a) bw = 0.1%, (b) bw = 0.7% and (c) bw = 3%.

First of all, in the absence of any energy spread, one notes

a factor 3/2 compared with the classical formula used for

synchrotron radiation, showing the need for a proper analytic

development when dealing with Compton sources. This factor,

which comes from the Compton cross section, remains what-

ever the selected energy acceptance. Fig. 6 shows that a linear

behavior of the flux reduction with �e prevails if the selected

bandwidth is small compared with �e (as in the 0.1% and 0.7%

cases and in the right-hand region of the 3% case), whereas

the flux remains globally constant when the energy acceptance

is large with respect to �e (as in the left-hand region of the 3%

case). In the three bandwidth cases, the small systematic

difference between the CAIN simulation values and the

analytic results for �e ’ 2% shows that higher-order terms in

�� have to be taken into account for �e values larger than

2–3%. In any event, the reduction due to the energy spread is

less than 10% in the parameter range considered here.1
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Figure 5
Differential cross section pEX

for three electron populations: electrons
with positive �� (dotted line), with �� = 0 (solid line), and with negative
�� (dashed line), as a function of the scattered photon energy "0 = EX=E 0

m.
Also represented are f s

bw (green area) and f L
bw (area hatched in green).

Figure 6
The ratio Rbw = Fbw=F0 as a function of �e for three energy bandwidths:
(a) bw = 0.1%, (b) bw = 0.7% and (c) bw = 3%. Points are CAIN
simulations and the error bars indicate the statistical uncertainties. Lines
are obtained using the analytic formula (8).

1 In the particular case of a Compton machine design such that sin �c�
0
L ’

1–10 mrad, the effect of the laser divergence leads to a reduction of Rbw from a
few per million to a few percent depending on �c, � 0L and bw. The largest effect
occurs for �c = 90� and � 0L ’ 10 mrad and would result for instance in a
decrease of R0.1% and R3% by about 5% and 1%, respectively.



3.3. X-ray flux in a given angular acceptance

We now consider the photon flux F	 within a given angular

acceptance 	. In this case, the effect of an energy spread is

completely negligible since the mean value of �� vanishes.

For any value of the polar angle �, the �2
0�

2 product is

denoted as 
� . Let us consider an electron whose momentum

makes a polar angle �e with respect to the z axis (see Fig. 2)

while the photon backscattered by this electron has a polar

angle �X. Using equations (1a), (2a) and (4), the dependence

of the normalized differential Compton cross section on 
�X
is

given by

p
ð
�X
Þ ¼

d

d
�X

¼
3

2

1þ ð
�X
þ 
�e

Þ
2

ð1þ 
�X
þ 
�e

Þ
4
: ð9Þ

This distribution is shown in Fig. 7 for 
�e
= 0 and 
�e

= 0.04.

Here again, with p
 being a quasi-linear function of 
�X
for


�X
smaller than �0.15, its integral between 
�X1

and 
�X2
can

be approximated by p
f½
�X1
þ 
�X2


=2gð
�X1
� 
�X2

Þ. Then, as

illustrated by Fig. 7, an electron contribution to F	 is equal to


	 p
ð
	=2Þ and, according to the exponential distribution

(5c) of �2
e, the ratio R	 for an electron bunch of r.m.s. diver-

gence � 0ex = � 0ey = � 0e can be simply expressed as

R	 ¼ Rtot 
	

Zþ1
0

1

2� 0 2e

exp ��2
e=2� 0 2e

� �
p
ð
	=2Þ dð�2

eÞ: ð10Þ

The calculation of equation (10) using a first-order Taylor

series expansion in �2
e leads to

R	 ¼
3

2
Rtot


	
ð1þ 
	=2Þ2

� 1þ

2
	

4
� 4� 2

0 �
0 2
e

2� 
	=2þ 
2
	=4

1þ 
	=2

� �
: ð11Þ

Expression (11) is valid as long as 
	 and � 2
0 �
0 2

e are less than

�0.15 and �0.03, respectively. For larger values of 
	, the

linear approximation of p
 is no longer valid and the integral

between 0 and 
	 must be explicitly calculated. For � 2
0 �
0 2

e
>
�

0.03, higher-order terms in �2
e have to be taken into account in

the series expansion of equation (10). R	 and points obtained

with CAIN are shown in Fig. 8 as a function of � 0e (for �0 = 100)

