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In this work the coherence properties of the synchrotron radiation beam from

an X-ray undulator in a fourth-generation storage ring are analyzed. A slightly

focused X-ray beam is simulated using a wavefront propagation through a non-

redundant array of slits and the mutual coherence function is directly obtained

and compared with the Gaussian–Schell approximation. The numerical wave

propagation and the approximate analytical approaches are shown to agree

qualitatively, and it is also shown that, when the coherent fraction is selected by

a finite aperture before the focusing element, even achromatic focusing systems

like total reflection mirrors become slightly chromatic. This effect is also well

accounted for in the Gaussian–Schell model. The wavefront propagation

simulation through the non-redundant array was repeated with an imperfect

mirror demonstrating that, although the wavefront is distorted, its coherent

length is practically unchanged.

1. Introduction

Coherence is the manifestation of purity of a quantum state

of light or matter (Mandel & Wolf, 1965). The concept of

coherence has long been associated with interference, simply

because it is the most direct way of measuring it. In the case of

the electromagnetic radiation produced by electron beams in

storage rings, although a single electron emits a fully coherent

beam, the photons produced by the multiple electrons in a

storage ring add up incoherently (Kim, 1985). The radiation

observed is then the result of a classical mixture of the photon

states emitted by many electrons, randomly distributed over a

finite region of the electron beam phase-space, whose volume

is the so-called emittance (Bazarov, 2012). Consequently, the

smaller the emittance, the purer is the quantum state of the

radiation and the higher the degree of coherence.

A simple qualitative way of stating the pureness (loosely

called coherent fraction) of the radiation emitted by an elec-

tron beam in a storage ring is to compare its natural emittance

(r.m.s. source divergence� r.m.s. source size) with the limiting

emittance of the electromagnetic radiation, determined by the

Heisenberg uncertainty principle. In a Gaussian radiation

beam the latter is given (in practical units) by "r [pm rad] =

�/4� ’ 100=h- ! ½keV�. This qualitative boundary is also

commonly referred to as the diffraction limit. Consequently,

since the electrons in third-generation storage rings have

natural emittances of the order of 1 nm rad, they reach the

diffraction limit in the soft X-ray energy range (photon

energies of the order of h- ! ’ 0.1 keV). In fourth-generation

storage rings, like Sirius and MAX IV, on the other hand, the

horizontal emittances are of the order of 100 pm rad and,

therefore, the diffraction limit is reached in the tender X-rays
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energy range (photon energies of the order of h- ! ’ 1 keV).

This diffraction limit criterion, based only on the emittance,

is nevertheless incomplete and quantitatively misleading.

Although the photons emitted by a single electron in an

undulator are fully coherent, their phase space is not well

described by a Gaussian distribution and the actual photon

emittance is about twice as large, closer to �=2�. In other

words, even the radiation emitted by an undulator in a

(theoretical) zero emittance storage ring would not achieve

the �=4� limit.

The classical mixture imposed by the electrons is expressed

through a convolution of the phase-space distribution of the

photons in pure states (Wigner distribution function) and the

phase-space distribution of the electrons (Kim, 1985; Bazarov,

2012; Tanaka, 2014). Such convolution is not solely dependent

upon the volume of the phase-space of the electron beam

("e = �e�
0

e) but also on its aspect ratio, the so-called beta

function (�e = �e=�
0
e). For a fixed emittance, it has been proved

(Lindberg & Kim, 2015) that this convolution is minimized

(and the purity of the state is maximized) when the electron

beam beta function is approximately equal to the radiation

beta function, given by �r = Lu=�, where Lu is the undulator

length. Thus, only when this last condition is met can one (still

qualitatively) state that for energies of the order of h- ! ½keV� <

100/"e [pm rad] the emittance of the electron beam is near the

diffraction limit. For instance, comparing the two latest fourth-

generation synchrotrons, Sirius and MAX IV, both have

emittances of about 200 pm rad. However, since in the Sirius

storage ring �e ’ 1.5 m (horizontal direction), a 3–4 m X-ray

undulator is close to the optimal condition (�e ’ �r) while in

MAX IV �e ’ 9 m, and thus �e � �r. Therefore, theoreti-

cally, it is expected that the effective radiation emittance will

be almost two times smaller in Sirius than in MAX IV.

