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Edited by G. Grübel, HASYLAB at DESY,

Germany

Keywords: serial crystallography; free-electron

laser; SFX; stills; XFEL; detector; geometry.

The slip-and-slide algorithm: a refinement
protocol for detector geometry

Helen Mary Ginna,b* and David Ian Stuarta,b

aDivision of Structural Biology, Wellcome Trust Centre for Human Genetics, Roosevelt Drive,

Oxford OX3 7BN, UK, and bDiamond House, Harwell Science and Innovation Campus,

Fermi Avenue, Didcot OX11 0QX, UK. *Correspondence e-mail: helen@strubi.ox.ac.uk

Geometry correction is traditionally plagued by mis-fitting of correlated

parameters, leading to local minima which prevent further improvements.

Segmented detectors pose an enhanced risk of mis-fitting: even a minor

confusion of detector distance and panel separation can prevent improvement in

data quality. The slip-and-slide algorithm breaks down effects of the correlated

parameters and their associated target functions in a fundamental shift in the

approach to the problem. Parameters are never refined against the components

of the data to which they are insensitive, providing a dramatic boost in the

exploitation of information from a very small number of diffraction patterns.

This algorithm can be applied to exploit the adherence of the spot-finding results

prior to indexing to a given lattice using unit-cell dimensions as a restraint.

Alternatively, it can be applied to the predicted spot locations and the observed

reflection positions after indexing from a smaller number of images. Thus, the

indexing rate can be boosted by 5.8% using geometry refinement from only 125

indexed patterns or 500 unindexed patterns. In one example of cypovirus type 17

polyhedrin diffraction at the Linac Coherent Light Source, this geometry

refinement reveals a detector tilt of 0.3� (resulting in a maximal Z-axis error of

�0.5 mm from an average detector distance of �90 mm) whilst treating all

panels independently. Re-indexing and integrating with updated detector

geometry reduces systematic errors providing a boost in anomalous signal of

sulfur atoms by 20%. Due to the refinement of decoupled parameters, this

geometry method also reaches convergence.

1. Introduction

A key part of data processing for any diffraction experiment,

including X-ray diffraction, is determining the parameters of

the experiment: those of the sample (e.g. unit-cell dimensions,

crystal orientation, size, mosaicity), those of the probe (e.g. the

beam focus, divergence, energy) and the recording device (e.g.

detector gain curve, angle relative to beam, placement relative

to sample, segment placements relative to each other). Due

to well characterized detectors present in most synchrotron

beamlines, researchers benefit from very good calibration of

these detectors, including gain and precise knowledge of the

placement of the sensors with respect to each other.

The machines with the most brilliant hard X-ray sources are

now X-ray free-electron lasers (XFELs): the Linac Coherent

Light Source (LCLS) and the SPring-8 Angstrom Compact

Free Electron Laser (SACLA) are already in use and the

European XFEL (EuXFEL) and SwissFEL have begun lasing.

These are equipped with custom, in-house detectors, which

embody technological advances necessary to cope with the

demands of recording XFEL data, including: the Cornell-

SLAC hybrid Pixel Array Detector (CSPAD) (Hart et al.,

2012) at LCLS, the MultiPort Charged Coupled Device
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(MPCCD) (Kameshima et al., 2014) detector at SACLA, and

the upcoming Adaptive Gain Integrating Pixel Detector

(AGIPD) (Henrich et al., 2011) and the Jungfrau detector

(Mozzanica et al., 2014) at the EuXFEL and SwissFEL,

respectively. The former two detectors are widely used at their

respective light sources. These detectors are all segmented,

and are being upgraded frequently. The CSPAD in particular

is a 64-segmented detector of application specific integrated

circuit (ASIC) modules which are bump-bonded into pairs.

This requires regular dismantling and rebuilding, which

inevitably changes the relative positions of the detector

segments. This is an important part of the technological

development of these detectors. However, the frequent (and

unknown) rearrangement of the detector panels has a

pronounced effect on the ability to process the data. The

resulting panel shifts are largely unknown, and have to be

back-calculated from data collected at the XFEL. For the

regular crystallographer, the careful calibration of commercial

detectors at synchrotron beamlines may have allowed this

aspect of detector calibration to drift to the back of the mind.

