
research papers

376 https://doi.org/10.1107/S1600577517000820 J. Synchrotron Rad. (2017). 24, 376–385

Received 1 September 2016

Accepted 17 January 2017
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The propagation within a one-dimensional photonic crystal of a single ultra-

short and ultra-intense pulse delivered by an X-ray free-electron laser is

analysed with the framework of the time-dependent coupled-wave theory in

non-linear media. It is shown that the reflection and the transmission of an ultra-

short pulse present a transient period conditioned by the extinction length and

also the thickness of the structure for transmission. For ultra-intense pulses,

non-linear effects are expected: they could give rise to numerous phenomena,

bi-stability, self-induced transparency, gap solitons, switching, etc., which have

been previously shown in the optical domain.

1. Introduction

The purpose of this work is to analyse different aspects of the

time-domain propagation of an ultra-intense and/or ultra-

short single pulse delivered by an X-ray free-electron laser

(X-FEL) within a Bragg structure. In the hard X-ray domain,

the Bragg structures firstly implemented were natural crystals,

and the steady-state (time-independent) diffraction by crystals

was studied in detail within the framework of the so-called

dynamical theory of diffraction (Authier, 2003). Since the

1970s, synthetic Bragg crystals based on periodic multilayer

stacks, sometimes called multilayer interferential mirrors

(MIMs), have been developed for the soft X-ray domain for

which natural crystals were unusable; the time-independent

diffraction by these multilayer structures have also been

extensively studied (Pardo et al., 1988).

In this paper, we consider a MIM but some conclusions

could be drawn in a similar way to the case of a natural crystal

diffracting in the Bragg (reflection) or Laue (transmission)

geometry where only one dimension is involved. Thus, here-

after, we use the generic term ‘one-dimensional photonic

crystal’ (1D-PC) to refer to the two types of Bragg structures,

crystal or MIM. The term ‘distributed-feedback structure’

(DFB) has also been commonly used in the literature to refer

to this kind of structure. Let us outline that the terminologies

PC and DFB are rarely used for the X-ray range but are more

common in the long-wavelength domain (optical range, etc.).

Indeed most of the effects that we describe in this paper for

the X-ray domain can be found throughout the whole elec-

tromagnetic spectrum and in particular the non-linear (NL)

processes have been studied in detail in the optical domain

mainly in the context of optics of fibers and waveguide Bragg

gratings, so that a large part of x4 is borrowed from the
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numerous studies published on these topics. The objective of

the present work is mainly to inform the community of X-FEL

users about some linear and NL effects that could be shown

with X-FEL radiation pulses.

The X-FEL facilities are now able to deliver single ultra-

intense and ultra-short pulses of coherent radiation; consid-

ering for instance the FERMI facility, the photon beam

parameters for FEL1 are 100 mJ per pulse with an estimated

pulse length (FWHM) of less than 150 fs. ‘Ultra-short’ means

that the duration of the pulse is less that the relaxation times

of the media, ‘ultra-intense’ means that non-linear optical

effects are expected, and finally ‘coherence’ means that the

photons in a pulse have fixed phase relationships forming a

single mode. All these unique features (high brightness, short

time duration, temporal and spatial coherence) open the way

to the observation of coherent NL processes. The induced

polarization P of the materials is given as a power-series

expansion of the incident electric field E, in cgs units,

P ¼ 4�
P
i� 1

� ið Þ Ej ji�1E; ð1Þ

� ið Þ being the susceptibility of the ith order. Generally, the

even-order terms are null for any centro-symmetric system

so that the lowest-order NL processes are of the third order.

Among them, the most famous one is the Kerr effect for which

the refractive index change is proportional to the square of the

applied electric field or electric field intensity. Recently, X-ray

reflectivity enhancement in titanium has been reported

(Bencivenga et al., 2014) by a team using ultrafast XUV

radiation at the TIMEX end-station of the EIS beamline of

the FERMI X-FEL facility; the experimental results have

been interpreted as a dependence of the plasma frequency

with respect to the energy density �EE ’ Ej j2 which leads in the

framework of the Drude refractive index model to variation of

reflection upon the deposited energy density. The dependence

of the refractive index upon �EE can be regarded as a special

case of the Kerr effect known as refractive index intensity

dependence which can give rise to numerous NL effects

observed and expected especially in the low-energy domain

of the electromagnetic spectrum: self-focusing, self-phase

modulation, spatial solitons (New, 2014), NL surface polar-

itons (Leung, 1985). The intensity-dependent refractive index

is also at the origin, in the Bragg structure, of various effects

such as gap solitons (Chen & Mills, 1987; Mills & Trullinger,

1987; Martijn de Sterke & Sipe, 1994) connected to self-

induced transparency (Aceves & Wabnitz, 1989), pulse

compression in Bragg optical fiber (Winful, 1985), and bi-

stability in NL distributed feedback structure (Winful et al.,

1979).

Time-dependent diffraction by a Bragg structure has

received comparatively poor attention: Chukhovskii & Förster

have considered time-dependent diffraction by a crystal

(Chukhovskii & Förster, 1995) and more recently their

approach has been extended to a 1D-PC (André & Jonnard,

2015). Let us mention that the response of Bragg structures,

MIMs (Ksenzov et al., 2008, 2009; Bushuev & Samoylova,

2011) and crystals (Shastri et al., 2001; Bushuev, 2008), to

X-FEL sources has been treated by means of methods

implemented for the frequency domain.

