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This paper presents an algorithm to calibrate the center-of-rotation for X-ray

tomography by using a machine learning approach, the Convolutional Neural

Network (CNN). The algorithm shows excellent accuracy from the evaluation of

synthetic data with various noise ratios. It is further validated with experimental

data of four different shale samples measured at the Advanced Photon Source

and at the Swiss Light Source. The results are as good as those determined by

visual inspection and show better robustness than conventional methods. CNN

has also great potential for reducing or removing other artifacts caused by

instrument instability, detector non-linearity, etc. An open-source toolbox, which

integrates the CNN methods described in this paper, is freely available through

GitHub at tomography/xlearn and can be easily integrated into existing

computational pipelines available at various synchrotron facilities. Source code,

documentation and information on how to contribute are also provided.

1. Introduction

X-ray computed tomography (XCT) scans at today’s

synchrotron light sources can yield thousands of image frames

per second at high resolution (Finegan et al., 2015; Cai et al.,

2016; Mader et al., 2011; Xiao et al., 2012; Moosmann et al.,

2013). Typical data volumes from a single scan are of the order

of tens of gigabytes; however, for larger specimens this

number can be up to three orders of magnitude larger

(Atwood et al., 2015). Moreover, data generation rates will

significantly increase after the upgrade of the storage rings

that are planned or under development at many synchrotron

facilities worldwide (Relch, 2013; Castelvecchi, 2015). Current

and expected data volumes and rates necessitate having reli-

able, efficient and fully automated data processing pipelines.

One major bottleneck in XCT automation is the poor cali-

bration of the center-of-rotation (CoR) with the available

numerical algorithms.

Current methods for CoR calibration are mostly heuristic.

One common method is by shifting each image such that the

center-of-mass in each projection image is well aligned

(Azevedo et al., 1990). Another is to use two projection images

taken at rotations that are 180� apart (Yang et al., 2015). Both

have been demonstrated to be effective for good quality

datasets, but they tend to fail for increased noise levels. There

are other methods that are based on advanced calculations,

such as Fourier analysis (Vo et al., 2014) and feature detection

routines (Yang et al., 2015), or based on solving an optimiza-

tion problem (Donath et al., 2006). None of these methods

have proven to provide reliable calibration for a wide range of
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data and noise levels. The manual estimation of CoR by visual

inspection is still the most reliable way, but makes the auto-

mation of data processing not possible.

Machine learning provides a robust solution to emulate

human intelligence by learning from existing model data

relationships, and is particularly suitable for analysis of high-

dimensional complex data problems (Pereira et al., 2009).

Convolutional Neural Network (CNN) (LeCun et al., 1998) is

a popular machine learning technique for image processing. It

is capable of classifying structural features in images similar to

the way the human visual system operates. Its accuracy and

efficiency for feature recognition and classification have been

proved for various applications (Mirowski et al., 2009; Lawr-

ence et al., 1997; Garcia & Delakis, 2004; Matsugu et al., 2003).

In this paper, we present a CNN classification model to

calibrate the CoR for X-ray tomography. Starting from the

basics of CNN, we develop an algorithm to automatically

distinguish the reconstructions of correct and incorrect CoRs.

We build an open-source software to implement this algorithm

and present the implementation details. We evaluate the

algorithm with both synthetic data for different noise levels

and experimental data from different synchrotron facilities.

The results are compared with conventional methods. We also

discuss the future development of the CNN for synchrotron

imaging problems.

2. Methods

Well centered and off-centered reconstructions can be directly

determined by visual inspection manually without any

numerical algorithm. This provides the most accurate way to

evaluate the results for a final step. However, this approach is

not practical for large datasets. Here we propose, instead, the

use of a CNN classification model to emulate the process of

the human brain. Thus, an automatic routine to compute the

tomographic rotation axis is developed.

The rotation axis problem can be considered as an image

classification problem, because there are significant different

features between well center and off-centered reconstructions.

