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A new definition of the effective aperture of the X-ray compound refractive

lens (CRL) is proposed. Both linear (one-dimensional) and circular (two-

dimensional) CRLs are considered. It is shown that for a strongly absorbing

CRL the real aperture does not influence the focusing properties and the

effective aperture is determined by absorption. However, there are three ways

to determine the effective aperture in terms of transparent CRLs. In the papers

by Kohn [(2002). JETP Lett. 76, 600–603; (2003). J. Exp. Theor. Phys. 97, 204–

215; (2009). J. Surface Investig. 3, 358–364; (2012). J. Synchrotron Rad. 19, 84–92;

Kohn et al. (2003). Opt. Commun. 216, 247–260; (2003). J. Phys. IV Fr, 104, 217–

220], the FWHM of the X-ray beam intensity just behind the CRL was used. In

the papers by Lengeler et al. [(1999). J. Synchrotron Rad. 6, 1153–1167; (1998).

J. Appl. Phys. 84, 5855–5861], the maximum intensity value at the focus was

used. Numerically, these two definitions differ by 50%. The new definition is

based on the integral intensity of the beam behind the CRL over the real

aperture. The integral intensity is the most physical value and is independent of

distance. The new definition gives a value that is greater than that of the Kohn

definition by 6% and less than that of the Lengeler definition by 41%. A new

approximation for the aperture function of a two-dimensional CRL is proposed

which allows one to calculate the two-dimensional CRL through the one-

dimensional CRL and to obtain an analytical solution for a complex system of

many CRLs.

1. Introduction

The X-ray compound refractive lens (CRL) was successfully

used for the first time with a synchrotron radiation source of

the third generation (ESRF, Grenoble, France) by Snigirev et

al. (1996). The linear (one-dimensional; 1D) CRL was created

as an array of 30 cylindrical holes of 300 mm radius in an Al

plate using a computer-controlled drilling machine. Later, the

circular (two-dimensional; 2D) CRL with a parabolic surface

profile was created by Lengeler et al. (1999). Pressing tools,

consisting of two convex paraboloids with rotational

symmetry facing each other and guided by a centering ring,

were used. The aluminium plate in which the paraboloids were

pressed from both sides is held and centered by a ring.

Computer-controlled tooling machines allow the pressing tool

to be manufactured with micrometer precision.

Another kind of CRL is the planar nanofocusing lens

(Aristov et al., 1999; Snigirev et al., 2009; Schroer et al., 2003).

Such lenses are created inside the surface layer of a silicon

crystal by means of microstructuring methods (electron-beam

lithography and deep anisotropic etching) which are very well

developed methods. Planar CRLs have an extremely short

focal length (up to 1 cm), making it possible to reduce the

beam in the focus down to sizes ten times smaller than a

micrometer.
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The theory of linear (1D) CRLs in the limit of strong

absorption of radiation at the edge of the aperture was

developed by Kohn in a series of papers (Kohn, 2002, 2003,

2009, 2012; Kohn et al., 2003a,b). The main results of these

works were an analytical solution of the problem for a very

long CRL when the CRL length is comparable with or even

greater than the focal length and recurrent relations which

allow one to calculate a complex system of many CRLs.

The most complete theory was considered in the last paper

(Kohn, 2012), hereon referred to as paper [1]. In this work the

effective aperture of the CRL was determined as the FWHM

(full width at half-maximum) of the radiation intensity profile

just behind the CRL. The effective aperture of 2D CRLs was

not considered because it was assumed to be the same (the

diameter of the circular aperture). On the other hand, the

effective aperture of 2D CRLs was considered in the works by

Lengeler et al. (1998, 1999). The more complete calculation

was performed in the Lengeler et al. (1999) paper, hereon

referred to as paper [2].