In this paper the coherence properties of a slightly focused

X-ray beam emitted from an X-ray undulator in the Sirius

storage ring is analyzed, simulating a wavefront propagation

(Chubar et al., 2011, 2013) through a non-redundant array

(NRA) of slits. This strategy was explored experimentally by

Skopintsev et al. (2014) and here it was used to directly extract

the mutual coherence function. The results from these simu-

lations are then compared with the Gaussian–Schell approx-

imation for the propagation of the X-ray beam, assuming the

r.m.s. size and divergence of the synchrotron radiation beam

from an X-ray undulator are described by the universal

function proposed by Tanaka & Kitamura (2009).

2. Estimating coherence

Coherence is exploited in most scientific programs of third-

and fourth-generation synchrotrons in coherent diffraction

imaging techniques, X-ray photon correlation spectroscopy

and nano-focusing (Veen & Pfeiffer, 2004). One of the main

goals in designing beamlines for these experiments is to

preserve the coherent wavefront and to maximize the amount

of coherent flux reaching the sample. In order to quantify

coherence one needs to determine how much correlation

exists between the electric field in different points of the

illuminated area. This is done through the normalized mutual

coherence function (or complex degree of coherence) defined

as (Mandel & Wolf, 1965)

� r; r 0; �ð Þ ¼
E �ðr; tÞE r 0; t þ �ð Þ
� �

IðrÞ½ �
1=2

Iðr 0Þ½ �
1=2

;

where r = ðx; yÞ is the transverse coordinate vector, IðrÞ =

hEðr; tÞ
2
i is the time average beam intensity, and Eðr; tÞ and

Eðr 0; t þ �Þ are the field values at the positions r and r 0 and

times t and t þ �. The brackets h. . .i denote the time or

ensemble average, assuming stationary and ergodic wavefields.

In the context of interference experiments the function �
appears as the contrast of the interference fringes. Note that

1> j�ðr; r 0; �Þj> 0, spanning the limits between full coherence

and complete incoherence.

Even in fourth-generation storage rings the coherence is

limited in the X-ray energy range. The use of apertures to

select the coherent portion of the radiation phase-space is

paramount. However, as these apertures become comparable

with the transverse coherence length of the beam, diffraction

effects can change the focusing properties of the optical

elements in a way that is substantially different from the

intuitive geometric optics. A detailed analysis of the transverse

coherence properties of the synchrotron radiation, based on

statistical optics and Fourier optics, was presented by Geloni

et al. (2008). In this work it has been shown that, in the

diffraction limit, the propagation properties of the undulator

radiation deviate substantially from those of a partially

coherent Gaussian beam. Indeed, in all simulations performed

here, such behavior in the vertical direction was observed.

Nonetheless, as will be shown, the so-called Gaussian–Schell

model for a partially coherent Gaussian beam qualitatively

captures many important aspects of the wavefront propaga-

tion in the horizontal direction, which in fourth-generation

storage rings is near the diffraction limit for tender X-rays.

This separation between the two transverse directions of

propagation is allowed in the paraxial approximation,

normally valid for synchrotron radiation beam propagation.

Therefore, in this work the coherence properties analysis is

restricted to the horizontal direction.

In the Gaussian–Schell model (Friberg & Turunen, 1988;

Dragoman, 1995; Vartanyants & Singer, 2010; Schroer &

Falkenberg, 2014; Singer & Vartanyants, 2014) the irradiance

distribution and the degree of coherence are both Gaussian

and described by the following expressions,

Iðr; z ¼ 0Þ / exp �
x2

2� 2
x

� �
exp �

y2

2� 2
y

� �
; ð1Þ

�ðr� r 0; z ¼ 0Þ / exp �
ðx� x 0Þ

2

2� 2
x

� �
exp �

ðy� y 0Þ
2

2� 2
y

� �
: ð2Þ

Here, �xðyÞ is the r.m.s. dimensions of the beam and �xðyÞ is the

transverse coherence length, in both the horizontal (vertical)

direction. The correlation length in the Gaussian–Schell

model is a simple function of the r.m.s. beam size � and the

coherent fraction 	 (for each direction), expressed as
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� ¼
2�

	�2 � 1ð Þ
1=2
: ð3Þ

One interesting aspect of this model is that the coherent

fraction, 	, is simply determined by the ratio of the limiting

emittance and the actual radiation emittance,

	 ¼
�

4��� 0
; ð4Þ

where � 0 is the r.m.s. beam divergence.