We train the CNN to distinguish the different features with a

few manually classified images and use the trained CNN to

automatically find the correct rotation center.

2.1. Background

Among artificial neural networks, CNN provides a model to

learn representations of data with multiple levels of abstrac-

tion akin to human visual processing (LeCun et al., 1998).

Broadly speaking, it is a unique process to build a function f

between the input data X and output data Y ( f : X ! Y),

which is the so-called supervised learning. This f is not like the

traditional formulas of representing the data relations with

simple mathematical operators and symbols. It is a composi-

tion of multiple layers of weights (W) with activation functions

(K). After we fit W for specific input and output data

(X ! Y), this f can be used to predict the future data with the

same rule of the fitting data. The specially designed CNN

architecture can work as unsupervised learning; however, in

this article, we focus on the supervised learning architecture.

CNN was originally developed for image classifications. Its

basic and most popular applications are hand-writing recog-

nition and human face recognition. In these cases, CNN plays

the role of a fitting function between the input images and the

output labels. The process to fit W of the CNN model is called

train. The iterations during train are called epochs. Typically,

stochastic gradient descent (SGD) based methods are used for

training. We use a popular one of these, called Adam (Kingma

& Ba, 2014). Once the CNN is trained for a specific data

model, we can use it as the function to estimate the label of an

unknown image containing features that are close to the

training data. This step is called predict.

Besides the basic structures of the conventional artificial

neural networks (Basheer & Hajmeer, 2000), CNN includes

two unique hidden layers: a convolution layer and a sub-

sampling layer. The convolution layer uses a small convolution

matrix to compute the convolution of the image, which works

as the image filter. One convolution layer contains tens to

hundreds of convolution matrices for extracting multiple

features of the same image. The convolution layer works as

a feature bank. The convolution matrix (kernel), which is

randomly generated at the initial iteration, is the W to be fitted

for CNN. The sub-sampling layer follows the convolution

operation to reduce the image size with specific ratio through

a form of non-linear down-sampling. Max-pooling is a popular

method of sub-sampling, in which the input image is parti-

tioned into a set of non-overlapping rectangular regions, and

for each such sub-region we pick the maximum value. The sub-

sampling layer makes the image information sparse enough to

be fitted with a simple value of the output label.

2.2. CNN configuration

There is not a standard CNN architecture for image clas-

sification. After we tested different architectures and para-

meters to consider their performances and stability, we chose

to use the CNN architecture as shown in Fig. 1. This includes

three convolution layers and two max-pooling layers. The first

convolution layer includes 32 convolution weights to extract

32 feature maps from the inputs. The image size reduces to

half at each max-pooling layer. The number of convolution

weights and feature maps doubles after each max-pooling

layer. The final layer of the feature maps are fully connected

to data nodes with the activation function. These nodes are

connected again with another activation function and become

a single value. We fit this value to be the label that was defined

in the training data.

The complicated architecture of CNN requires a high

computing capability to process the training and prediction. A

single central processing unit (CPU) of the desktop or work-

station is too slow for this case. However, the CNN is very

suitable for parallel computing, because there are many

repeating computings of convolution or max-pooling on each

layer. A graphical processing unit (GPU) workstation is

recommended to implement the CNN efficiently.
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The process to prepare the training data decides the

computing model. The more training data we prepare, the

better the prediction results will be. Normally the number of

training data should be at least of the magnitude of 104 for a

reasonable prediction (Krizhevsky et al., 2012). This procedure

is always considered difficult, because most of the steps for this

task have to be performed manually. In some cases, like

solving a general image classification problem for nature

images, this can be an overwhelming task and explains why

machine learning techniques are not yet widely applied.

However, for the image classification problems of synchrotron

imaging, the image features are normally restricted to some

specific aspects and therefore we only need to use a few

images to train the CNN model.

To dismiss the difference of the pixel value range from

different tests or measurements, we regularize the pixel values

before preparing the training data or testing data. The regu-

larization equation is Ir = ðI � �IIÞ=�I , where I is the pixel value

of the input image, �II is the mean pixel value, �I is the standard

deviation of the pixel value and Ir is the regularized pixel

value.

