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The recent development of surface growth studies using X-ray photon

correlation spectroscopy in a grazing-incidence small-angle X-ray scattering

(Co-GISAXS) geometry enables the investigation of dynamical processes

during kinetic roughening in greater detail than was previously possible. In

order to investigate the Co-GISAXS behavior expected from existing growth

models, calculations and (2+1)-dimension simulations of linear Kuramoto–

Sivashinsky and non-linear Kardar–Parisi–Zhang surface growth equations are

presented which analyze the temporal correlation functions of the height–height

structure factor. Calculations of the GISAXS intensity auto-correlation

functions are also performed within the Born/distorted-wave Born approxima-

tion for comparison with the scaling behavior of the height–height structure

factor and its correlation functions.

1. Introduction

The continued development of X-ray sources that can provide

significant coherent flux has enabled the study of dynamics

during a range of equilibrium and non-equilibrium processes.

Using X-ray photon correlation spectroscopy (XPCS)

(Shpyrko, 2014; Sutton, 2008; Sinha et al., 2014) in a grazing-

incidence small-angle X-ray scattering (Co-GISAXS)

geometry offers extensive new opportunities to investigate

surface dynamics on lateral length scales of 0.5 to 103 nm

(Rainville et al., 2015; Bikondoa et al., 2013). In the steady-

state regime of thin film growth where the ensemble averaged

characteristics have reached saturation, the structure factor

measured in a traditional time-resolved incoherent scattering

experiment shows no further evolution; there is no ensemble

averaged kinetics. However, local dynamical processes of

deposition and relaxation continue and it is these that deter-

mine the final film structure. With the use of coherent X-rays,

the auto-correlation function of the scattered light intensity

g2ðq; tÞ is accessible and reveals the underlying dynamics in

the steady-state regime. In addition, to study the dynamics of

the non-equilibrium system, two-time correlation functions

Cðq; t1; t2Þ can be extracted from the Co-GISAXS experiments

in the early time regime where the system is in a non-

stationary phase.

Recent Co-GISAXS experiments have examined the thin

film growth process of kinetic roughening which is often

discussed through dynamical scaling relationships that connect

spatial and temporal correlations and are independent of

many system details. A key surface growth scaling relation is

the Family Vicsek (Family & Vicsek, 1985; Vicsek & Family,

1984) scaling equation,

wðL; tÞ ’ L�f t=Lz
ð Þ; ð1Þ
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where wðL; tÞ is the roughness of the interface or interface

width, L is the lateral length scale, z is the dynamic growth

exponent, � is the roughness exponent and f ðt=LzÞ is a scaling

function. This scaling relation describes behavior on length

scales much larger than the lattice constant. For u! 1, f ðuÞ

behaves as a power law, f ðuÞ ! u�, and, for u!1, the

scaling function approaches a constant value so that wðL; tÞ ’

L�. Therefore, the surface width approaches a steady-state

value within the range of length scales studied. The cross-over

time from power law growth to a constant roughness scales

with lateral length scale: tx ’ Lz. Within the Family Vicsek

scaling relation, when the evolution of the surface structure

reaches a dynamical steady state the structure factor behaves

as a power law, SðqjjÞ ’ q�m
jj . Since the structure factor is

directly proportional to the square of the interface width, m is

related to � in d-dimensions as: m = dþ 2� (Barabasi &

Stanley, 1995). Moreover, the auto-correlation function of

surface heights can be related to the dynamic exponent z in

the steady state as (Sneppen et al., 1992)

hh q; t1ð Þ h q; t2ð Þi ’ F qzjt1 � t2jð Þ; ð2Þ

where F is a scaling function.

In XPCS experiments, the two-time correlation function is

defined as

C q; t1; t2ð Þ ¼
hI q; t1ð Þ I q; t2ð Þi

hI q; t1ð ÞihI q; t2ð Þi
; ð3Þ

where Iðq; tÞ is the intensity at wavevector q and time t and the

angular brackets denote an ensemble average over equivalent

q values.