The main goal of this work is to analyze why the formulae

for the effective aperture proposed in papers [1] and [2] give

different values under the same conditions, which is a problem

because the results differ by 50%. The effective aperture is

determined by comparing the formulae for the transparent

CRL and the absorbing CRL. There are three channels for

comparison: first, the maximum value of the intensity at the

focus; second, the FWHM of the intensity profile; and, third,

the integral intensity inside the real aperture. We have found

that in paper [1] the second channel was used, but in paper [2]

the first channel was used.

In this work we propose to use the third channel because

the integral intensity does not change in air and it is the most

physical parameter. We show that the value of such an effec-

tive aperture is 6% larger than the value given in paper [1] but

41% smaller than that given in paper [2]. We consider as well

an approximation which allows one to calculate the intensity

profile of a 2D CRL at any distance as a product of the 1D

CRL intensity profiles over two coordinates x and y.

2. The linear (1D) X-ray CRL

Let us consider first the simpler case of a linear (1D) X-ray

CRL. We assume that the CRL length is much shorter than

the focal length of the CRL. In this case the CRL can be

considered as a phase object which can be described by a

standard phase contrast approximation. This means that the

CRL can be described by means of the transmission function

TðxÞ ¼ exp �i� 1� i�ð Þ x 2=� f
� �

; xj j < xa; ð1Þ

where x is the coordinate across the beam (see Fig. 1), xa = A/2,

A is the aperture of the linear CRL, � is the wavelength of

monochromatic radiation, f = R=2�N is the focal length of the

CRL, � = �=�, R is the curvature radius at the apex of the

parabolic surface profile of a double concave lens, N is the

number of such lenses in the CRL, and the complex refractive

index of the CRL material is n = 1� �þ i�. If xj j � xa, then

TðxÞ = Ta = TðxaÞ.

We consider a simple experimental in-line setup where a

source of synchrotron radiation is located at a distance z0 in

front of the CRL, and the intensity of radiation is detected at

the distance z1 behind the CRL. Then the intensity IðxÞ =

EðxÞ
�� ��2 and

EðxÞ ¼

Z
dx1 P x� x1; z1ð ÞTðx1ÞP x1 � x0; z0ð Þ; ð2Þ

where x0 is the coordinate of a point in the transverse section

of the source, and the function

Pðx; zÞ ¼
1

ði�zÞ
1=2

exp i� x 2=�z
� �� �

ð3Þ

is the Fresnel propagator.

Equation (2) can be written in another form taking into

account equation (3),

EðxÞ ¼ P x� x0; ztð Þ

Z
dx1 P xr � x1; zrð ÞTðx1Þ; ð4Þ

where

zr ¼
z1

Cs

; xr ¼
1

Cs

xþ x0

z1

z0

� �
; Cs ¼

zt

z0

; zt ¼ z0 þ z1:

ð5Þ

We note that in equations (2) and (4) the aperture A restricts

the region of integration where the function TðxÞ is variable.

Outside this region the transmission function is equal to a

constant, Ta. Therefore, in the general case, we can write

EðxÞ ¼ P x� x0; ztð Þ

"
Ta þ

Zxa

�xa

dx1 P xr � x1; zrð Þ T x1ð Þ � Ta

	 
#
:

ð6Þ

Let us consider the case of a fully transparent CRL. It is a

good approximation for visible light in glass, but it is a poor

approximation for X-ray radiation in all materials. Then,

� = � = 0 and TðxÞ
�� �� = 1. Two integrals in equation (6) can be

presented analytically through special functions known as

Fresnel integrals. However, for all distances which are less or

greater than the focal length we can use the approximation

of a stationary phase (SP) if x 2
a � � f . According to this

approximation the main contribution to the integral is

obtained from the region near the point SP where the first

derivative of the phase equals zero. The integral near this

point is calculated in the infinite limits but only under the
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Figure 1
Parameters of the X-ray double concave lens and the coordinate axes.



condition that the point SP is inside the region of integration.

In the opposite case, the point SP does not contribute to the

integral.