We lead our investigation in the framework of the time-

dependent coupled-wave (TDCW) analysis extended to NL

materials. In x2 we establish the system of coupled-wave

equations taking into account the NL response of the media.

In x3 we consider the low-intensity regime, where NL beha-

viour can be neglected; we show that the indicial response of a

MIM displays a transient period determined by the extinction

length of the Bragg structure in terms of reflection and by the

extinction length combined with the thickness of the structure

in terms of transmission. In x4 we consider the high-intensity

regime, with NL effects first in the steady-state case where bi-

stability can be envisaged, then in the time-dependent case

where we consider the possibility to observe Bragg solitons

associated with a kind of self-induced transparency of the

Bragg structure.

2. Time-dependent coupled-wave theory in non-linear
1D-PC

We consider the propagation of an ultra-short and ultra-

intense (generally coherent) single pulse such as the one

delivered by an X-FEL in a 1D-PC shown in Fig. 1. The figure

also gives the geometry of the problem and some notations.

We consider a periodic stack of N bilayers. The bilayer is made

up of a material a with dielectric susceptibility �a and material

b with dielectric susceptibility �b with layer thickness da = �d

and db = (1 � �)d, respectively. The incoming radiation with a

wavevector k = (kx; kz) in the plane ðx; zÞ strikes the multi-

layer structure under a glancing angle �. A Cartesian ortho-

gonal reference frame ðx̂x; ŷy; ẑzÞ is used. L is the total thickness

of the stack, equal to Nd. The reciprocal vector g = ð2�=dÞẑz

is orthogonal to the stratification planes.

The electric field E x; z; tð Þ of the X-FEL single pulse is

modelled by a quickly varying carrier with frequency ! = ��,

modulated by an envelope E0 z; tð Þ, and we write it as follows

(assuming a s-polarization case),
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Figure 1
Sketch of the 1D-PC consisting of a periodic stack of alternating a/b
bilayers.



E x; z; tð Þ ¼ E0 z; tð Þ exp i kxx� !tð Þ
� �

ŷy: ð2Þ

We assume that the polarization of the media follows instantly

the change of the electric field but that the media have a NL

behaviour; more precisely, we consider that the medium is

subject to the special case of the optical Kerr effect for which

the refractive index is intensity-dependent. Consequently, we

write the polarization P as follows,

P x; z; tð Þ ¼ � z;E0 z; tð Þ
� �

E z; tð Þ

¼ � 1ð Þ zð Þ þ � 3ð Þ zð Þ E0 z; tð Þ
�� ��2h i

� E0 z; tð Þ exp i kxx� !tð Þ
� �

ŷy; ð3Þ

that corresponds to a third-order NL. The susceptibilities

� nð Þ zð Þ do not depend on time while the total susceptibility �
depends on time through E0 z; tð Þ, but they vary periodically

along the z direction. Consequently they can be expanded in a

Fourier series,

�ðnÞ zð Þ ¼ ���ðnÞ þ
Pþ1

p¼�1

�� nð Þup expðipgzÞ; ð4aÞ

with

���ðnÞ ¼ �ðnÞa � þ �
ðnÞ
b ð1� �Þ; ð4bÞ

��ðnÞ ¼ �ðnÞa � �
ðnÞ
b � ���ðnÞ; ð4cÞ

up ¼ � sinc �p�ð Þ expð�i�p�Þ; ð4dÞ

g ¼ 2�=d: ð4eÞ

In our study we restrict to the Kerr NL and consequently we

keep only the terms ���ð1Þ, ���ð3Þ, ��ð1Þ and �� 3ð Þ.

In the 1D-PC, the electric field envelope can be written as

the superposition of two contra-propagating waves along the

z-axis,

E0 z; tð Þ ¼ F z; tð Þ expðþi�zÞ þ B z; tð Þ exp �i�zð Þ; ð5aÞ

with

� ¼ k sin �; ð5bÞ

and using the following auxiliary amplitude terms

Eþ z; tð Þ ¼ F z; tð Þ exp �i
pg

2
� �

� �
z

h i
ð6aÞ

and

E� z; tð Þ ¼ B z; tð Þ exp þi
pg

2
� �

� �
z

h i
: ð6bÞ

In the framework of the two-wave theory where only the

zeroth-order and the pth Fourier term are strongly coupled

(i.e. in the vicinity of the pth Bragg resonance), it can be shown

that, in the slow-varying approximation both in space and in

time, the column amplitude vector

�EE z; tð Þ ¼
Eþ z; tð Þ

E� z; tð Þ

� �

and its complex conjugate

�EE
�

z; tð Þ ¼
E
�

þ z; tð Þ

E
�

� z; tð Þ

� �

obey the following system of partial differential equations

(PDEs) forming the so-called non-linear coupled mode

equations with loss or gain,

@z
�EE z; tð Þ ¼ �TT @t

�EE z; tð Þ þ i �MM �EE z; tð Þ

þ �NN �EE z; tð Þ þ �NNc
�EE
�

z; tð Þ; ð7Þ

where �MM is the propagation matrix in space given by

�MM¼
�� Kþ

K� �

	 