In the dynamic steady state, it is useful to calculate the

intensity auto-correlation function,

g2ðq; tÞ ¼
hI q; t 0ð Þ I q; t 0 þ tð Þi

hI q; t 0ð Þi
2

: ð4Þ

The angular brackets indicate a time averaging over t 0 and

equivalent q values. Often the experimental g2ðq; tÞ functions

are fit well with a Kohlrausch–Williams form (Kohlrausch,

1854),

g2ðq; tÞ ¼ 1þ �ðqÞ exp �2½t=�ðqÞ�n
� �

; ð5Þ

where �ðqÞ is a contrast term with a value between zero and

one that depends on the experimental setup and the coher-

ence of the incident beam, and �ðqÞ is the q-dependent

correlation time.

Comparing equation (5) with equation (2), we see that the

correlation time �ðqÞ in the dynamic steady-state regime scales

with the wavevector q (q ’ 2�=L) as q�z. Therefore, the

dynamic scaling exponent z can be extracted directly from

Co-GISAXS data under steady-state growth conditions.

Despite extensive theoretical and simulation studies on

popular surface growth models, the intensity correlation

functions that are now accessible through XPCS experiments

have not been widely discussed in a manner that connects well

to experiment. The XPCS correlation functions of two models

specific to ion beam nano-patterning have been examined by

Bikondoa et al. (2012). In contrast to that work, we focus here

on models widely used to describe surface growth processes

and investigate their analytical results and scaling behavior.

Here, the height–height correlation functions are analyzed for

both the (2+1)-dimensional linear Kuramoto–Sivashinsky

(KS) (Kuramoto & Tsuzuki, 1975, 1976; Michelson & Siva-

shinsky, 1977; Sivashinsky, 1977; Halpin-Healy & Zhang, 1995)

(x2) and the nonlinear Kardar–Parisi–Zhang (KPZ) (Barabasi

& Stanley, 1995; Halpin-Healy & Zhang, 1995; Kardar et al.,

1986; Halpin-Healy & Takeuchi, 2015) (x3) growth models.

In x2 and x3 the correlations of the height–height structure

factor SðqÞ are examined. In the limit qz� � 1, where qz is the

component of the wavevector transfer perpendicular to the

surface and � is the root-mean-square (r.m.s.) surface rough-

ness, the measured GISAXS signal is proportional to SðqÞ.

Beyond this regime, where qz� > 1, the GISAXS intensity is

not simply proportional to SðqÞ, but the simulations of x4 show

that the intensity auto-correlation functions nonetheless yield

accurate estimates of the surface growth scaling exponents

except at low wavenumbers.

2. Linear theory

The linear growth model we examine is a model which

considers random deposition of particles along with surface

relaxation which leads to a correlated surface. We consider the

linear KS model,

@hðr; tÞ

@t
¼ �r2h� �r4hþ 	ðr; tÞ; ð6Þ

where hðr; tÞ is the height of the interface, � is proportional to

the surface tension, � is a positive parameter related to surface

relaxation and 	ðr; tÞ is a Gaussian white noise with zero

average, h	ðr; tÞ 	ðr0; tÞi = 2D
ðr� r0Þ 
ðt � t 0Þ.

The ensemble averaged height–height structure factor

Sðq; tÞ = hðq; tÞ h�ðq; tÞ evolves as (Akcasu, 1989; Cook, 1970)

hSðq; tÞi ¼ exp �2 �q2
þ �q4

� �
t

� �
S0ðqÞ

þ D= �q2 þ �q4
� �� �

1� exp �2 �q2þ �q4
� �

t
� �� �

; ð7Þ

where S0 comes from the initial condition at time zero.

Therefore, the long-time steady-state behavior of hSðqÞi is

hSðq; t!1Þi = D=ð�q2 þ �q4Þ.

For the linear KS model, simulations were performed using

the one-step Euler scheme in time for the temporal discreti-

zation. The spatial derivatives were calculated by the standard

central finite difference discretization method on a square

lattice of size L = 1024 with periodic boundary conditions.