XFEL data provide the biggest challenge for back-calcu-

lation of detector geometry. At an XFEL, crystals enter the

beam with an unknown orientation, and a portion of X-rays

entering a crystal will satisfy the Bragg condition and diffract

to produce a measurable spot on the detector. A crucial stage

of the data analysis workflow is working out the relative

positions of the putative reflections which gave rise to these

spots. This dictates how X-rays are traced from spot to sample

and determines the intersection with the Ewald sphere, a

critical component of determining crystal orientation. The

geometry is also essential for predicting the positions of the

diffracted X-rays in preparation for integrating reflection

positions. Even a sub-pixel offset in the assigned position of a

panel from its true position will disturb the integrated value

for multiple reflections.

Geometry refinement calculations have been carried out by

a number of groups. Work in early phases of XFEL data

processing noted the requirement for further detector

geometry refinement from the initial parameters, being

incorporated into geoptimiser (Yefanov et al., 2015), a stand-

alone software package associated with CrystFEL (White et

al., 2016), and a geometry (also termed metrology) refinement

module in cctbx.xfel (Hattne et al., 2014). Many of the authors

of the latter went on to incorporate a different form of

detector geometry refinement in the DIALS framework for

goniometer-based experiments and this has been adapted

to exploit XFEL data (Waterman et al., 2016; Brewster et

al., 2017).

The first two XFEL-specific methods both concentrate on

the challenging arrangement of the CSPAD detector. The

methods of geometry refinement by Hattne et al. (2014) were

carried out using an initial GUI-based manual adjustment of

the summed-image powder rings to obtain an initial starting

solution, which is performed automatically using geoptimiser.

Both of these reported methods then refine the positions and

rotations of all ASIC pairs on the CSPAD, the orientation and

unit-cell dimensions for each crystal, and the beam translation

and sample-to-detector distance by least-squares refinement

to minimize the discrepancy between observed and predicted

spot positions from known indexed lattices. On the other

hand, Yefanov et al. (2015) refined three parameters per

individual panel: translation in X and Y (axes perpendicular to

the beam) and a rotation around the centre of the panel, all

kept in plane with no variation in the Z axis. Although this

appears to be a less ambitious approach, because certain

combinations of parameters can look remarkably similar,

refining fewer parameters prevents one parameter from

compensating for errors in another correlated parameter. As a

result, this method may be advantageous against the chosen

target function.

Detector geometry refinement in DIALS aims to refine

geometry for both single-shot experiments as per XFEL

experiments and goniometer-based rotation experiments at

synchrotrons. This is a more ambitious project which includes

fully three-dimensional detector models with an optional

hierarchical structure, potentially able to model the panels

arranged on a cylinder of the Pilatus 12M detector at

Diamond, beamline I23 (Wagner et al., 2016). In the DIALS

framework, during refinement, panels are rotated with respect

to their basis vectors, and also translated along these three

vectors (which are not necessarily parallel to laboratory

framework axes). However, several combinations of para-

meters defined in this model are still correlated, which

significantly complicates the process of refinement.

In this paper, we present a new method of parameterization

of a detector in three dimensions which aims to deconvolute

the vast majority of the correlated parameters. These can be

split into two major modes of movement: Euclidean move-

ments which affect the relative arrangement of putative

reflection coordinates in reciprocal space, and non-Euclidean

movements of spherical geometry which rotate a panel around

the sample but do not affect the relative arrangement of

putative reflection coordinates (Fig. 1). This has been termed

the slip-and-slide algorithm, as one first ‘slips’ into the correct

orientation relative to the sample (Euclidean movements) and

then ‘slides’ around the sample (non-Euclidean movements).

These can be refined against different target functions.

Refining these movements separately prevents a one-step

movement in the X axis, and this must be decomposed into its

component modes (Fig. 2). In addition, we present two types

of target function, one of which uses the traditional approach

of comparing observed to predicted pixel positions of

diffracted rays through illuminated Bragg peaks, and another

function which takes advantage of the ‘unit cell fingerprint’ of

the lattice-derived pattern of spots on the detector, with no

concern given to the orientation of the lattices.