for an anglular acceptance 	 of 1 mrad and 2 mrad. Equation

(11) is represented by the solid lines and is in very good

agreement with CAIN simulations up to � 0e ’ 1.5 mrad. The

need to take into account higher-order terms in �2
e in the

modeling of R	 for large values of � 0e is highlighted for � 0e ’
2 mrad. The dotted lines indicate the analytic expression

results when the third-order term in �2
e is taken into account.2

4. X-ray flux within a given angular acceptance and a
given energy bandwidth

In this section we assume that both an angular cut and an

energy selection are applied to the backscattered photons and

we calculate the consequent reduction of the X-ray flux. In the

first two subsections, the electron beam divergence and its

energy spread will be treated independently to understand the

impact of each one of these parameters. Then we will take into

account both of these beam characteristics.

4.1. Dependence on the electron beam angular spread

Our starting point is equation (8) which gives the X-ray

yield in a given energy bandwidth, and we will modify this

expression to take into account the angular acceptance

defined by a maximum value 	 of the X-ray emission direction

with respect to the z axis and the electron beam angular

spread. In order to achieve a single formulation, we associate

an angle to the energy bandwidth, namely �bw =
ffiffiffiffiffiffi
bw
p

=�0. At

this stage, we have to treat separately the 	 < �bw case and the

	 > �bw case, as illustrated in Fig. 9. The dashed red line

represents the electron momentum direction which makes an

angle �e with respect to the z direction. 	 defines the angular

cut and �bw the energy acceptance translated into an angle.

More precisely, to the energy bandwidth (or energy accep-

tance) bw corresponds an angular acceptance which is a cone

whose axis is the momentum of the electron which back-

scatters the incoming photon and whose half aperture is �bw. In
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Figure 7
The angular differential cross section p
 as a function of 
�X

for 
�e
= 0

(solid line) and for 
�e
= 0.04 (dashed line). The shaded area shows the

contribution to F	 of an electron whose momentum has a polar angle �e.

Figure 8
The ratio R	 = F	=F0 as a function of � 0e for an angular acceptance 	 of
1 mrad (open red circles and red line) and 2 mrad (black bullets and black
line). Points are CAIN simulations (the error bars are too small to be
visible). Solid lines are obtained with equation (11), dotted lines show R	

calculated to third order in �2
e.

2 We do not give here the expression of this third-order analytic formula since
it is relatively heavy and since equation (11) reproduces sufficiently well the
simulations in our parameter range.



Fig. 9, those X-rays which pass both the angular and the

energy cuts are the ones emitted in the green domain. The

hatched regions show emission directions which are outside

the X-ray angular acceptance cone of aperture 	. The

accepted region depends on the three angles involved in the

following way:

(i) For 	 > �bw (see upper panels in Fig. 9) and values of �e

such that �e < 	� �bw, all the X-rays whose energy belong to

the accepted bandwidth pass the angular cut [case (a)]; when

�e increases, the cone intersection diminishes and depends on

whether �e is larger than 	 or not [(b) and (c) cases];

(ii) For 	 < �bw (see lower panels in Fig. 9), the cone

intersection is reduced as the electron angular spread

increases and depends on whether �e is larger than �bw or not

[(e) and ( f) cases].

To take into account the various cases enumerated above,

we introduce the following two angles: �m = minð	; �bwÞ and

�M = maxð	; �bwÞ. Then, using the �2
e probability distribution of

equation (5c), an integration is performed for each of the

three cases and the number of X-rays backscattered in the

angular acceptance 	 and within a given energy bandwidth bw

is given by the following expression:

R	;bwð�
0

eÞ ¼ Rbw

Zð	��bwÞ
2

0

1

2�0 2e

exp ��2
e=2� 0 2e

� � � 2
m

� 2
bw

dð�2
eÞ

2
64

þ

Z� 2
M

ð	��bwÞ
2

1

2� 0 2e

exp ��2
e=2� 0 2e

� � � 2
m

� 2
bw

�
� 2

m � ð�M � �eÞ
2

2� 2
bw

� �
dð�2

eÞ

þ

Zð	þ�bwÞ
2

� 2
M

1

2� 0 2e

exp ��2
e=2� 0 2e

� � ð�bw þ 	� �eÞ
2

2� 2
bw

dð�2
eÞ

3
75; ð12Þ

where Rbw is given by equation (8) with �e ’ 0, i.e. Rbw =

ð3=2Þ Rtot bw½1� ðbw� bw2=2Þ
. Equation (12) leads to the

following analytic expression for R	;bw:

R	;bwð�
0
eÞ ¼

Rbw

�2
bw

 
� 2

m þ �
0 2
e

	
exp �ð	� �bwÞ

2=2� 0 2e

� �

� exp �ð	þ �bwÞ
2=2� 0 2e

� �


þ

ffiffiffi
�
p ffiffiffi

2
p � 0e �M ERF

�M � �mffiffiffi
2
p
� 0e

� �

þ

ffiffiffi
�
p ffiffiffi

2
p � 0e �m ERF

�Mffiffiffi
2
p
� 0e

� �

�

ffiffiffi
�
p ffiffiffi

2
p � 0e ð	þ �bwÞERF

	þ �bwffiffiffi
2
p
� 0e

� �!
: ð13Þ

CAIN simulations and results from equation (13) are shown in

Fig. 10 where R	;bw is plotted against the angular divergence � 0e
for several values of the acceptance angle 	 and several values

of the energy bandwidth bw.

4.2. Dependence on the electron beam energy spread

We now assume � 0e = 0 mrad and we focus on the depen-

dence of R	;bw on the energy spread of the electrons. We start

again with the ratio Rbw of the X-ray flux within a given energy

bandwidth bw [see equation (8)] and F0, the X-ray flux in the

‘ideal’ case where �e = � 0e = 0 [see equation (3)]. We assume

that an angular selection 	 is applied. Only the first-order term

in �� will be kept (where �� is defined in x3.2). The quantities

2j��j and � 2
0 	

2 are denoted by 
� and 
	, respectively. Then,

depending on the relative values of 
	 and bw, three config-

urations have to be distinguished: (i) bw < 
	 < 2bw, (ii) 2bw <


	 and (iii) 
	 < bw. Case (i) is illustrated in Fig. 11. In this
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Figure 9
Top: the 	 > �bw case where �bw =

ffiffiffiffiffiffi
bw
p

=�0. Three configurations are shown: (a) �e < 	� �bw, (b) 	� �bw < �e < 	, (c) 	 < �e < 	þ �bw. Bottom: the 	 < �bw

case. (d) �e < �bw � 	, (e) �bw � 	 < �e < �bw, ( f ) �bw < �e < 	þ �bw.



figure, the energy bandwidth is assumed to be centered at

"0 = 1. The left panels correspond to �� negative, the right ones

to �� positive. Hatched areas represent X-rays whose energy is

within the selected energy bandwidth but which are rejected

by the angular cut. As shown in this figure, the size of the

overlap between the energy acceptance domain and the

angular acceptance one depends on bw, 	 and �� in the

following way:

(i) For increasing values of j��j, as long as 
� + bw < 
	, all

X-rays accepted in the Fbw energy band are emitted within the

angular acceptance 	 as shown in panels (a) and (b).

(ii) For 
	 � bw < 
� < bw, the fraction of X-rays remaining

in the 
	 angular acceptance band is (bw � 
� + 
	Þ=ð2bwÞ

[see panels (c) and (d)].

(iii) The same fraction of X-rays pass the angular cut when

bw < 
� < bw + 
	 [panels (e) and ( f)].

Similarly, the fraction of X-rays remaining in the 
	
band in the configuration (ii) defined above is 1 and

ðbw� 
� þ 
	Þ=ð2bwÞ for 
� < 
	 � bw and 
	 � bw < 
� <

bw + 
	, respectively. In the (iii) configuration, this fraction

is 
	=bw for 
� < bw � 
	 and (bw � 
� + 
	Þ=ð2bwÞ for

bw � 
	 < 
� < bw + 
	.