; ð8aÞ

with

� ¼
pg

2
þ

k2

�
2� ���ð1Þ � �; ð8bÞ

Kþ ¼ �
k2

�
2��� 1ð Þup; ð8cÞ

K� ¼
k2

�
2��� 1ð Þu�p: ð8dÞ

�TT is the propagation matrix in time,

�TT ¼
� 1

c sin � 0

0 1
c sin �

	 

: ð9aÞ

�NN is the NL matrix corresponding to the average NL term,

�NN ¼
��a�þ z; t; S;Xð Þ �p��� z; t; S;Xð Þ

��p��þ z; t; S;Xð Þ �a�� z; t; S;Xð Þ

" #
; ð9bÞ

with

�þ z; t; S;Xð Þ ¼ S Eþ z; tð Þ
�� ��2 þ 2X E� z; tð Þ

�� ��2; ð9cÞ

�� z; t; S;Xð Þ ¼ S E� z; tð Þ
�� ��2 þ 2X Eþ z; tð Þ

�� ��2: ð9dÞ

The quantity S corresponds to the self-phase (SP) modulation

term while the quantity X is for the cross-phase (CP) modu-

lation; moreover, the term �a corresponds to the average NL

term while the term �p� is associated with the pth Fourier

component of the NL term of the dielectric susceptibility

�� 3ð Þup.

The matrix �NN c affecting �EE
�

z; tð Þ is

�NN c ¼ �m
E� z; tð Þ2 0

0 �Eþ z; tð Þ2

� �
: ð10Þ

The coefficient �m is also related to the third-order dielectric

susceptibility. It contributes to the wave-mixing process. If the

polarization is stationary according to our assumption, one can

show that in our geometry

S ¼ X ¼ 1; �a ¼ �m / 1þ 4� ���ð3Þ: ð11Þ

The loss (or gain) has been taken into account in the above

theory by introducing an imaginary part in the dielectric

constants. Generally, in the X-ray domain, materials are

absorbing; nevertheless, stimulated emission has been
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reported in solids (silicon and magnesium oxide) under

X-FEL excitation (Beye et al., 2013; Yoneda et al., 2015;

Jonnard et al., 2016), so that the case of a medium with gain

(lasing medium) needs to be considered too. Let us mention

that X-UV lasing in a 1D-PC with pumping by X-FEL,

forming a so-called distributed feedback laser, has been

recently examined (André et al., 2014).

3. Low-intensity regime: transient response

In this section we assume that the intensity of the X-FEL

radiation is low enough so that no NL behaviour occurs: this

is the low-intensity regime (LIR). We will see that, even if the

response of the 1D-PC to the pulse is then purely linear,

notable effects occur when the time width of the pulse is very

short. First we will consider the so-called impulse and indicial

response of the 1D-PC in terms of reflection and transmission;

the impulse response corresponds to an incident Dirac-� pulse

while the indicial response corresponds to an incident step-

like Heaviside-� signal in terms of time dependence. The 1D-

PC is assumed to work at the Bragg resonance.

Under the LIR, the system of PDEs, equation (7), is linear

and can be reduced by means of the following characteristic

coordinates v;w,

v ¼
1

2
ct sin � � zð Þ; ð12aÞ

w ¼
1

2
ct sin � þ zð Þ; ð12bÞ

and the reduced field amplitudes defined by

Eþ z; tð Þ ¼ exp �i�ct sin �ð Þ ~ff v;wð Þ; ð13aÞ

E� z; tð Þ ¼ exp �i�ct sin �ð Þ ~bb v;wð Þ; ð13bÞ

to the following hyperbolic second-order PDE,

L v;wð Þ
~ff v;wð Þ; ~bb v;wð Þ
� �

¼ 0 ð14Þ

where L v;wð Þ is the differential operator defined by

L v;wð Þ ¼
@2

@v@w
þ
�2

�2

	 

; ð15Þ

with �2 the quantity related to the coupling constants Kþ;K�

by

�2
¼ �

�2

KþK�
: ð16Þ

The quantity � is the extinction length of the dynamical

theory of diffraction. For given boundary conditions, the PDE

given by equation (14) can be solved by implementing

Riemann’s method (Courant & Hilbert, 1965). This method

requires an integration contour in the characteristic coordi-

nate plane shown in Fig. 2.

Application of Riemann’s method leads to writing the

backward propagating (reflected) field as follows,

~bb v; vð Þ ¼ �iK�
�

�

ZQ

P

J1 ð2�=�Þ v� v0ð Þ½ �

v� v0ð Þ
~ff v0; v0ð Þ dv0; ð17Þ

where ~ff v0; v0ð Þ corresponds to the incoming (forward propa-

gating) wave at the front surface (z = 0). J1 is the Bessel

function of the first kind. From equation (17) one can deduce

the impulse in terms of reflection coefficient. The impulse

incident reduced field amplitude ~ff v; vð Þ� can be written as

~ff v; vð Þ� ¼
exp þi2�vð Þffiffiffiffiffiffi

2�
p

sin �

2
�

x cos � sin �

2
� v

� �
; ð18Þ

where � stands for the Dirac peak. Inserting equation (18) into

(17) and performing the integration gives, for the reduced

diffracted field ~bb v; vð Þ� under the incidence of a Dirac pulse,

~bb v; vð Þ� ¼ � i sin �K�
�

�

exp þiax cos � sin �ð Þffiffiffiffiffiffi
2�
p

�
J1 ð�=�Þ sin � ct � x cos �ð Þ½ �

sin � ct � x cos �ð Þ
; ð19Þ

that is, for the diffracted field,

E� z ¼ 0;Tð Þ� ¼ i sin �K�
�

�
ffiffiffiffiffiffi
2�
p

J1 	 Tð Þ½ �

	 Tð Þ
�ðTÞ;