Let us consider the second integral from the Fresnel

propagator. It is evident that for each value of xr there is only

one point SP, namely x1 = xr which gives 1 if xr

�� ��< xa, and gives

0 in the opposite case. It follows from equation (5) that a shift

x0 of the point at the source leads to a shift of the total picture

by the distance�x0z1=z0. This is why it is sufficient to consider

the case when x0 = 0 (the point source at the optical axis). Then

the second integral can be calculated as �Ta�ðxaCs � xj jÞ,

where �ðxÞ is a step function which equals 1 for positive values

of the argument and 0 for negative values. This term

compensates the first term in the square brackets of equation

(6) in the region where the size is slightly greater than the

aperture if z0 � z1.

The first integral has only one point of SP inside the region

of positive arguments of the function �ðxaw� xj jÞ, where w =

Csð1� zr=f Þ. The size of this region decreases linearly with

increasing distance zr from 0 to f. The square modulus of

the contribution of this point SP to the integral is equal to

w�1I0 where I0 = ð�z0Þ
�1 is the intensity of X-ray radiation

at the CRL. We note that the multiplier Cs is obtained as a

result of taking into account the first Fresnel propagator in

equation (6).

As a result, we find that behind the CRL the part of the

beam inside the aperture A with constant intensity I0 is

concentrated inside the region wA< A with constant intensity

w�1I0 > I0. We see that this approximation allows a conser-

vation of the integral intensity and corresponds to the

geometrical optics, i.e. the CRL increases the concentration of

rays inside the smaller region.

At the focal distance zr = f the SP approximation is not

valid for the first integral, and we need a more accurate

calculation. Fortunately, the result can be obtained analyti-

cally as follows,

IðxÞ ¼ EðxÞ
�� ��2¼ I0

A

�z1

sin2
ð�xÞ

ð�xÞ
2 ; � ¼

�A

�z1

; ð7Þ

and the distance of the focused image of the source is equal to

z1 = f ð1� f=z0Þ
�1.

We are interested in the maximum value of intensity Im, the

FWHM of the intensity profile wm, and the integral intensity of

the focal peak S. A direct calculation gives the equations

Im ¼
A2

�z1

I0; wm ¼ 0:8859
�z1

A
; S ¼ AI0: ð8Þ

Here we use the fact that the function pðsÞ = sin2
ðsÞ=s2 equals

0.5 if s = 1.3916, and the integral of pðsÞ equals �. Therefore,

the accurate intensity profile at the distance of imaging the

point source has the shape of a sharp peak with oscillating tails

if A� r1 = ð�z1Þ
1=2. The parameter r1 is called the radius of the

first Fresnel zone because Pðr1; z1Þ = Pð0; z1Þ expði�Þ, i.e. the

Fresnel propagator changes its sign at this distance.

For X-ray radiation the case considered above is impossible

because all materials absorb the radiation and the refraction is

small and therefore the curvature radius has to be small.

Under the condition A� r1 the thickness of the CRL matter

at the aperture boundaries becomes large, and the absorption

leads to a decreasing Ta. Let us consider the limit case when

Ta = 0. Then the integral in (6) can be calculated in infinite

limits and the real aperture A does not influence the result.

As a result we find that the intensity profile at the distance

of the source image is described by a Gaussian function,

IðxÞ ¼
1

�Cs

exp �
2�

�z1�Cs

x 2

� �
I0: ð9Þ

Now, instead of (8) we obtain the new values of parameters,

Im ¼
1

�Cs

I0; wm ¼ e1Cs � f�ð Þ
1=2; S ¼

� f

2�

� �1=2

I0: ð10Þ

Here we used the relation f = zr = z1=Cs and introduced the

constant e1 = 2 ln 2=�ð Þ
1=2 = 0.6643.

We want to characterize the X-ray CRL by means of the

parameter of the effective aperture Ae, which by definition has

to be less than the real aperture. However, in this way we have

several variants. In the paper [1] the effective aperture is

defined as the FWHM w0 of the intensity profile TðxÞ
�� ��2 =

expð�2��x 2=� f Þ just behind the CRL. This definition gives a

value Ae1 = w0 = e1ð� f=�Þ1=2.