From this and from equation (5a) which implies the

following probability distribution,

dp

dð
�Þ
¼

1

�e

ffiffiffiffiffiffi
2�
p exp �
2

�=8� 2
e

� �
;

the following expression of R	;bw as a function of �e can be

derived:

R	;bwð�eÞ ¼

Rbw

Zj
	�bwj

0

1

�e

ffiffiffiffiffiffi
2�
p exp �
2

�=8� 2
e

� � minð
	; bwÞ

bw
dð
�Þ

2
4

þ

Z
	þbw

j
	�bwj

1

�e

ffiffiffiffiffiffi
2�
p exp �
2

�=8� 2
e

� � 
	 þ bw� 
�
2bw

dð
�Þ

3
75; ð14Þ

where Rbw is given by equation (8). In the calculation of

equation (14), a simplification occurs which makes the

dependence on minð
	; bwÞ disappear, resulting in

R	;bwð�eÞ ¼
Rbw

2bw

2
ffiffiffi
2
p
�effiffiffi
�
p exp �

ð
	 þ bwÞ2

8�2
e

� �	�

� exp �
ð
	 � bwÞ2

8�2
e

� �


þ ð
	 þ bwÞERF

	 þ bw

2
ffiffiffi
2
p
�e

� �

�ð
	 � bwÞERF

	 � bw

2
ffiffiffi
2
p
�e

� ��
: ð15Þ

CAIN simulations and results from equation (15) are

displayed in Fig. 12 where R	;bw is plotted as a function of �e

for several values of the angular and the energy acceptances.

4.3. Combined effect of the energy spread and the angular
divergence of the electron beam

When both �e and � 0e must be taken into account to

calculate the ratio R	;bwð�e; �
0

eÞ, this analytic formulation

encounters a severe limitation for the following reason. When

the incoming photons are backscattered by electrons whose

energies are distributed according to equation (5a), one may

try to compute the X-ray flux in a way similar to that carried

out in x4.1. The bw term which comes in the �bw definition

would have to be replaced by bweffective = bw + 2��, where ��
is defined in x3.2. This would lead to an equation similar to

equation (12) with the �� parameter occurring in the inte-

grants and in the integrals’ limits. The integration over �2
e

could still be performed, but the next step, namely an integral

over �� that takes into account the �� distribution [equation

(5a)], cannot be performed analytically. Nevertheless, very

good approximations can be obtained by employing equations

previously established in this paper.

Indeed, if the electron beam angular divergence plays a

dominant role with respect to the energy spread in the

calculation of the X-ray flux within some acceptance cuts, a

good approximation of R	;bwð�e; �
0

eÞ is obtained by using

equation (13) and assuming �bw = ðbweffÞ
1=2=�0, where bweff is

the quadratic sum of bw and the standard deviation of 
� :

bweff = ½bw2
þ ð2�eÞ

2


1=2. On the contrary, when the electron
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Figure 10
The ratio R	;bw = F	;bw=F0 plotted as a function of � 0e (assuming �e = 0) for
	 = 1 mrad (open circles) and 2 mrad (black bullets) and for (a) bw =
0.1%, (b) bw = 0.7% and (c) bw = 3%. Lines show the results of equation
(13) while points illustrate CAIN simulations (the error bars are too small
to be visible).



beam energy spread is dominant with respect to the angular

divergence, equation (15) must be used wherein the quantityffiffiffiffiffiffiffi
2�e

p
is replaced by the quadratic sum of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2

0�
0 2
e

p
and

ffiffiffiffiffiffiffi
2�e

p
,

resulting in the substitution 2�e ! 2�e + 2�2
0�
0 2
e .

CAIN simulations and results of the modified equations

(13) or (15) are shown in Fig. 13 for several values of 	 and bw.

The discontinuities seen in the lines mark the use of equations

(15) or (13) with the appropriate adaptation described above.

When 2�2
0�
0 2
e + bw < ½ð2�eÞ

2
þ bw2



1=2, equation (15) is used

wherein 2�e is replaced by 2�e + 2�2
0�
0 2

e . Otherwise, equation

(13) is used where bw is replaced by ½bw2
þ ð2�eÞ

2


1=2.