	 Tð Þ ¼ ð�=�Þ sin � cT; ð20Þ

where the time delay T has been introduced, measured with

respect to the diffracted wave plane,

T ¼
ct � x cos �

c
: ð21Þ

R̂R� Tð Þ = E� z ¼ 0;Tð Þ� is the impulse response in terms of

reflection and also the temporal Green function gR Tð Þ for

reflection. For time coherent radiation with time-dependent

causal distribution � (normalized to unity), the indicial

response R̂R� tð Þ in terms of reflection coefficient is given by
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Figure 2
1D-PC geometry in the characteristic coordinate reference frame (v, w);
the front surface is given by w = v (line PQ) while the rear surface is given
by w = v + L (line RT).



R̂R� tð Þ ¼

Zþ1
�1

gRðTÞ
�� ��2� t � Tð Þ dT ¼

Zt

0

gRðTÞ
�� ��2� t � Tð Þ dT:

ð22Þ

Equation (22) allows one to draw a ‘universal’ curve in terms

of peak reflectance for the indicial response R̂R� tð Þ versus the

reduced time �tt = tð� sin � c=�Þ (see Fig. 3). It appears that the

indicial response for reflection is conditioned by the extinction

length � and that it presents a transient period whose dura-

tion is given by a characteristic transient time tc approximately

equal to two units of reduced time.

Following a similar calculation it is possible to show that the

forward propagating transmitted field ~ff v;wð Þ�T is given by

~ff v;wð Þ�T ’ �
2�2L

�2

ZQ

P

~ff v0; v0ð Þ

�
J1 ð2�=�Þ vþ L� v0ð Þ v� v0ð Þ½ �

1=2
� 

ð2�=�Þ vþ L� v0ð Þ v� v0ð Þ½ �

1=2
dv0: ð23Þ

To determine the impulse response in terms of transmission,

we insert into equation (22) the expression of the incident

pulse given by equation (18) as for the reflection case and we

perform the integration as for the reflection geometry,

resulting in the impulse response in terms of transmission T̂T� tð Þ

being Eþ z ¼ L;Tð Þ�,

Eþ z ¼ L;Tð Þ� ¼
�2L

sin ��2

J1 
 Tð Þ½ �


 Tð Þ
� Tð Þ;


 Tð Þ ¼
�

�
cT

2L

sin �
þ

cT

sin �2

	 
� �1=2

:

ð24Þ

For time-coherent radiation with time-dependent causal

distribution � the indicial response T̂T� tð Þ in terms of trans-

mission coefficient is given from the temporal Green function

for transmission, gT = T̂T�,

T̂T� tð Þ ¼

Zþ1
�1

gTðTÞ
�� ��2 � t � Tð Þ dT ¼

Zt

0

gTðTÞ
�� ��2 � t � Tð Þ dT:

ð25Þ

The indicial response in terms of transmission is conditioned

both by the extinction length � and by the thickness L of the

1D-PC.

From the indicial responses of the 1D-PC it is possible to

calculate the time-dependent reflection and transmission of a

short pulse. Let I tð Þ be the temporal envelope shape of any

incident pulse and O(t) the envelope of the corresponding

reflected or transmitted pulse. Then the Laplace transform

O sð Þ of O(t) is related to the Laplace transform I sð Þ of I tð Þ by

means of the convolution theorem,

O sð Þ ¼ ẐZ� sð Þ I sð Þ; ð26Þ

ẐZ� sð Þ being the transfer function that is the Laplace transform

of the impulse response ẐZ� tð Þ [	 R̂R� tð Þ or T̂T� tð Þ]. ẐZ� tð Þ can be

determined from ẐZ� tð Þ by Strejc’s method (de Larminat,

2007). By performing an inverse Laplace transform of equa-

tion (26), one determines the temporal response (André &

Jonnard, 2015).

We now illustrate the previous theory in the case of a MIM

consisting of a stack of N = 7 Ti/Si bilayers; the period d is

equal to 70 nm and the � ratio is equal to 0.5. The photon

energy of the incident XFEL radiation is 20 eV (� = 62 nm)

diffracted at � = 60
. The choice of the Ti/Si system is not

governed by the objective of optimizing the reflectance of the

MIM but by the fact that it has been shown (see Bencivenga et

al., 2014) that titanium has a NL behaviour at the photon

energy of interest. The temporal profile XFEL pulse is

modelled by a sine-squared function; that is, the envelope of

the incident pulse varies as sin2
½�ðt=�Þ� in the time interval

[0, �] and 0 outside.