Note, however, that this model is an oversimplification of

the radiation emitted by an undulator. Even for a single

electron radiation of an undulator, the emittance is �� 0 ’
�=2�, and this simplified analysis would lead to a coherent

fraction of at most 	 ’ 0.5. Nevertheless, some qualitative

aspects of the wavefront propagation can still be investigated

using the Gaussian–Schell model, provided the r.m.s. size and

divergence of the undulator radiation are chosen appro-

priately, as explained next.

3. Gaussian approximation to the undulator radiation

The exact description of the propagation of synchrotron

radiation is challenging since the most common situation is

partial coherence and neither geometrical optics (complete

incoherence) nor Fresnel propagation (complete coherence)

apply (Geloni et al., 2008). A number of computer codes have

already been developed for numerical characterization of

synchrotron radiation taking into account partial coherence

effects. The most comprehensive code, SRW (Chubar et al.,

2011, 2013), now allows a complete characterization taking

into account all finite emittance effects. However, this kind of

computation with a few thousand macro-electrons (Chubar et

al., 2011, 2013) can take several hours, even using multi-core

computing systems. On the other hand, most approximated

analytical approaches start from a Gaussian description of the

photon phase space for treating its propagation. With these

approaches, however, there are several different ways of

defining the size and divergence of the undulator radiation,

which depend on how the undulator radiation field is fitted to

a Gaussian function (Lindberg & Kim, 2015).

A relatively simple analytical formula that allows a good

approximation was proposed by Tanaka & Kitamura (2009).

This approach for the r.m.s. size and divergence of the radia-

tion from an undulator takes into account simultaneously the

finite emittance and the energy spread of the electron beam in

the storage ring. In fact, for higher harmonics the latter can

be comparable with or even larger than the finite emittance

effect. In this approximation, for each transverse direction the

r.m.s. size and divergence of the beam are given by

� � "�þ
�Lu

2�2
N 
�=4
n

� 	2=3

� �1=2

; ð5Þ

� 0 � ð"=�Þ þ
�

2Lu

N 
�=
n

� 	� �1=2

; ð6Þ

where " is the transverse electron beam emittance, � is the

value of the beta function in the center of the undulator, Lu is

the undulator length and N is a normalization factor that

comes directly from the energy spread of the electron beam,

Nð�Þ ¼
8�2�2

ð2�Þ3=2� erf 8�2ð Þ
1=2�


 �
þ exp �8�2�2ð Þ � 1

;

with � = 
�=
n being the ratio between the electron beam

energy spread 
� = Oð0:1%Þ and the relative bandwidth 
n =

1=nNu of the nth harmonic of single electron radiation from

an undulator with Nu periods. Equations (5) and (6) describe

qualitatively the effects of finite energy spread, more relevant

in higher harmonics. Accounting for this effect is especially

important for the storage rings of 3 GeV or less because higher

harmonics are frequently used for harder X-rays.

Therefore, for analyzing qualitatively the wave propagation

simulations, the Gaussian–Schell model is adopted [equations

(1) to (4)], using parameters described by equations (5) and

(6). The source of radiation is in the center of a 2 m 19 mm-

period undulator in the low-beta straight section (�x ’ �y ’

1.5 m) of the Sirius storage ring (Liu et al., 2014), with emit-

tances "x = 245 pm rad and "y = 2.4 pm rad (bare machine).

The beam size and divergence obtained from the universal

function in this situation are shown in Fig. 1.
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Figure 1
RMS source size and divergence of the 2 m U19 undulator in the Sirius
storage ring according to the universal functions from equations (5) and
(6) proposed by Tanaka & Kitamura (2009).



4. Optical layout for the simulations

In the simulations the synchrotron radiation beam is slightly

focused to produce a micrometer-sized illuminated area at the

focal position where the NRA diffraction grating lies. This

situation is ideal for simulating single-shot diffractive imaging

of micrometer-sized objects (Miao et al., 2015). Although the

analysis is mostly concerned with the horizontal direction of

the beam, the beamline layout in the simulations includes a

vertical focusing mirror (VFM) such that an approximately

circular focal spot is formed at the NRA position (80 m from

the source). The VFM produces approximately 1 :2 focusing in

the vertical direction, and the horizontal focusing mirror

(HFM) produces approximately 1 :1 focusing in the horizontal

direction with optical elements according to Table 1 and Fig. 2.