In the procedure of preparing the training data, we recon-

struct a tomographic slice with various values of CoR. During

the training phase, we select the well centered reconstruction

by eye, and label the rest as off-centered reconstructions. We

extract overlapped patches from the well centered and the off-

centered images and label them 1 and 0, respectively.

A patch is a square window (sp � sp) extracted from the

image. The patches are overlapped one by one. The distance of

the centers between two neighbor patches is the patch step

(ns). The patch number is Np = ð1=n2
s Þðh� spÞðw� spÞ for an

image with height (h) and width (w). There are two reasons for

using small patches instead of the whole image:

(i) We can generate sufficient train data from only one

single image.

(ii) The overlapped patches provide multiple evaluations of

the same feature of the image.

Once we have extracted the patches from the well centered

and off-centered images, we select a specific number (Ptrain) of

patches with their labels (Yl) from both of these groups. We

use the patches as input Xtrain and the labels as output to train

the CNN model. The trained CNN classification model is now

capable of distinguishing the well centered or off-centered

patches.

The prediction procedure evaluates Yl of the patches from

the reconstructions of different CoR. We choose a slice with

typical features of the sample for a rapid evaluation. We first

carry out tomographic reconstructions with various values of

CoR in a specific range (e.g. �100 pixels around the desired

CoR) for this slice. For each reconstructed image, we extract a

specific number of patches. The size of the patches should be

the same as the training data. The number of patches can be

roughly hundreds for each reconstruction. We use these

patches as the input data for trained CNN and predict their
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Figure 1
The architecture of the CNN classification model for this article. We use the classification of handwriting number 3 as the example. This diagram shows
how the handwriting image has been classified as its related number.



label. If the value of the label is close to 1,

it means the feature of the patch is close to

being well centered. If it is 0, it is off-

centered. We compute the sum (Sl) of the

labels for the patches from one recon-

struction. The reconstruction with the

maximum Sl is the well centered one as our

evaluation model.

2.3. Implementation details

We developed a Python toolbox named

Xlearn (https://github.com/tomography/

xlearn) to implement all the functions

described above. The toolbox is currently

based on the Keras (https://github.com/

fchollet/keras.git) and the Theano (https://

github.com/Theano/TheaNo.git) packages.

Keras is a popular platform for artificial

neural networks. Theano is a popular

platform for tensor flow computing. These

platforms all include GPU acceleration,

which is the key feature to apply CNN on

large datasets. As for our previous tests,

the GPU can be hundreds of times faster

than CPU to train the CNN model, allowing CNN to be tested

and implemented for real cases.

The Xlearn toolbox includes two core functions of the CNN:

image classification and image transformation. The archi-

tecture of the classification model is the same as that shown

in Fig. 1. The package also includes the necessary accessories

of normalizing the image data, extracting the patches from

images and reconstructing images from the patches.

There are demonstration codes and related data to test the

calibration of CoR for the shale samples which we will discuss

in x3. There are also demonstrations using CNN to reduce ring

artifacts and to segment the fluorescence image of biological

cells. Detailed API references and examples can be found on

the documentation website (http://xlearn.readthedocs.io/).

3. Results

3.1. Evaluation with synthetic data

We generated a synthetic test image to train the CNN

classification model. The size of the image is selected as

2900� 2900 pixels, which is typical for full-field imaging

experiments at synchrotrons. The training images were formed

using basic geometric entities such as ellipses and triangles,

because many structural features can be composed using a

superposition of this basic set of elements. We simulated data

according to Beer’s law using 900 tilt angles from 0 to 180�

using different noise levels, and performed a multitude of

tomographic reconstructions using the original as well as

different shifts for the rotation axis. This provided one correct

and 200 off-centered reconstructed images. The shift of rota-

tion center between different reconstructions is selected as

half a pixel.