The NL dielectric constant (square of the refractive index)

of titanium is assumed to be given by Drude’s formula

modified to account for the intensity dependence (Bencivenga

et al., 2014),

"NL Ti ¼ 1�
!2

p0 1þ A �EE
� �
!2 þ i! ���

� "L Ti þ�"Ti
�EE; ð27aÞ

"L Ti ¼ 1�
!2

p0

!2 þ i! ���
� 1�

!2
p0

!2
þ i ���

!2
p0

!3
;

�"Ti ¼ �A
!2

p0

!2
;

ð27bÞ

!p0 is the plasma frequency at zero energy density ( �EE = 0)

equal to 17.7 eV, A being an empirical constant equal to 7.5 �

1012 m3 J�1. Following Bencivenga et al. (2014), the damping

term ��� is taken to be 0:1!p0 as for aluminium (Ujihara, 1972)

since a reference value is not available in the literature for Ti.

Numerically, at 20 eV, one has
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Figure 3
Indicial response in terms of peak reflectance versus reduced time for a
1D-PC at the Bragg resonance (Bragg angle). The response is normalized
to unity.



"L Ti ¼ 0:217þ i 0:069 ¼ ð0:474þ i 0:087Þ2;

�"Ti ¼ �5:87� 1012:

For silicon, from Palik (1985), at 20 eV,

"L Si ¼ ð0:567þ i 0:083Þ2:

Fig. 4 displays the indicial response in terms of reflectance for

the Ti/Si MIM under consideration, for different glancing

angles close to the Bragg angle (� = 60
) obtained by solving

equation (7) (André & Jonnard, 2015). It appears that the

transient time is around 6.5 fs to reach 90% of the stationary

indicial response. The temporal response in terms of peak

reflectance (that is, for resonance at Bragg angle � = 60
) to a

single pulse for several time widths � (10, 50, 100 fs) is shown

in Fig. 5. It can be seen that for the shortest incident pulses the

reflectance does not have enough time to reach its steady-state

value. For the longest pulses, the response duration is quite

symmetrical and lasts about the time of the pulse. For the

shortest pulse, the response is asymmetrical and lasts at least

twice the time of the pulse.

4. High-intensity regime: solitons and other non-linear
effects

In this section, we highlight some NL effects occurring in the

high-intensity regime (HIR) where Kerr non-linearity takes

place. If one starts from the general coupled wave (CW)

equation, equation (7), to deal with this regime, one has to

face a lot of mathematical problems that are very difficult to

handle, leaving one with only numerical techniques that are

generally computationally intensive and do not provide the

necessary insight into the physics. So we choose to simplify the

problem by keeping in equation (7) only the terms that

describe the basic phenomena. In this way we restrict our

study to the following cases:

(i) Loss and/or gain in the medium are discarded.

(ii) The 1D-PC is tuned at the pth Bragg resonance.

(iii) Wave mixing that is the effect of the matrix �NN c in

equation (7) is neglected.

4.1. NL stationary case

From the study of the time-dependent linear case examined

in x3, one can expect, for pulses with very large time width

with respect to the characteristic time associated with the

extinction length, that the propagation of the pulse in NL

media can be satisfactorily described by the time-independent

(stationary) form of the NL PDEs. It can be shown that under

these conditions the system of hyperbolic PDEs deduced from

equation (7) with the above-mentioned assumptions has two

conserved quantities depending on Eþ zð Þ and E� zð Þ,

(i) The intensity flow, jEþ zð Þj
2
� jE� zð Þj

2 = Iin � Iref = Iout 	

T (see Appendix A);

(ii) The real-valued Hamiltonian (non-explicited).

Also, since the degree of freedom (equal to 2) of the PDE

system is equal to the number of conserved quantities, by

virtue of the Liouville–Arnould theorem, this PDE system is

exactly integrable. With the ‘standard’ boundary conditions,

Eþ 0ð Þ
�� ��2¼ Iin; E� 0ð Þ

�� ��2¼ Iref;

Eþ Lð Þ
�� ��2¼ Iout; E� Lð Þ

�� ��2¼ 0;
ð28Þ

the integration yields relationships between the transmittance

(reflectance) and the input intensity I in in terms of Jacobi

elliptic functions (see Appendix A). From the expression of

the transmittance deduced from equation (45), it appears that

the 1D-PC can present a bi-stability. This is illustrated by Fig. 6,

obtained from equation (50). It shows a typical S-shape

response at Bragg resonance in terms of normalized trans-

mittance versus I in for the value of ���L equal to 2; the negative

slope region (between 4.75 and 4.85) is unstable. The Bragg

reflectivity associated with the linear component of the

dielectric constant is erased until a transparent state (reflec-

tivity close to zero) is reached at a point T as shown in Fig. 6.

For low values of ���L, bi-stability cannot be achieved by lack

of feedback but for larger values of ���L multiple-switching
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Figure 5
Reflected pulse by the Ti/Si MIM at Bragg resonance versus time for
several time widths � of the incident pulse: blue line, � = 10 fs; black line,
� = 50 fs; red line, � = 100 fs.