This results in an illumination spot at the focal position of

approximately 20 mm � 20 mm (r.m.s.). Since in the horizontal

direction the beam is only partially coherent, an aperture is

positioned immediately before the HFM (Fig. 2) to select only

the coherent fraction of the beam, effectively reducing its

divergence acceptance. Another option would be to reduce

the effective source size by creating a secondary source

through a primary focusing optics and placing an aperture at

the secondary focal point. Here the first approach is employed

to reduce the number of optical elements and simplify the

numerical simulations.

To analyze the coherence properties of the X-ray beam in

the horizontal direction, the r.m.s. size and divergence are

assumed as in Fig. 1 together with the analytical expressions

for the propagation of a Gaussian–Schell beam through the

beamline sketched in Fig. 2. The beam propagates through a

set of thin optical elements (aperture and focusing mirror),

with a total transfer matrix given by the product of their

individual ABCD transfer matrices (Dragoman, 1995;

Kauderer, 1991), as described in Appendix A.

5. Coherence length from numerical simulations

The mutual coherence function can be directly extracted from

simulated diffraction patterns of double slits, at different slit

separations, to determine the coherence length. Here, instead

of running a double-slit experiment for each slit separation,

a single diffraction simulation is performed using NRA. The

important property of the NRA is that any pair formed

between two different slits of the pattern (such as the ones

shown in Fig. 3) will have a separation distance never repli-

cated by any second pair. Conversely, all possible slit separa-

tions correspond to a single pair of slits (or none eventually),

as listed in Table 2. This non-redundancy allows the diffraction

patterns of many slit pairs to be isolated, simultaneously, in a

single simulation or experiment. Such a strategy was explored

experimentally by Skopintsev et al. (2014) and here was also

proven very suitable for simulating coherence properties with

SRW.1 This approach gives the mutual coherence function in a

single simulation, typically requiring about 14 h with 26 cores

(Xeon E5440 at 2.83 GHz) for about 10000 macro-electrons.

The NRA is defined by a grating with 0.1 mm � 1 mm

vertical slits, positioned in a Golomb ruler (Skopintsev et al.,

2014) with slits positions at x1 = �17 mm, x2 = �15 mm, x3 =

�9 mm, x4 = 3 mm, x5 = 13 mm and x6 = 17 mm (Fig. 3), with

x = 0 being the beam center. These positions were chosen

to optimize the illuminated area and the diffraction patterns.

The wavefront propagation is calculated for both transverse

directions with SRW for the optical layout presented in Fig. 2

up to the plane where the diffraction pattern is observed at

5 m from the NRA. The beam intensity distribution is finally

integrated in the vertical direction to obtain the one-dimen-

sional diffraction pattern, like the one shown in Fig. 4, which is

analyzed through the Gaussian–Schell model.

All distances between pairs of slits appearing in the

diffraction pattern are presented in Table 2. Note that a single

diffraction simulation of this NRA is equivalent to 15 simu-

lations of pairs of slits, separated by distances ranging between

2 mm and 34 mm, at every 2 mm. The only distances which
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Figure 3
Schematics of the NRA of slits used in the wavefront propagation
simulations.

Figure 2
Schematics of the beamline layout used in the simulations of the NRA
diffraction pattern.

Table 1
Positions of the beamline elements used in the wavefront propagation
(VFM = vertical focusing mirror, HFM = horizontal focusing mirror).

Position ( p) Focal length ( f )
Geometric
focal point (q)

VFM 27 m 17.9 m 80 m
HFM 45 m 19.7 m 80 m

1 SRW also allows for calculating, in one partially coherent simulation, the
‘mutual coherence’ as a function of two horizontal or two vertical conjugate
coordinates in the horizontal or in the vertical plane.



cannot be formed using this Golomb ruler (and consequently

do not appear in the diffraction pattern) are 16 mm and 24 mm.