Taking advantage of the isotropy of the square lattice on long

length scales, the values have been averaged over angle in

reciprocal space and time after the system has reached a

steady state. The simulations in Fig. 1 were performed with

parameters � = 1, � = 30, time step dt = 10�3, number of

iterations to reach steady state N = 106 and uniform random

noise on the interval ½�1; 1�. The results agree with the known

hSðq; t!1Þi = D=ð�q2 þ �q4Þ behavior, where q is the

parallel momentum transfer q = ðq2
x þ q2

yÞ
1=2. Fig. 1 shows that

the cross-over regime for q�2 behavior at low q to q�4 beha-

vior at high q is quite large. By tuning the relative coefficients
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of � and � we can shift the scaling in a specific q range to either

q�2, q�4 or a value in between as the equation suggests:

1=ð�q2 þ �q4Þ. The upturn at high q is due to discrete lattice

effects on short length scales.

2.1. Two-time correlation function

Following equation (3), we examine the two-time correla-

tion function of the height–height structure factor,

C q; t1; t2ð Þ ¼
hS q; t1ð Þ S q; t2ð Þi

hS q; t1ð ÞihS q; t2ð Þi
: ð8Þ

Taking the initial conditions to be: Sðq; t ¼ 0Þ =

hðq; t ¼ 0Þ h�ðq; t ¼ 0Þ = 0, the structure factor becomes

Sðq; tÞ ¼ exp �2 �q2
þ �q4

� �
t

� �

�
Rt
0

Rt
0

exp �q2 þ �q4ð Þ t 0 þ t 00ð Þ
� �

� 	 q; t 0ð Þ 	� q; t 00ð Þ dt 0 dt 00: ð9Þ

Substituting (9) into (8) and calculating the value of the two-

time correlation function, we obtain

C q; t1; t2ð Þ ¼

1þ
exp �2 �q2 þ �q4ð Þ t2 � t1ð Þ

� �
� exp �2 �q2 þ �q4ð Þt2

� �
1� exp �2 �q2 þ �q4ð Þt2

� � : ð10Þ

Here we assume t2 > t1. Rewriting the above equation in terms

of T = t1 þ t2, �t = t2 � t1 and the amplification factor RðqÞ =

ð�q2 þ �q4Þ results in

Cðq;T;j�tjÞ ¼

1þ
exp �2RðqÞj�tj½ � � exp �RðqÞðT þ j�tjÞ½ �

1� exp �RðqÞðT þ j�tjÞ½ �
; ð11Þ

which is valid for either t2 � t1 or t2 < t1. Fig. 2(a) shows the

two-time correlation function simulated for a (2+1)-dimen-

sion linear model of lattice size L = 1024. The graph below in

Fig. 2(b) is the diagonal cut of this function at different T

values and the lines are the plotted function Cðj�tjÞ in

equation (11) with the specific values of T and RðqÞ for q ’

0.84. As the graph shows, the width of the correlation function

increases in the early period of growth and then saturates. The

simulated values and the calculated theoretical function agree

well with each other. Equation (11) shows that the char-

acteristic time for saturation of the two-time correlation

function width is tsat ’ 1/2R(q).

2.2. Auto-correlation function

We next examine the structure factor auto-correlation

function,

g2ðq; tÞ ¼
hS q; t 0ð Þ S q; t 0 þ tð Þi

hS q; t 0ð Þi
2

; ð12Þ

where Sðq; t 0Þ is the structure factor at wavevector q and time

t 0. The angular brackets indicate a time averaging over t 0.
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Figure 1
Steady-state structure factor for the linear KS model simulation with
L = 1024, � = 1, � = 30 and dt = 10�3.

Figure 2
(a) Two-time correlation function Cðq; t1; t2Þ of the simulated intensity
fluctuations for the linear KS model, � = 1, � = 58, dt = 5� 10�4, L = 1024
and q = 0.84. (b) The filled circles are the diagonal cut of the Cðq; t1; t2Þ

function at different T values and the lines are the theoretical values
calculated in equation (11).