Figure 4
Indicial response of the Ti/Si MIM versus time in terms of peak
reflectance for different glancing angles �: red line, � = 60
 (Bragg angle);
black line, � = 65
; blue line, � = 55
.



phenomena appear (Winful et al., 1979). NL 1D-PC can give

rise, according to the conditions, to multi-stabilities as well as

optical limiting (see x4.2.2) and may even undergo chaotic

behaviour.

4.2. NL time-dependent case

4.2.1. Solitons. The physics of the 1D-PC in the linear case

is governed by the occurrence of two branches of the disper-

sion curve in the frequency domain, experiencing anti-crossing

owing to the wave coupling. In the contra-propagating case

relevant to our problem, the anti-crossing gives rise to a

forbidden energy gap. In the LIR considered in the previous

section, the Bragg frequency !c lies within the band gap where

running waves are forbidden. At HIR, the dielectric constant

changes proportionally to the electric field intensity and the

branches shift down/up in energy (a kind of blue/red shift of

the band gap according to positive/negative NL) so that the

frequency !c no longer falls within the forbidden gap but shifts

towards a region with allowed travelling waves. This

mechanism is sketched in Fig. 7. The gap soliton and the

optical limiting and switching examined hereafter are related

to this mechanism.

The dynamics of the system are then governed by the

system of NL PDEs, equation (7). A remarkable property of

this system is that the entire family of localized solutions can

be built analytically forming the ‘soliton-like’ solutions. The

adequacy of the term ‘soliton’ is discussed in many specialized

works (see, for instance, Wazwaz, 2009); here we merely use

the term soliton to mean localized solutions not in the strict

mathematical sense of integrability. We first consider the case

where SP is neglected (S = 0). Although one could imagine

cases for which X = 0, it seems that there are no realistic

geometries in which S = 0 and X = 0 so that the model under

these conditions is not relevant directly in our problem.

Nevertheless, the latter case paves the way to a general solu-

tion as we will see hereafter. It has been recognized that the

system given by equation (6) with S = 0 and X 6¼ 0 reduces to

the massive Thirring model (MTM) which is integrable and

exhibits soliton-like solutions (Martun de Sterke & Sipe,

1994). The more general solution when the SP term is not

neglected (generally X = S) can be built from the soliton-like

solutions of the MTM (Orfanidis & Wang, 1975).

We briefly present the mathematical way to the more

general [in the sense S 6¼ 0, X 6¼ 0 and Im(") 6¼ 0 but wave

mixing terms remain null] soliton-like solution of equation (6).

First the column vector �EE z; tð Þ without SP can be regarded as a

Dirac spinor  and equation (6) is formally the same as the

MTM equation,

i�
@
 ¼ m � g J
 ; J
 ¼ �  �
 ; ð29Þ

�
 being the gamma matrices formed from the Pauli matrices

�
. The MTM equation can be reduced to the Sine–Gordon

one which is integrable; finally, the soliton-like solutions of the

MTM are (Aceves & Wabnitz, 1989)

 ¼
 1

 2

	 

; ð30aÞ

with

 1 ¼ � �
���

2�a

	 
1=2
1

�
sin Q exp �i ���	 cos Q½ �

� sech ���
 sin Q
 iQ=2½ �; ð30bÞ

 2 ¼ � �
���

2�a

	 
1=2

� sin Q exp �i ���	 cos Q½ �

� sech ���
 sin Q� iQ=2½ �; ð30cÞ

	 ¼
vz� t

1� v2ð Þ
1=2
; ð30dÞ


 ¼
z� vt

1� v2ð Þ
1=2
: ð30eÞ

The signs are determined by the relative sign of the linear and

NL coupling coefficients. Equations (30) represent a two-

parameter family of solutions of the equation (7) system with

� and Q as two free parameters which are, respectively,

obtained from the amplitude and phase of the eigenvalue of
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Figure 7
Dispersion curves in the frequency (!)/Bloch wavenumber (K) domain.
(a) LIR, (b) HIR and positive NL with a shift-down in frequency, (c) HIR
and negative NL with a shift-up in frequency.

Figure 6
Transmittance versus normalized input intensity exhibiting bi-stability of
the NL 1D-PC; a quasi-transparent state appears at the point T.



the scattering problem connected to the MTM; v is a dimen-

sionless quantity ( vj j < 1) given by

v ¼
1��4

1þ�4 ð31Þ

that determines the velocity of the soliton. The parameter Q

(0<Q<�Þ gives the location of the soliton in the band-gap

and determines its width: Q = �=2 corresponds to a soliton

with centre frequency in the middle of the gap reducing to the

slow Bragg soliton of Leung (1985); the limit Q ! 0 corre-

sponds to soliton-like solutions at the top of the gap reducing

to the NL Schrödinger one-soliton solution of the NL PDE

(Sipe & Winful, 1988), whereas the limit Q! � corresponds

to plane-wave solutions. The generalized (i.e. the SP is not

neglected) soliton-like solution �EE z; tð Þ is built from the soliton

solutions  of the MTM given by equation (18),

�EE ¼ A exp½i# 
ð Þ�; ð32aÞ

with

A ¼
1

1þ Rþ þ R�
� �1=2

; ð32bÞ

R� ¼
S

4X

1� vð Þ
2

1� v2
; ð32cÞ

exp i# 
ð Þ½ � ¼ �
exp 2 ���
 sin Qð Þ þ exp 
iQð Þ

exp 2 ���
 sin Qð Þ þ exp �iQð Þ

� �s

; ð32dÞ

s ¼
Rþ � R�

A
2 : ð32eÞ

The solitons given by equation (32) are called self-transpar-

ency solitons. We note that the NL interaction effects appear

in equation (32) mainly through the quantities R� via the ratio

S=4X. Fig. 8 shows the time evolution of the shape of a slow

Bragg soliton formed in the 1D-PC.