As shown by Skopintsev et al. (2014), the far-field diffrac-

tion pattern, IðqÞ, of this grating is given by

I qxð Þ ¼ Islit qxð Þ

�
C0 þ 2

PN
i> j

�ij IiIj

� 	1=2
cos qxxij

� 	�
; ð7Þ

where C0 	
PN

i IðxiÞ, �ij = �ðxi � xjÞ and Ii 	 IðxiÞ.

Once the diffraction pattern from equation (7) is Fourier

transformed it yields

~IIð
xÞ / C0
~TTslitð
xÞ þ 2

PN
i> j

�ij IiIj

� 	1=2 ~TTslit 
x� xij

� 	
;

where ~TTslit is a triangular function resultant from the convo-

lution of the slit transmission and the delta function of the

diffraction peaks. Therefore, the Fourier transform of the

diffraction pattern from the NRA of slits is a set of triangular

peaks, centered at the possible values of xi � xj , whose

intensity is modulated by the mutual coherence function,

�ðxi; xjÞ = �ðxi � xjÞ½IðxiÞ IðxjÞ�
1=2. In the Gaussian–Schell

model this is written as

�ðxi; xjÞ ¼ �0 exp �
ðxi � xjÞ

2

2� 2
x

" #
exp �

x 2
i þ x 2

j

4�2
x

� �
: ð8Þ

Since every peak from � corresponds to a single pair of

coordinates (xi, xj), one can map the diffraction intensities of

the triangular peak fitting to each coordinate in a (xi, xj) two-

dimensional space. A one-dimensional cut of this function

through xi � xj is presented in Fig. 5. The distribution of peaks

is symmetric around 0 but only the positive separations are

shown in Fig. 5.

The example of the simulation of the NRA diffraction

pattern presented in Fig. 4 was performed for a 3 keV beam

and an aperture of 400 mm. As can be seen in Fig. 4(b), the

diffraction pattern was largely oversampled to avoid any loss

of information of the mutual coherence function displayed in

Fig. 4(a). Each peak of the Fourier transform of the diffraction

pattern has a scattering form factor of a rectangular slit, ~TTslit.

They were individually fitted to triangular functions to

determine their amplitude at the center coordinate pairs

(xi, xj), as displayed in Fig. 5(b). Finally, a two-dimensional

non-linear regression in the space of coordinate pairs (xi, xj)

and intensities �ðxi; xjÞ was employed to simultaneously fit the

coherence length �x and beam size �x. Note that the envelope

of the Fourier transform of the diffraction pattern does

not have a simple exponential decay due to the factor

exp½ð�x2
i þ x 2

j Þ=4� 2
x �. This factor changes non-monotonically

for every consecutive (and non-redundant) value of xi � xj

(see Table 2 for the xi and xj values). To effectively display the

exponential decay of �ðxi � xjÞ the value of the data points

�ðxi; xjÞ of the simulation are divided by the factor

exp½ð�x2
i þ x2

j Þ=4�2
x � using the fitted values of �x. This results

in the data points of Fig. 6 with the best curve fitting of

�ðxi; xjÞ / exp½�ðxi � xjÞ
2=2� 2

x � in the solid red line. In this

particular condition of Fig. 6, the best-fitted r.m.s. beam size

was 20.3 
 0.4 mm and the coherence length was 26.2 


0.2 mm. The error bars come from the covariance matrix of the

two-dimensional non-linear regression of the SRW simulation

data points.
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Table 2
Distances corresponding to each pair of slits in the diffraction pattern.

i, j 1, 2 5, 6 2, 3 1, 3 4, 5 3, 4 4, 6 2, 4 1, 4 3, 5 3, 6 2, 5 1, 5 2, 6 1, 6

xij (mm) 2 4 6 8 10 12 14 18 20 22 26 28 30 32 34

Figure 4
(a) SRW simulation of the interference pattern produced by the NRA
obtained by vertical integration of the full diffraction pattern. (b) Zoom
in the diffraction pattern from (a) to highlight the density of points
calculated in the diffraction pattern.