Fig. 2 shows the resulting true and off-centered recon-

structed images used for training. All images were obtained

using GridRec of the TomoPy toolbox (Gursoy et al., 2014),

which is the common reconstruction algorithm in synchrotron

tomography. We extracted 100� 100 patches randomly as the

testing data from each reconstructed dataset and labeled them

either correct or incorrect. We used these patches as input

Xtrain and their labels as output Ytrain to train the CNN clas-

sification model.

We then created a set of randomly generated images for

evaluation of the trained network. Fig. 3 shows reconstructed

images of a single sample for different noise levels. The box

plot shows the accuracy of all samples for different noise

levels. The method provided perfect rotation axes for all

hundred noise-free datasets. The prediction mean is observed

to be less than a pixel for noise levels as large as 30%;

however, the standard deviation of the estimation drops

exponentially as the noise ratio is increased linearly. There-

fore, to estimate accurate results for noisier datasets, one

should use multiple slices for obtaining a reliable rotation axis

estimation.

3.2. Validation with experimental data

We used three experimental datasets from TOMCAT at the

Swiss Light Source (SLS) and two datasets from beamline

2BM of the Advanced Photon Source (APS) (Kanitpa-

nyacharoen et al., 2013) for experimental validation. The noise

and resolution characteristics of these datasets are slightly

different from each other. We trained the network using the

reconstructed images shown in Fig. 4, which is from SLS. The

trained CNN is then used to predict the rotation axis for other

datasets. Reconstructions with correct rotation axes are
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Figure 2
Artificially created training datasets include circles, ellipses and triangles of different size and
gray value. The images reconstructed with correct (a) and incorrect (b, c) rotation axis are shown
in the top row. Bottom row images (d, e, f ) are zoomed-in sections of the reconstructed images.



provided in Fig. 5. These results are exactly as we determined

manually by eye.

To further evaluate the reliability of the algorithm, we use

the trained CNN to predict the CoR of case 3 [Fig. 5(c)] for

50 different slices. The evaluate step for the rotation axis is

0.1 pixel. We also evaluate this case with the image registra-

tion based method (Manuel et al., 2008) and the entropy based

method (Donath et al., 2006).

The statistics of the results are shown in Fig. 6. The results of

the registration based method show a 0.5 to 1 pixel shift from

the actual results that we estimated by eye. A few results show

a large error of up to 6 pixels. The overall results are accep-

table for estimating the rotation center

with reasonable accuracy. The entropy

based method fails for more than a

quarter of the slices. The errors of the

failed cases are up to 91 pixels, demon-

strating that we should be cautious of

using this method to blindly predict the

rotation center axis. The mean value

predicted by CNN is exactly the same

as our estimation by eye. The median

value has a 0.1 pixel shift. The majority

of the results are in the range �0.2

around the actual results we estimated

by eye. The maximum error is only

0.8 pixel. Overall, CNN shows reliable

accuracy for the multiple slices of this

case.

4. Discussions

As shown in the tests above, CNN can

predict the CoR with an accuracy as

good as human estimation once we

only provide one manually estimated

training dataset. This can be a useful

tool when we have a large number of
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Figure 4
Samples of training data for experimental evaluation. (a) Well centered reconstruction. (b, c) Off-
centered reconstructions. (d, e, f ) Examples of patches extracted from different reconstructions.
The reconstruction image size is 2048� 2048 pixels. The patch image dimension is 100� 100 pixels.
These data are measured by TOMCAT at the Swiss Light Source.

Figure 3
Statistical evaluation of the rotation centers predicted by CNN. The box plots shows the prediction statistics of the method for four different noise levels.
The dashed green line shows the ground truth.



tomographic measurements of similar samples. We only need

to calibrate the CoR for one of the datasets and train the CNN

to calibrate the rest of the datasets. The trained CNN model

can be saved to a simple file. It can be easily loaded for the

prediction process of future use. The prediction process using

our Xlearn toolbox consists of a single line of Python code so it

is simple to add to any automatic tomographic reconstructions

and, as shown earlier, is as reliable as the manually selected

CoR.