These soliton-like solutions can be pictured by an effective

particle (Martijn de Sterke & Sipe, 1989) with a charge q and a

momentum p,

q ¼
Rþ1
�1

E
�

þEþ þ E
�

�E�

� �
dz; ð33Þ

p ¼ �i
Rþ1
�1

E
�

þ@zEþ þ E
�

�@zE�

� �
dz: ð34Þ

Using equation (7), it follows

@zq ¼ 2 ImðKÞ q ð35Þ

and

@tp ¼ 2 ImðKÞ p: ð36Þ

It appears that, in the absence of loss or gain, both momentum

and charge will be conserved quantities, otherwise they vary

exponentially with time. From these equations it can be shown

that the important parameter Q satisfies

@tQ ¼ 2 ImðKÞQ: ð37Þ

From (37) it follows that the width of the soliton, which is

determined by Q, depends exponentially on time while its

velocity v is still undetermined. Detailed analysis concerning

the behaviour of gap solitons in the 1D-PC made up with NL

media with loss and gain are given by Martijn de Sterke &

Sipe (1991).

As mentioned previously, the velocity v can be regarded as

a free parameter; in other words, by choosing the conditions

appropriately, it should be possible to obtain very slow soli-

tons, and even stationary solitons, up to solitons moving at

about the speed of light. Low velocity (v � 0Þ means that

energy will be transported very slowly in the manner of the

self-induced transparency (SIT) observed in resonant pulse

propagation in atoms (McCall & Hahn, 1967); one can then

speak about Bragg SIT. Let us mention the possible existence

of multi-soliton-like solutions of the time-dependent NL

problem.

We now turn to the study and the conditions of a possible

soliton under X-FEL pulse irradiation. First let us outline that

the problem of finding the right features of the incident pulse

and the appropriate conditions to give rise to a given soliton

is far from trivial. For a finite-length MIM with N unit cells

(bilayers), Martijn de Sterke & Sipe (1989) have given the

following criteria to satisfy for the occurrence of a gap soliton,

N 2�nL�nNL � 1; ð38Þ

where �nL is the magnitude of the varying term of the

refractive index and �nNL is the maximum NL change in the

refractive index. Let us also emphasize that the problem of the

soliton stability is a difficult task (Hwang et al., 2011), out of

the domain of this paper.

4.2.2. Optical switching. The dynamics of a NL 1D-PC

offers the possibility of a large variety of mechanisms that are

very attractive for practical applications: optical limiting and

switching, pulse generation or reshaping, etc. In the following

we consider the optical limiting and switching (OLS) in further

detail because of its potential interest in X-ray technology.

OLS results from a dynamical change of the NL 1D-PC

response to an incident field intensity. To understand the
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Figure 8
Time evolution of the shape of a slow Bragg soliton in arbitrary units,
formed in the 1D-PC in the NL regime.



principle of the OLS mechanism, it is convenient to consider

the frequency domain. Here, the width of the forbidden gap

(Bragg domain), GW, is proportional to the difference of the

dielectric constants �"ab between material a and material b.

Let us assume that one of the materials, say a, presents a NL

Kerr-like behaviour with positive coefficient, i.e. its dielectric

constant increases with the incident field intensity �EE while the

other material shows a linear behaviour. Then, as �EE increases,

GW increases too, so that a dynamical widening of the gap

occurs. If the carrier frequency of the incident radiation is

tuned at the band edge, then a larger domain of frequency of

the incident pulse will fall inside the forbidden gap until

forbidding the complete propagation of the pulse. This

mechanism described by Scalora et al. (1994) forms the basis

of an intensity-driven OLS.

For a NL behaviour with negative coefficient, switching can

occur from the linear material in the pump/probe scheme

sketched in Fig. 9: a strong pump pulse of carrier frequency

!pp far below the gap and of intensity �EEpp inducing the non-

linearity and a probe pulse of carrier frequency !pr inside the

gap but near the band edge and of intensity �EEpr �
�EEpp are

incident on the 1D-PC. Initially (i.e. without pumping) the

probe pulse is not transmitted. For negative coefficient, under

pump beam irradiation, the bandwidth GW decreases and

over a certain value of �EEpp the probe frequency !pr may exit

the gap leading to a transmission of the probe beam. This

process, which can be encountered with the negative NL

coefficient of Ti in our example, may form the basis of an

X-ray switch.

5. Conclusion

Ultra-short or ultra-intense X-ray pulses delivered by an

X-FEL propagating within a 1D-PC opens the way to obser-

vation of many phenomena never encountered in the X-ray

regime. In fact, none of the phenomena considered in this

paper have been shown until now and their observation is

technically challenging. Considering the LIR, measurement

of the intensity of a reflected single pulse remains tricky.