The effect of this method of geometry refinement on even a

data set of high initial quality is demonstrated by observing

the effect on an independent parameter (anomalous signal

from sulfur), which should indicate the relative importance of

geometry calibration. This corroborates the message from a

study on sulfur SAD phasing of thaumatin crystals (Nass et al.,

2016) which found that applying further geometry correction

to gadolinium-phasing of lysozyme (Barends et al., 2014) could
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reduce the required patterns from 60000 in the original study

to 7000.

2. Materials and methods

2.1. Data input

The initial geometry was loaded from the CrystFEL

geometry file for the CSPAD (at LCLS) into the cppxfel suite.

Files in the CXI format (using the HDF5 specification) were

created using Cheetah (Barty et al., 2014) and can now be

directly loaded into cppxfel (Ginn et al., 2016a). Cypovirus

type 17 polyhedrin (CPV17) diffraction patterns from a prior

study (Ginn et al., 2015b), selected using

Cheetah hit-finding [data deposited in

CXIDB (Maia, 2012), code 29], were

used, from LCLS proposal LS06. Note

that, for the CSPAD, the bump-bonded

ASIC pairs were treated as a single unit.

2.2. Detector geometry model

The underlying model of the detector

geometry is no more complex than that

implemented in DIALS. The laboratory

basis vectors were chosen such that the

Y axis pointed to the ceiling, the Z axis

along the beam from sample to

detector, and the X axis in the appro-

priate direction to complete a right-

handed orthogonal coordinate system.

The origin was defined as the sample

position. Each segment of the detector

stored three properties: its midpoint

coordinate, and the direction vectors

which specify the fast-scan and slow-

scan axes (from which the orthogonal

vector may be derived). The 32 indivi-

dual ASICs of the detector were paired

together to form 16 ASIC pairs. Individual ASICs first

inherited the properties from these higher-order ASIC pairs,

before applying further corrections. These 16 ASIC pairs were

paired recursively, ending with the definition of a single

‘master’ detector object (Fig. 3).

During the course of refinement, small offsets are applied to

the detectors in order to minimize the target function, which

are applied on-the-fly. At the end of each cycle of refinement

of a detector panel, these small offsets (rotation angles and

translations as defined in x2.3) are absorbed into the direction

vectors which specify the fast- and slow-scan axes. The small
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Figure 2
A lateral movement in panels must be split into the Euclidean elements
(step 1, left) and the non-Euclidean elements (step 2, right). The former
aligns the spot projections or predicted reflection positions within a single
panel. The latter aligns the panels relative to the beam centre or each
other.

Figure 3
Detector hierarchy for a CSPAD image (left). Subsequent images show
the pairs of detector groups joined in a higher-level group from the
previous image, finishing with the final ‘master’ group. Each group will
inherit the properties of the parent group recursively. This enables
blanket changes to be made to the entire detector or specific sections of it,
and also aids the process of refining geometry from unindexed diffraction
patterns.

Figure 1
Types of movement: Euclidean (left) and non-Euclidean (right). Left: the detector panel can move
backwards and forwards on the spindle connecting its midpoint to the sample by distance d, and
rotate by two angles on two axes orthogonal to the spindle axis (� and �). This will affect the
predicted spot locations (or, conversely, it will affect the relative arrangement of back-projected
rays). Right: the detector panel can move around polar coordinates �, ’ and  around any arbitrary
axis passing through the sample. This will not affect the relative arrangement of ray projections back
onto the Ewald sphere, only their absolute position relative to the beam centre.



offsets are then set to zero before the next round of refine-

ment. This is merely a detail of the implementation.

2.3. Panel movement modes

Movement modes were divided into Euclidean and non-

Euclidean movements. The three Euclidean movements are:

(a) movement back and forth along a spindle connecting the

centre of the panel to the sample, (b) a rotation around an axis

normal to the spindle, and (c) a rotation around the other

orthogonal axis normal to the spindle. There were three types

of non-Euclidean movement, polar coordinates �, ’ and  
around any axis passing through the sample (Fig. 1).

2.4. Refinement of unit-cell dimensions

To refine unit-cell dimensions independently from detector

geometry, a combination of over-prediction and a local search

for the highest peak, followed by integration, could ‘catch’

reflections which would not satisfy the Bragg condition using

the parameters of the initial model. This identified illuminated

reflections which were further afield from the initial predic-

tion, and was followed by initial orientation refinement.