The computational efficiency of CNN makes it possible to

process very large datasets. We tested our software on a

workstation with an Intel Xeon E5-1660 processor, 64 GB

memory and one NVIDIA Quadro M5000 GPU. For the cases

above, we trained the CNN in 2 min. Once the network is

trained, the evaluation of the CoR takes about 10 s per image.

Computations for each image are independent, therefore the

implementation can be easily scaled to meet a desired data

throughput depending on the scan system used.

One thing we need to be cautious of using CNN for CoR

calibration is that the data for the CoR calibration should have

similar features as the training datasets. For instance, in the

synthetic evaluation in this article we trained the CNN with

the image including circles, ellipses and triangles. We obtain

good results if we calibrate the CoR of tomographic images

with these patterns but this might fail for totally different

patterns. However, as shown in all our tests, the shape/size of

the pattern and the quality of the image are not required to be

the same in the training data and the data need to be cali-

brated. Because it is difficult to quantify the similarity between

the training data and testing data, a guideline of preparing the

training data cannot be built in the current stage. We suggest

to prepare training data that contains the same types of

pattern or feature as the testing data.

The CNN is robust in learning the way of human estimation

for image analysis. To extend it for broader applications, we

are developing a CNN architecture that directly builds a

f : X ! Y between two images. This step is called image

transformation and we have already included it in the Xlearn

toolbox. Image transformation has great potential for various

imaging problems such as the ring artifacts correction, images

segmentation, etc. Fig. 7 shows a simple demonstration of the

basic idea, and recent results, not presented in this paper, show

great promises in eliminating artifacts from reconstructions.

Similarly, feature segmentation is often required for quantifi-

cation of the structure, and CNN models can carry out this

task quite efficiently. Based on these early results, we plan

to expand the use of CNN to other synchrotron imaging

problems present not only in tomographic data, and further

carry out more detailed evaluations for different use cases.

In our test we used data available at the APS but, in general,

assessing the robustness of new algorithms, not only CNN,

requires access to a large library of tomographic datasets.

Various efforts, starting from the ability to exchange data

across facilities (De Carlo et al., 2014), are underway aiming to

create such a library. We wish that Xlearn, as a readily avail-

able tool box, will be continuously validated and expanded

over time by users and experimentalists.

5. Conclusions

CNN is a robust approach to solving rotation axis determi-

nation in tomographic imaging. We developed a CNN classi-

fication model to calibrate the CoR that has been

demonstrated to work accurately, once trained with sufficient

prior estimation. Evaluation with synthetic phantoms shows

good accuracy for different noise conditions. The validation
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Figure 5
Four different well centered images that calibrated the CoR with CNN.
(a, b) Slices of rock samples measured by TOMCAT at the Swiss Light
Source. (c, d) Slices of the same rock sample measured at Advanced
Photon Source beamline 2BM.

Figure 6
Rotation axes predicted by different methods using 50 slices of shale data
as input. The CNN, mirrored image registration based method and
entropy based method are shown from left to right. The dashed green line
represents the ground truth.



with experimental data is demonstrated by using a CNN

trained with SLS data to reliably find the correct CoR for

different shale samples measured at both the APS and the

SLS. It also shows better accuracy than the image registration

based method and the entropy based method for different

slices of the shale sample. The CNN approach can calibrate

the CoR for large datasets automatically as reliable as by

human eye. Specially designed CNN architecture for image

transformation is also promising to reduce ring artifacts and

to segment images.
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Figure 7
Demonstration of a potential other application of the CNN approach for ring artifacts correction.
This case requires a different CNN architecture to transform the image from one style to another,
which follows the same transformation rule as the training data. Image transformation of the Xlearn
toolbox introduced in this article can be directly applied for this use. The top row shows the
sinograms: (left) original, (middle) with added stripes, (right) stripes removed with CNN. The
bottom row shows the corresponding reconstructions.
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