Nevertheless, techniques such as those implemented at the

TIMEX end-station in the FERMI X-FEL facility to measure

the reflectivity (Bencivenga et al., 2014) can be envisaged to

test our model.

When NL is incorporated into the 1D-PC at HIR, it has

been shown that it becomes possible to control dynamically

the propagation of an ultra-intense X-ray pulse. NL effects are

generally studies both experimentally and theoretically for

lossless media; in the X-ray domain and in particular for the

soft X-ray range, the consequences of absorption on the NL

effects are difficult to forecast in the CW theory framework

without intensive numerical computation. For this purpose,

calculations implementing the transfer matrix method

extended to Kerr NL in a way similar to that shown by Li et al.

(2015) could be envisaged. From an experimental point of

view, to test NL effects, techniques borrowed from the optical

domain involving pulse compression with cross-phase modu-

lation should be implemented (Martijn de Sterke, 1992).

APPENDIX A
With the assumptions mentioned in the main text, the

stationary version of the PDE system given by equation (7)

becomes, at the pth Bragg resonance,

i@zE� zð Þ ¼ 
 ��� E� zð Þ
�� ��2 þ 2 E
 zð Þ

�� ��2� �h i
E� zð Þ

þ ���E
 zð Þ; ð39Þ

with

��� ¼
k2

�
2� ���ð3Þ; ��� ¼

k2

�
2��� 1ð Þup: ð40Þ

The quantity T = jEþ zð Þj2 � E� zð Þ
�� ��2 corresponding to the

transmitted flux is a conserved quantity (i.e. z-independent).

Indeed, setting E� zð Þ = jE� zð Þj exp½�’�ðzÞ� and substituting

into equation (39) gives, after separation of the real and

imaginary parts,

@z E� zð Þ
�� �� ¼ ��� E
 zð Þ

�� �� sin ð41Þ

and

E� zð Þ
�� ��@z’� ¼ ��� E
 zð Þ

�� �� cos 

þ ��� E� zð Þ
�� ��2 þ 2 E
 zð Þ

�� ��2h in o
E� zð Þ
�� ��; ð42Þ

where  zð Þ = ’þ zð Þ � ’� zð Þ at the Bragg resonance. Elim-

ination of  zð Þ from equations (41) and (42) gives the constant

of propagation T. Introducing T in (39) leads to

@z Eþ zð Þ
�� ��2h i2

¼ 4 Eþ zð Þ
�� ��2 Eþ zð Þ

�� ��2 � T
h i

� ���2
� 9 ���2

Eþ zð Þ
�� ��2 Eþ zð Þ

�� ��2 � T
h in o

: ð43Þ

Using the following new quantities,

� ¼
Eþ zð Þ
�� ��2
E� zð Þ
�� ��2 ; Z ¼

2z

L
; N ¼

2

3 ���
; Iout ¼

T

N
;

equation (39) can be rewritten

d�

dZ
¼ �

n
� �� Ioutð Þ

�
���Lð Þ

2
� 4� �� Ioutð Þ

�o1=2

; ð44Þ

that is taking into account the ‘standard’ boundary conditions,

equation (27). Equation (44) gives
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Figure 9
Scheme for an optical switching with a NL 1D-PC with negative
coefficient. The NL Kerr effect is induced by the pump beam and can
allow the transmission of the probe beam. In the absence of pump, there
is no transmitted probe; this case is illustrated by the cross on the arrows.



Z1
0

d�

� �� Ioutð Þ ���Lð Þ
2
� 4� �� Ioutð Þ

� �� 
1=2
¼ 2; ð45Þ

where ��0 are the two roots of the binomial equation ð ���LÞ
2
�

4�ð�� IoutÞ = 0.

Evaluation of the integral on the left-hand side of equation

(45) depends on the relative value of the roots of the quadric

polynomial under the root square. In most usual situations

these roots are real and satisfy

� Z ¼ 2ð Þ ! 1>�þ0 > Iout > 0>��0 : ð46Þ

In this condition, the integral on the left-hand side of equation

(45) can be found by using the method given by Byrd &

Friedman (1971). After some algebra,

� Zð Þ ¼
Iout

2
1þ nd uðZÞ=m½ �
� 


; ð47Þ

nd½uðZÞ=m� being the inverse of the delta amplitude of the

Jacobian elliptic (cnoidal) function dn½u Zð Þ=m� (Byrd &

Friedman, 1971), where the modulus m is given by

m ¼
���Lð Þ

2

���Lð Þ
2
þ I 2

out

� �1=2

ð48Þ

and

u Zð Þ ¼ 2 ���Lð Þ
2
þ I 2

out

� �1=2
1�

Z

2

	 

: ð49Þ

The quantity � Z ¼ 0ð Þ corresponds to normalized input

intensity Iin and from equation (47) one deduces the relation

between Iout and Iin,

Iout ¼
2Iin

1þ nd 2 ���Lð Þ
2
þ I 2

out

� �1=2
=m

n o : ð50Þ

In the NL regime, one recovers the well known expression for

the transmission at Bragg resonance,

Iout ¼ Iin sech2 ���Lð Þ: ð51Þ
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