We note that this definition is not completely correct

because the FWHM depends on distance. A more correct

definition can be obtained by means of a comparison between

the integral intensities for the transparent and absorbing

CRLs. According to this definition, we obtain Ae = � f=2�ð Þ
1=2.

The main goal of this paper is to propose just this definition of

the CRL effective aperture. We note that the new definition

differs slightly from the definition for Ae1 because 2�1=2=e1 =

e3, where e3 = 4 ln 2=�ð Þ
�1=2 = 1.0645. Then Ae = e3Ae1. The

difference is only 6%.

In paper [2] the effective aperture is defined from a

comparison between the maximum values Im for the trans-

parent and absorbing CRLs. In this way we have Ae2 =

ð� f=�Þ1=2. Numerically, Ae2 = 1:4142Ae = 1:505Ae1. This defi-

nition gives a value that is 41% greater than the new definition

and 50% greater than the definition in paper [1].

We can write for the strongly absorbing CRL using the new

definition of the effective aperture,

Im ¼ 2
A2

e

�z1

I0; wm ¼ e2
1e3

�z1

Ae

; S ¼ Ae I0: ð11Þ

We note that the constant e2
1e3 = 0.4697. We see that the case of

the absorbing CRL cannot be described completely by the

equations of the transparent CRL. If the integral intensity

coincides, then the maximum value results in a coefficient

of 2, and the FWHM results in a coefficient that is slightly less

than 0.5.

The case of the strongly absorbing CRL is of interest

because the real aperture is not important and the integrals

are calculated in the infinite limits. Then for the circular (2D)

CRL the integrals over the second coordinate y have the same

value and are calculated independently. The coordinates of the
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point source can be eliminated from the calculations because

the total picture is shifted as a whole. Nevertheless, some

differences exist and this is considered below.

In paper [2] the interpolation formula for the effective

aperture of the circular (2D) CRL is derived in which both

limit cases of the transparent and the strongly absorbing CRLs

are involved as particular cases. To derive such formulae from

the intensity maximum value at the focus it is necessary to

calculate accurately the first integral in equation (6) at the

central point xr = 0. In the case of the linear (1D) CRL such an

integral has no analytical expression, and the result can be

written as

Ae2 ¼
� f

�

� �1=2

erf
��

� f

� �1=2

xa

" #
; ð12Þ

where erfðxÞ is the Gauss error function. erfðxÞ = 1 for large

values of the argument and we have Ae2 = ð� f=�Þ1=2. For small

values of the argument, erfðxÞ = 2��1=2x, and we obtain the

real aperture Ae2 = 2xa = A.

We can calculate the interpolation formula for the effective

aperture from the integral intensity. Since the integral inten-

sity is independent of distance, it is convenient to make a

calculation for z1 = 0, i.e. just behind the CRL. In such a way

we obtain

Ae ¼ 2

Zxa

0

dx TðxÞ
�� ��2¼ � f

2�

� �1=2

erf
2��

� f

� �1=2

xa

" #
: ð13Þ

This new formula can be used for an estimation of the effec-

tive aperture of the linear (1D) CRL.

3. The circular (2D) X-ray CRL

The circular (2D) X-ray CRL has a circular aperture of radius

Ra and area �R2
a. We can characterize this aperture by it’s

diameter Da = 2Ra. We have shown above that the focus peak

is completely determined by the aperture. Therefore we are

not interested in the region of integration outside the aper-

ture. This allows us to restrict the area of integration by the

aperture. In experiments, such a situation arises when the

circular slit is used just in front of or behind the CRL.