For some applications (e.g. diffraction-enhanced imaging,

CDI), partially coherent illumination of samples is acceptable,

if more elaborate phase-retrieval schemes are employed as

given by Whitehead et al. (2009). In this work the conditions

that maximize the coherent illumination of the sample are

investigated, such that the coherence length is at least twice

the r.m.s. beam size. In order to reach this coherent illumi-

nation condition, the effective beam emittance is reduced

by decreasing its angular acceptance with an aperture before

the horizontal focusing mirror. However, as this aperture

is reduced, the focus is shifted upstream of the geometric

condition. Therefore, before proceeding with the grating

diffraction simulations, the focal position for each energy and

slit aperture was determined. The focal positions obtained

from these simulations in SRW for 3 keV and 9 keV (circles)

are compared with the Gaussian–Schell model (solid lines) in

Fig. 7. Note that for apertures of the order of 600 mm this shift

is relatively small, but for smaller apertures the focal position

is shifted substantially, by almost 20 m for smaller apertures.

These small apertures are, nevertheless, necessary to reach

larger coherence lengths.

The apparently counterintuitive effect of the focal position

derives purely from undulatory optics and it is expected within

the framework of the Gaussian–Schell model. In the thin lens

approximation, a fully coherent Gaussian beam source, at a

distance p from a thin lens, with a focal length f, is refocused at

a distance q, according to the expression from Chu (1966),

q

f
� 1 ¼

ð p=f Þ � 1

ð p=f Þ � 1½ �
2
þ ZR=fð Þ

2 ; ð9Þ

where ZR is the Rayleigh length of the input beam, which

for the partially coherent Gaussian–Schell beam is given by

ZR = ��2=�½1þ ð�=�Þ2��1=2 (Gbur & Wolf, 2001). Clearly the

distinction from the geometric optics, as obtained through

equation (9), is due to an increase of the Rayleigh length that
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Figure 5
(a) Fourier transform of the diffraction pattern fitted by equation (8). (b)
Zoom of one peak of panel (a) showing the triangular function fitting
corresponding to the form factor of the slits in the diffraction grating ~TTslit.

Figure 6
The normalized mutual coherence function �ðxi � xjÞ. The points are the
fitted amplitudes of the peaks in Fig. 5(b) and the solid red line is the
Gaussian–Schell fit. The fitted r.m.s. beam size was 20.3 
 0.4 mm and the
coherence length was 26.2 
 0.2 mm.

Figure 7
Horizontal focal position (distance from the source to the focal point) as a
function of the aperture before the horizontal focusing mirror for 3 keV
and 9 keV and the focal position from geometric optics (1=pþ 1=q =
1=f ). The circles correspond to the SRW simulation and the full lines
correspond to the Gaussian–Schell model with the universal function for
the r.m.s. size and divergence. No fitting parameters are used except for
the equivalent Gaussian aperture = Aperture/4.55, as given by Singer &
Vartanyants (2014).



results from an enhancement in the coherence. In the

geometric optics limit, � ! 0 and ZR ! 0, reducing equa-

tion (9) to the thin lens equation of the geometric optics. In the

fully coherent case, � ! 1 and ZR ! ��2=�, leading to the

geometric focus of the Gaussian beam (Chu, 1966). As

ZR � f , the focusing condition for a collimated parallel beam

is recovered, i.e. q = f . Obviously, the equation for the focal

point in the condition described by Fig. 2 is slightly more

complicated due to the combination of propagation, focusing

and aperture restriction using the analytical equations

presented in Appendix A. Nevertheless, expression (9) can be

used to understand qualitatively the focusing behavior.

Starting from a partially coherent beam and reducing its

divergence through apertures, like in Fig. 2, the coherence

length is enhanced and, consequently, the Rayleigh length is

also increased, bringing the focal position upstream of the

geometric focus, as shown in Fig. 7. Surprisingly, the focal

length of the achromatic focusing element is affected by the

angular acceptance of the aperture in an energy-dependent

way (see Fig. 7), i.e. for a fixed aperture (small enough to select

the coherent part of the beam) the focal positions of different

energies occur at different distances. In the example of Fig. 7,

for a 200 mm aperture, the focal position for 3 keV and 9 keV

differ by more than 5 m. The same effect is expected for any

focusing element, like refractive lenses, which are already

chromatic. But it is surprising that achromatic elements, like

total reflection mirrors, effectively become chromatic in this

limit.