Analytical calculation shows that the above function at large t

(steady-state) becomes

g2ðq; tÞ ¼ 1þ exp �2 �q2
þ �q4

� �
t

� �
: ð13Þ

When the system has reached a steady state, the values start

from g2ðq; 0Þ = 2 and relax to g2ðq; t!1Þ = 1. Fitting the

simulated correlation functions g2ðq; tÞ for different q values

with g2ðtÞ = 1þ exp½�ðt=�Þ�, we can find the fit parameter � as

a function of q. Fig. 3 shows the plotted correlation time �ðqÞ
for the simple case of � = 0. The solid line indicates the

predicted �ðqÞ = 1=½2ð�q2 þ �q4Þ� from equation (13). In this

case, where � = 0, the time constant is proportional to q�2.

3. KPZ model

The KPZ equation (Kardar et al., 1986) is one of the funda-

mental models for the study of non-equilibrium surface

growth processes and scaling behavior. The non-linear

stochastic partial differential equation which describes the

evolution of the height function hðr; tÞ is written as follows,

@hðr; tÞ

@t
¼ �r2hþ ð�=2Þjrhj2 þ 	ðr; tÞ; ð14Þ

where � corresponds to the effects of lateral growth. Galilean

invariance, which is associated with the invariance of the KPZ

equation under rotation of the coordinate system, yields the

following relation for the growth exponents � and z: �þ z = 2

(Barabasi & Stanley, 1995; Tang, 1995). In (2+1)-dimensions,

there are no exact results for � and z but various models have

estimated the values to be approximately � ’ 0.39 and z ’ 1.6

(Barabasi & Stanley, 1995; Kelling & Ódor, 2011). Numerical

integration of the KPZ equation was carried out by choosing

the standard finite difference discretization method for space

derivatives along with one-step Euler time discretization. The

results indicate that, for limited lattice sizes with periodic

boundary conditions, the full KPZ behavior can be seen for

sufficiently large non-linear coefficients. Considering the

scaling behavior of the structure factor to be as q�m with m =

2�þ 2, the linear model (� = 0) gives the roughness exponent

� to be zero as seen in Fig. 4: Sðq; tÞ / q�2. In the specific q

range examined, the slope of the scaling function rises with

increasing value of the non-linear coefficient, until it reaches

its full KPZ scaling exponent of 2�þ 2 = 2.8 ! � = 0.4.

Therefore, by tuning the non-linearity we can obtain a smooth

transition from the linear regime to the strong non-linear

regime in the observable q range of the simulation. The results

below are in the strong coupling regime that gives the KPZ

exponents.

3.1. Two-time correlation function

The two-time correlation function defined in equation (3)

has been simulated for the KPZ model with parameters � = 1,

� = 14, dt = 5� 10�3 and L = 1024. The results have been

averaged over four realisations. Fig. 5 shows the two-time

correlation function for q = 0.92. As the graph indicates, there

is an increase in correlation times at the beginning of the

growth process and then the correlation times saturate. We

know of no analytical forms available for this process in order

to compare with simulations. However, steady-state scaling

behavior exists at late times and we address that with the auto-

correlation function in the next section.

3.2. Auto-correlation function

In the KPZ model, the correlation function g2ðq; tÞ does not

show a simple exponential behavior. We take the fit functions

to be of the form (Kohlrausch, 1854)

g2ðtÞ ¼ 1þ exp �ðt=�Þn½ �: ð15Þ

The simulations have been performed with coefficients � = 1,

� = 14, dt = 10�3, N = 3� 106 and averaged over five

realisations (Fig. 6). Fitting the g2ðq; tÞ functions with
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Figure 3
�ðqÞ for the linear model steady-state (N = 3� 105) simulation with L =
512, � = 0, � ¼ 1, dt = 10�2. The solid line is a function proportional to
1=q2 predicted by the linear model.