In this case we have two transverse coordinate x; y and the

radius R = ðx2 þ y2Þ
1=2. The transmission function can be

written as

TðRÞ ¼ exp
�
�i� 1� i�ð ÞR2=� f

�
; R<Ra: ð14Þ

To simplify the notation we introduce the 2D radius vector

R = ðx; yÞ with modulus R. Now the intensity of radiation is

IðRÞ = EðRÞ
�� ��2 and

EðRÞ ¼

Z
dR1 P2ðR� R1; z1ÞA0ðR1ÞTðR1ÞP2ðR1 � R0; z0Þ;

ð15Þ

where

P2ðRÞ ¼
1

i�z
exp i�

R2

�z

� �
¼ Pðx; zÞPð y; zÞ: ð16Þ

The limits of integration are infinite but they are restricted by

the aperture function A0ðRÞ = �ðR2
a � R2Þ.

In paper [2] the radius of the effective aperture was

obtained from the maximum intensity value at the focus when

R = R0 = 0 and z�1
0 þ z�1

1 = f �1. In this case we have, using

circular coordinates,

Eð0Þ ¼ �I
1=2

02

2�

�z1

ZRa

0

dR R exp ���
R2

� f

� �
: ð17Þ

Here, I02 = I 2
0 , where I0 = ð�z0Þ

�1 is the intensity for the 1D

case. If � = 0 then we obtain Im = I02ð�R2
a=�z1Þ

2. In the general

case, we can write Im = I02ð�R2
e2=�z1Þ

2 if

Re2 ¼ Ra

1� expð��2R 2
a Þ

�2R 2
a

� �1=2

; �2 ¼
��

� f
: ð18Þ

In this paper we propose to determine the radius of the

effective aperture from the integral intensity. It is easy to

calculate the integral intensity just behind the CRL when

z1 = 0. In this case,

Z
dR IðRÞ ¼ I022�

ZRa

0

dR R exp �2��
R2

� f

� �
¼ I02�R 2

e ; ð19Þ

where

Re ¼ Ra

1� exp ��R2
að Þ

�R2
a

� �1=2

; � ¼
2��

� f
: ð20Þ

In the limit of the strongly absorbing CRL we find from this

formula that the diameter of the effective aperture De = 2Re =

2��1=2 = ð2� f=��Þ1=2. We can compare this value with the

aperture Ae of the linear (1D) CRL and obtain the relation

Ae = �1=2Re = ð�1=2=2ÞDe = 0:8862De. It is of interest that this

relation means A2
e = �R2

e. Mathematically, this relation is

necessary because for a strongly absorbing CRL the integral

intensity of the 2D CRL is a product of the integral intensities

of the 1D CRL for the x and y coordinates independently.

4. Analytical account of the effective aperture

We note that the transmission function of a circular (2D) CRL,

equation (14), can be written as TðRÞ = TðxÞTðyÞ. The Fresnel

propagator (16) has the same property. This is not the case for

the function A0ðRÞ. This function does not allow us to divide

the integral over R into the product of two integrals over x and

y separately.

To obtain the possibility of analytical calculations we

propose to replace the function A0ðRÞ in equation (15) by the

function

A2ðRÞ ¼ exp �
x2 þ y2

2R2
a

� �
; ð21Þ
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which gives the same integral intensity as A0ðRÞ, i.e. �R2
a, but

in the infinite limits. As for the FWHM D of the function

A2
2ðRÞ in any direction, we have D = 2ðln 2Þ1=2

Ra = 1:665Ra =

0:8326Da, where Da = 2Ra. We see that D is less than Da by

17%. On the other hand, A2
2ðRaÞ = A2

2ð0Þ=e.

The main advantage of the function A2ðRÞ is the property

A2ðRÞ = AðxÞAðyÞ, where AðxÞ = expð�x2=2R2
aÞ. The replace-

ment of A0 by A2 in (15) allows us to replace the 2D integral

by the product of two 1D integrals, namely EðRÞ = EðxÞEðyÞ

and

EðxÞ ¼

Z
dx1 P x� x1; z1ð ÞAðx1ÞTðx1ÞPðx1 � x0; z0Þ: ð22Þ

We note that in paper [1] the finite angular divergence of the

incident beam was taken into account. To simplify the calcu-

lation we assume here that the angular divergence leads to the

incident beam size at the CRL which is larger than the CRL

aperture.