5. Additional comments and conclusion

We have derived analytic expressions for the total, the spectral

and the angular X-ray fluxes of a Compton source according

to the Compton kinematics and to the characteristics of the

incoming electron and laser beams. The two dominant para-

meters governing the quality of such a source are the electron

beam energy spread and its divergence. We point out a

limitation of the analytic calculation of the flux R	;bw in a given

energy bandwidth and a specified solid angle when both the

energy spread and the divergence of the electron beam must

be taken into account in the calculation. Nevertheless, the

expressions of R	;bw obtained when either the energy spread

or the angular divergence of the electron beam is taken into

account can still be used with an appropriate modification.

Analytic expressions (11), (13) and (15) provide the photon

yield R	 within a given angular acceptance [equation (11)] and

the photon yield R	;bw within both a given angular acceptance

and a given energy bandwidth [equations (13) or (15)]. Table 2

summarizes the validity domains of these equations in terms of

the selected Compton kinematic region and according to the

energy spread and the angular divergence of the two incoming

beams as long as they are within the parameters ranges of

current electron and laser beams (see Table 1).

Within the large spectrum of X-ray applications in bio-

medical, cultural heritage or material science, specific X-ray
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Figure 11
X-ray energy spectrum. The fraction of this spectrum which falls within the energy acceptance band is shown in green. The hatched bands represent
X-rays which are eliminated because of the angular cutoff. Left panels correspond to �� negative, right ones to �� positive. (a) and (b) illustrate the cases
where 0 < 
� < 
	 � bw, (c) and (d) where 
	 � bw < 
� < bw, and (e) and ( f ) where bw < 
� < bw + 
	.



beams are required depending on the analysis technique and

the sample to be used. For instance, a narrow energy band-

width is required in most of the X-ray diffraction experiments

(Dik et al., 2008) whereas therapy techniques such as stereo-

tactic radiation therapy (Jacquet & Suortti, 2015) can relax the

constraint on the spectral width. Thus, for an incoming elec-

tron beam with a given emittance, it may be beneficial to

minimize its transverse size even at the expense of its diver-

gence. This could be the case for instance in experiments

where a large X-ray number is the main requirement, or when

an as small as possible source size is needed to carry out some

analysis technique (such as phase-contrast imaging techni-

ques). On the other hand, the electron beam divergence may

be minimized at the expense of the transverse size when a

quasi-monochromatic X-ray beam is required.

Analytic formulas (11), (13) and (15) allow one to compute

easily the spectral and spatial properties of an X-ray source

based on photon backscattering, and highlight the beam

parameters that play a key role for a given application. They

should help when studying the feasibility of a particular

experiment envisaged at some X-ray source.
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Table 2
Validity of equations (11), (13) and (15) in terms of the parameters.

The typical maximum values for current electron and laser beams shown in Table 1 are recalled. Each value indicates the upper limit of the parameter for which the
equation is valid.

Parameters �	 (rad) bw �� 0e (rad) sin �c �
0

L (mrad) �e �L

e� and typical laser values 0.25 10 A few % A few %

Equation (11) 0.4 0.18 10 A few %
A few %

Equations (13) and (15) Any 0.35 0.25 1† 2–3%

† For the particular cases where sin �c �
0

L ’ 1–10 mrad, R	;bw is valid but is overestimated by � 0.5–5% via the term Rbw (see x3.2).

Figure 12
The ratio R	;bw = F	;bw=F0 versus �e, for 	 = 1 mrad (open circles) and
2 mrad (black bullets), and for (a) bw = 0.1%, (b) bw = 0.7% and (c) bw =
3%. � 0e = 0 is assumed here. Lines are obtained by using the analytic
expression (15) while points are CAIN simulations (the error bars are too
small to be visible).

Figure 13
The ratio R	;bw = F	;bw=F0 as a function of � 0e, for an electron energy
spread �e of 0.5% (circles) and 1.5% (squares) and for a selection angle 	
of 1 mrad (open symbols) and 2 mrad (full symbols). (a) bw = 0.1%. (b)
bw = 0.7%. (c) bw = 3%. Lines are the analytic calculations (see text),
points are CAIN simulations (the error bars are too small to be visible).
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