Figure 4
Late-stage structure factor for the KPZ model with increasing non-linear
coefficients. Green: � = 0 (linear model); red: � = 7; blue: � = 14, � = 1,
lattice size L = 1024. For � = 14, dt = 10�3 and N = 3� 106 were used.



equation (15), we find the values of the correlation times � and

exponents n for different q values. The �ðqÞ graph plotted in

Fig. 7 scales as q�z, where the dynamic exponent z is found to

be: z = 1.6, consistent with known exponents for the (2+1)-

dimensional KPZ model (Barabasi & Stanley, 1995; Kelling

& Ódor, 2011). The exponent nðqÞ plotted in Fig. 8 exhibits

values greater than one, i.e. shows compressed exponential

behavior. However, for high q, the KPZ nðqÞ decreases

towards one, indicative of simple exponential relaxation.

The compressed exponential behavior in the correlation

functions results from the non-linearity of the KPZ equation.

The relative effect of the non-linear term in the KPZ equation

is larger for lower q values. This is seen by comparing the

averaged magnitudes of the linear and non-linear terms for

different q values and is plotted in Fig. 9. The inset displays the

ratio of the non-linear to linear term in the KPZ equation. We

have also performed numerical simulations of the restricted

solid-on-solid stochastic deposition model (RSOS) (Kim &

Kosterlitz, 1989; Kim et al., 1991) since this model converges to

a steady state very fast even for large lattice sizes and exhibits

scaling behavior in accordance with the KPZ model. The

growth algorithm for this model is to randomly select a site on

a surface and to let the height of that site grow from hi to

hi þ 1 considering the restriction that the neighboring heights

would differ by less than �h at each step. In our simulations,

we start with an initial configuration of a flat surface: hi = 0,

lattice size L = 1024 and consider periodic boundary condi-

tions with maximum height difference of �h = 4. As with the
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Figure 6
Late-stage auto-correlation functions g2ðq; tÞ for the KPZ model, L =
1024, �= 1, �= 14 and dt = 10�3. The lines are the compressed exponential
fits of the form in equation (15) to simulation data points. The inset
displays the difference between a compressed and a simple exponential
fit to q = 69.

Figure 7
�ðqÞ derived from fitting the auto-correlation functions g2ðq; tÞ to
equation (15). The solid line is the function f ðqÞ = constant� q�z, where
z is the dynamic scaling exponent z = 1.6.

Figure 5
(a) Two-time correlation function Cðq; t1; t2Þ of the simulated intensity
fluctuations for the KPZ model, q = 0.92. (b) The data are the diagonal cut
of the Cðq; t1; t2Þ function at different T values.



KPZ model, the correlation functions exhibit compressed

exponential behavior; therefore, the same functional form

as equation (15) is fitted to the data. The dynamic scaling

exponent obtained from the correlation time �ðqÞ is found to

be the same as the KPZ model, z = 1.6, and similarly the

structure factor scales as q�2:8 ! � = 0.4. The values of the

compressed exponents nðqÞ derived from this model in Fig. 8

are comparable with the KPZ values and they give exponents

in the range 1.3–1.5 for the lowest measurable q values. While

the RSOS model is in the same universality class as KPZ, it

can be seen that its behavior at very high wavenumbers (short

length scales) is different than that of the KPZ model. At

these length scales, the discretization of the simulations likely

becomes important. At the highest wavenumbers q, the

discretization might also affect the relaxation process.

However, comparison of Figs. 7 and 8 shows that �ðqÞ displays

proper KPZ scaling even in the region where nðqÞ is

decreasing towards one.

4. Born/distorted-wave Born approximation

While x2 and x3 analyzed the correlation functions of the

height–height structure factor SðqÞ, in general the measured

GISAXS intensity IðqÞ is not always proportional to SðqÞ.

Within the Born approximation (BA), the measured GISAXS

intensity from a surface of uniform density is (Sinha et al.,

1988)

I
�
qx; qy; qz

�
/

1

qz

Z Z
dx dy exp �iqzhðx; yÞ

� �
exp �i qxxþ qyy

� �� �����
����

2

; ð16Þ

where qz is the z-component of the wavevector change outside

the material.