Now the integral can be calculated analytically and we

obtain

EðxÞ ¼ i�z0ð Þ
�1=2

CF x; x0ð Þ exp �i�
xþ x0z1=z0ð Þ

2

� z2 þ iz3ð Þ

� �
; ð23Þ

where

C ¼
z1

z2 þ iz3

� �1=2

; Fðx; x0Þ ¼ exp i
�

�

x 2

z1

þ
x 2

0

z0

� �� �
: ð24Þ

Here,

z2 ¼ z1 � z2
1

1

f
�

1

z0

� �
; z3 ¼ z2

1

�

2�R 2
a

þ
�

f

� �
: ð25Þ

The formulae (23)–(25) allow us to consider the intensity

profile at any distance z1. Let us consider z1 = 0, i.e. just behind

the CRL. In this case we need to account for an imaginary part

accurately by means of considering very small z1 values. As a

result we obtain

EðxÞ ¼ Pðx0Þ exp �
1

2
�x2

� �
; � ¼

1

R2
a

þ
2��

� f
: ð26Þ

The radius Re of the effective aperture of the circular (2D)

CRL by definition is determined from the 2D integral intensity

which is presented as I02�R 2
e . We note that the 2D integral

is the square of the 1D integral and is equal to I02��
�1. A

calculation in the circular coordinates gives the same result.

Finally we obtain

Re ¼ �
�1=2 ¼ Ra 1þ

2��

� f
R 2

a

� ��1=2

: ð27Þ

This is another form of the interpolation formula for the

radius of the effective aperture which follows from the

approximate analytical approach.

Fig. 2 shows a comparison of two formulae for the case of

the 2D CRL made from Al, R = 200 mm, N = 20, �= 0.1 nm and

for various values of Ra from 3 to 303 mm. One can see that for

small values of Ra from 20 to 120 mm when absorption is not

complete at the edge of aperture the approximate formula (27)

(black curve) gives smaller values than the accurate formula

(20) (red curve) but the difference is not more than 13%. For

large values of Ra both curves coincide.

The proposed approximation allows one to simplify calcu-

lations because it is sufficient to calculate only the 1D CRL.

Then the intensity profile of the 2D CRL can be obtained from

the 1D CRL intensity profile as a product of two profiles for

the x and y coordinates.

Let us consider now the distance of imaging the point

source z1 = f ð1� f=z0Þ
�1, when z2 = 0. It is sufficient to write

x0 = 0 because the dependence on x0 is evident. Corre-

spondingly for the 1D intensity IðxÞ and 2D intensity I2ðx; yÞ

we have

IðxÞ ¼ I0

z1

z3

exp �2�
x2

�z3

� �
; I2ðx; yÞ ¼ IðxÞ IðyÞ; ð28Þ

and for the integral intensities we obtainZ
dx IðxÞ ¼ I0

�1=2z1

21=2z
1=2
3

¼ I0Ae; ð29Þ

Z
dx dy I2ðx; yÞ ¼ I02

�z2
1

2z3

¼ I02�R2
e: ð30Þ

Here we have used Ae = �1=2Re.

This means that the approximation gives accurate formulae

for the integral intensities at the focus but with Re determined

by (27). The maximum values of Im and FWHM wm for the 1D

CRL are described by equation (11). For the 2D CRL the

maximum value equals I 2
m and wm stays the same.

We note that, in the works of Kohn (2009, 2012), recurrent

relations were derived for calculating the systems of many 1D

CRLs. The analytical account of the aperture proposed in this

section allows one to use these recurrent relations for systems

of 2D CRLs too.
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Figure 2
The dependence of the effective aperture of the 2D CRL Re from the real
aperture Ra for the case of an aluminium CRL with a curvature radius R =
200 mm, number of lenses N = 20 and wavelength � = 0.1 nm, calculated
by accurate formula (red curve) and approximate formula (black curve).
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