For each aperture, a focal position is then defined (see

Fig. 7) where the NRA diffraction is simulated. In all simu-

lations, diffraction patterns are observed at 5 m from the

NRA. The results for 3 keV and 9 keV for the beam size and

coherence length, obtained from the diffraction peak fittings

of the SRW simulation, are shown as circles in Fig. 8. The

Gaussian–Schell model with the universal function for the

r.m.s. size and divergence and with the equivalent Gaussian

aperture are shown as solid lines in the same figure. To

compare the numerical and analytical simulations the r.m.s.

aperture is compared with a sharp aperture value divided by

4.55, like the optimal parameter determined by Singer &

Vartanyants (2014). No other fitting parameters were used to

compare the simulations and the analytical treatment.

To study the effect of mirror imperfections in the wavefront,

the simulations presented in Figs. 4 and 5 were repeated,

introducing figure errors in the HFM. To model the mirror

figure error the meridional height and slope error profiles of

Fig. 9 from the DABAM database (Sanchez et al., 2016) were

used. Fig. 10 compares the Fourier transform of the diffraction

pattern and the resulting normalized correlation function with
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Figure 8
3 keV (upper) and 9 keV (lower) simulations of the coherence length
(blue circles) and beam size (orange circles) obtained from the two-
dimensional fitting of the NRA diffraction simulation as in Fig. 4
compared with the Gaussian–Schell model (full lines) with the universal
function for the r.m.s. size and divergence and with the equivalent
Gaussian aperture = Aperture/4.55, as given by Singer & Vartanyants
(2014).

Figure 9
Mirror height and slope profiles used in the wavefront propagation for
evaluating the effect of the mirror defects in the coherence length.



and without slope errors. Although the data points are more

dispersed in Fig. 10(d), the fittings of the two correlation

functions (within error bars) give the same coherence lengths.

The apparent dispersion of the data, with values even greater

than 1, may look like the simulation has numerical instabilities,

but this is not the case. These results were checked by varying

the number of macro-electrons and the precision parameters,

reaching the same results. In fact, the dispersion is caused by

random deviations from the Gaussian wavefront. The

normalization factor ðIiÞ
1=2
ðIjÞ

1=2 applied to � to obtain � is

considered as a Gaussian irradiance, i.e. ðIiÞ
1=2
ðIjÞ

1=2 =

exp½�ðx 2
i þ x 2

j Þ=4� 2
x �. However, this normalization is non-

homogeneous, since the irradiance at the sample position is

distorted by the mirror figure errors. Despite this dispersion of

the normalized data, the coherence length extracted from the

two-dimensional fitting was 26.1
 0.7 mm (which is equivalent

to the perfect mirror case of 26.2 
 0.2 mm) and the r.m.s.

beam size was 19 
 1 mm (which is also equivalent to the

perfect mirror case of 20.3 
 0.4 mm). Therefore, as expected,

the mirror imperfections distort the wavefront, as shown by

the tails in the beam shape at the focal point, but practically do

not affect the coherence length for this level of imperfection.

6. Summary

Designing beamlines for optimally extracting the coherent flux

available in third- and fourth-generation storage rings goes

beyond the traditional ray-tracing approach and needs to take

into account the wave nature of the radiation propagating

through the optical elements. Even though fourth-generation

machines have a high coherent flux fraction, the use of aper-

tures to effectively reduce the X-ray radiation emittance

is almost always necessary. Here the coherence length and

coherent fraction of a slightly focused X-ray beam from an
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Figure 10
Comparison between the coherence and nano-focusing properties of the partially coherent wave propagation through a perfect mirror (two upper
panels) and a mirror with the height and slope profiles of Fig. 9 (lower panels). The upper and lower left panels show � while the upper and lower right
panels show � extracted from � by using the normalization factor ðIiÞ

1=2
ðIjÞ

1=2 = exp½�ðx2
i þ x2

j Þ=4�2
x �. The fitting values for the perfect mirror case were

� = 20.3 
 0.4 mm and � = 26.2 
 0.2 mm, and for the imperfect mirror � = 26.1 
 0.7 mm and � = 19 
 1 mm.



undulator in a fourth-generation storage ring was calculated

by simulating the wavefront propagation through a non-

redundant array of slits. This approach reduced the compu-

tational time for simulating a coherent beamline by a factor of

the order of 10, since instead of simulating the propagation

through double slits (as typically done for evaluating the

mutual coherence function) the entire coherence degree is

obtained in a single simulation. It was shown how the coher-

ence length at the focal point can be controlled by an aperture

before the focusing element and that, in order to reach

coherence lengths of the order of twice the r.m.s. beam size, it

is necessary to use apertures of the order of 300 mm at 3 keV

and 100 mm at 9 keV. Unless the focal length of the focusing

element is changed, this energy change places the focus at

these two energies at about 15 m apart from each other.