Higher-order multiple-scattering effects near the critical

angle can necessitate the use of the distorted-wave Born

approximation (DWBA) (Sinha et al., 1988; Schiff, 1968;

Vineyard, 1982; Rauscher et al., 1995), which for a self-affine

surface is (Sinha et al., 1988)

I qx; qy; qz

� �
/

���� 1

q t
z

Z Z
dx dy exp �iq t

zhðx; yÞ
� �

� 1
� �

� exp �i qxxþ qyy
� �� �����

2

; ð17Þ

where q t
z is the z-component of the wavevector change inside

the material.

Both the BA and DWBA expressions for the scattered

intensity have the same form and the only difference is

whether the z-component wavevector change is calculated

outside or inside the material; this difference does not affect

the simulation results.

Our aim is to investigate the robustness of scaling expo-

nents obtained from correlations of the calculated GISAXS

intensity rather than correlations of the structure factor itself.

Using the form in equation (16), the intensity and the corre-

lation functions were calculated for simulations of the (2+1)-

dimension KPZ equation with L = 1024 and different values

of jqz�j
2.

The results in Fig. 10 indicate that, even for values of

jqz�j
2 > 1, the intensity differs from the q�2:8 decay pattern

only at low wavenumbers, as has been shown earlier by Salditt

et al. (1995). The time constant �ðqÞ and compressed expo-

nents nðqÞ derived from the correlation functions are also

independent of jqz�j at high wavenumbers and they follow the

same trend found in x3.

5. Conclusion

Analytical expressions for the auto-correlation and two-time

correlation functions of the linear KS model have been
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Figure 8
Compressed exponents nðqÞ found from the KPZ and RSOS model
simulations. These are determined by fitting the auto-correlation
functions g2ðq; tÞ to equation (15).

Figure 9
Average magnitude of the KPZ linear and non-linear terms plotted as a
function of q for simulation values: L = 1024, � = 1, � = 14, dt = 10�3. The
inset shows the average ratio of the non-linear term to the linear term.



derived and confirmed here by simulation. For the non-linear

KPZ model, the g2ðtÞ auto-correlation function in the steady

state is well fit by a compressed exponential function. The

Siegert relation (Berne & Pecora, 1976) connects the inter-

mediate scattering function Fðq; tÞ,

Fðq; tÞ ¼
hh q; t 0ð Þ h q; t 0 þ tð Þi

hh q; t 0ð Þi
2

; ð18Þ

and the intensity auto-correlation function g2ðq; tÞ as

g2ðq; tÞ ¼ 1þ
��Fðq; tÞ

��2: ð19Þ

Thus the compressed exponential fit behavior of g2ðq; tÞ

implies that the intermediate scattering function also exhibits

compressed exponential behavior in a similar time regime.

This is consistent with theoretical results of Calaiori & Moore

for the KPZ model (Colaiori & Moore, 2001a; Katzav &

Schwartz, 2004) suggesting that at short time differences

Fðq; tÞ / F0ðq; tÞ½1� ðBqztÞm=z
�, which is the expansion of a

compressed exponential relaxation. Note that this is different

from the stretched exponential (Colaiori & Moore, 2001b;

Bustingorry, 2007) behavior found for large time differences t

that were outside the scope of these simulations and, probably,

beyond the scope of current XPCS measurements. The form of

Calaiori & Moore predicts a compressed exponent in (2+1)-

dimensions of n = m=z = 1.75 for small time differences.

However, the fit compressed exponents measured here are q

dependent and slightly smaller. It is possible that for larger

lattices the exponent n can approach 1.75 at low wavenumbers.

Because the measured GISAXS intensity is not simply

proportional to the height–height structure factor, we have

also examined the auto-correlation function of the intensity as

calculated within the BA/DWBA model. We have shown here

that, beyond the qz� � 1 regime, the BA/DWBA expression

for the diffuse scattering I qx; qy; qz

� �
gives valid scaling

exponents at high wavenumbers. This shows that Co-GISAXS

XPCS experiments can be clearly interpreted to give accurate

information about the scaling dynamics of kinetic roughening.
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Figure 10
(a) Intensity and (b) correlation time constant �ðqÞ for BA simulations of
the KPZ model for different values of jqz�j

2. Lattice size = 1024.
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