Therefore, in coherent applications, in combination with

coherent selection apertures, even total reflection mirrors

can become effectively chromatic elements. These numerical

results were shown to be in qualitative agreement with the

analytical propagation of the Gaussian–Schell model using the

r.m.s. size and divergence from the universal functions for

undulator radiation sources. The analytical propagation of the

Gaussian–Schell model can be used to estimate the beam

properties before carrying out the full wavefront propagation.

Together with the method of using the NRA for simulating the

coherent properties of the beam, this allows a more efficient

design of beamlines for coherent applications.

APPENDIX A
The ABCD formalism for the Gaussian–Schell model

The propagation of a Gaussian–Schell beam through a series

of optical elements forming a beamline can be represented by

a transfer matrix of the form

A B

C D

� �
:

The complex elements of the transfer matrix, A, B, C and D,

are obtained through the multiplication of the transfer

matrices of the individual optical elements as for a conven-

tional Gaussian beam propagation.

The major difference from the pure Gaussian case is that, at

the output of the optical system, the Gaussian–Schell beam

parameters, radius of curvature (Ro), r.m.s. size (�o) and

coherence length (�o) are obtained from the incoming beam

parameters (Ri, �i and �i, respectively) through the equations

adapted from Dragoman (1995),

�

Ro

¼ C � Aþ
A �Dþ C � B

Ri

þD � B
1

R 2
i

þ
1

k2�2�2
þ

1

4k2�4

� �

�
1

�2
i

þ
1

2�2
i

� �
A�Dþ C � Bð Þ

k
;

�
�

�2
o

¼
2k

R 2
i

ðC � B� A�DÞ þ
2

�2
i

þ
1

�2
i

� �
ðC � B� A �DÞ

þ 2kC � Aþ 2kD� B
1

R 2
i

þ
1

k2�2�2
þ

1

4k2�4

� �
þ

2

�2
i

;

�

� 2
o

¼
1

� 2
i

where

� ¼ Aþ B
1

Ri

þ
i

k

1

�2
i

þ
1

2�2
i

� �� �����
����

2

�
Bj j2

k2� 4
i

:

The same notation of Dragoman (1995) was adopted, where

U � V ¼ <ðUÞ <ðVÞ þ =ðUÞ =ðVÞ

and

U � V ¼ <ðUÞ =ðVÞ � <ðUÞ =ðVÞ:

The complex numbers U and V can be any of the complex

numbers A, B, C and D of the optical system transfer matrix,

which are considered to have a unit determinant.
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Synchrotron Rad. 21, 904–911.
Mandel, L. & Wolf, E. (1965). Rev. Mod. Phys. 37, 231–287.
Miao, J., Ishikawa, T., Robinson, I. K. & Murnane, M. M. (2015).

Science, 348, 525–530.
Sanchez del Rio, M., Bianchi, D., Cocco, D., Glass, M., Idir, M., Metz,

J., Raimondi, L., Rebuffi, L., Reininger, R., Shi, X., Siewert, F.,
Spielmann-Jaeggi, S., Takacs, P., Tomasset, M., Tonnessen, T., Vivo,
A. & Yashchuk, V. (2016). J. Synchrotron Rad. 23, 665–678.

Schroer, C. G. & Falkenberg, G. (2014). J. Synchrotron Rad. 21, 996–
1005.

research papers

574 Harry Westfahl Jr et al. � Coherent radiation fraction J. Synchrotron Rad. (2017). 24, 566–575

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vv5152&bbid=BB17


Singer, A. & Vartanyants, I. A. (2014). J. Synchrotron Rad. 21, 5–15.
Skopintsev, P., Singer, A., Bach, J., Müller, L., Beyersdorff, B.,

Schleitzer, S., Gorobtsov, O., Shabalin, A., Kurta, R. P., Dzhigaev,
D., Yefanov, O. M., Glaser, L., Sakdinawat, A., Grübel, G., Frömter,
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