Reflections were registered as either strong or not strong, and

thus provided data which were independent of the diffraction

geometry. Global unit-cell refinement was then performed to

bring the unit-cell dimensions in line with what was required

to focus the reflections around the mean wavelength. Itera-

tions of orientation refinement followed by unit cell refine-

ment were performed until convergence.

2.5. Geometry refinement using indexing solutions

Diffraction patterns of CPV17 run 4 were indexed using an

initial estimate of the detector geometry. The initial offsets

between the predicted and observed locations for the vast

majority of ASIC pairs were within 0 to 2 pixels, which was

also affected by the unit cell and distance correction described

above. Indexing was performed using the TakeTwo algorithm

(Ginn et al., 2016b), including solution validation. During

indexing, the surrounding area up to five pixels away from the

predicted peak was searched, and the highest pixel value

stored as an offset. The offset was stored in both pixels and in

reciprocal coordinates when back-projected onto the Ewald

sphere. This local search was also used during the error

checking process of indexing solutions for the initial geometry

only, which relaxes the restraints. For the validation of

indexing rates determined with refined geometry, the local

search was not performed. Only the strongest peaks were

recorded using an equivalent of an I/SIGI cutoff of 0.67 (using

a detector gain of around 9.0 ADU per photons for the 1.46 Å

wavelength pulses used).

The Euclidean movement modes were refined first using the

Nelder–Mead algorithm (Nelder & Mead, 1965) against a

measure of the spread of the pixel offsets. As there were many

incorrectly located peaks, a least-squares offset would put

undue emphasis on outliers where the majority of the errors

are not similar to those derived from a Gaussian error model.

Instead, an empirical ‘reward-based’ target function was

developed (rather than penalizing for being far from the true

value).

The equation E which was to be maximized using the

Euclidean movement modes only is described in equation (1)

below. This calculated and summed a value for every strong

reflection i, which was the sum of an exponential function of

the axis offsets x and y of every other reflection j from

reflection i. Hence this was independent of the origin of the

pixel offsets and would be best maximized by reducing the

spread of neighbouring offsets. The non-Euclidean move-

ments were refined against the deviation of the reciprocal

offsets (in reciprocal coordinates) from the origin. When

X-rays diffract through a finite reciprocal lattice point at a

wide angle and hit a detector far from the perpendicular, the

rays will be distributed with an increasing spread of incident

angles. The choice to calculate in reciprocal offsets guarded

against the over-compensation which would occur by trying to

centre on the midpoint of the pixel offset distribution. This

was calculated using a related equation (2) using non-Eucli-

dean movements to rotate the panels until the offset is zero.

Equation (2) is less computationally expensive than equation

(1). The constant k in both equations is a scale factor to

roughly scale the offsets to the appropriate scale, and was set

to 5.0 for pixel offsets and 0.002 Å�1 for reciprocal coordinate

offsets. The flow of operations are described in Fig. 4.

E ¼
X

i

X
j

exp �k2 xi � xj

� �2
þ yi � yj

� �2
h in o

; ð1Þ

N ¼
X

i

exp �k2 x2
i þ y2

i

� �� �
: ð2Þ

Each mode of movement was refined independently for each

panel. This ensures that any global trends observed in the

detector have not been biased by using a hierarchical detector.

This means any trends in overall tilt or detector distance can

be determined independently.

2.6. Geometry refinement using unit-cell information only

Spot-to-spot vectors were determined in the same manner

as previously described (Ginn et al., 2016b). ‘Intra-panel’

vectors are vectors which span two spots on the same detector

panel, whereas ‘inter-panel’ vectors are those which have two

spots each from a different panel.

For a given panel, all pairs of intra-panel vectors sharing a

common spot were stored, and on each iteration of refinement

the two reciprocal lengths of the vectors and the angle

between them (restricted to 0 � angle < 90) were recalcu-

lated. This produces a three-dimensional histogram of two

lengths, and angle and a frequency. When summed over

multiple still shots from several angles, a sampling of all

potential vector pairs is expected. For each panel, this histo-

gram was refined against the ideal histogram calculated from

the unit-cell dimensions, using the Euclidean movement

parameters. This is refined using the Nelder–Mead algorithm

to convergence.
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Inter-panel vectors between two chosen panels were paired

either with other inter-panel vectors or intra-panel vectors on

one panel or the other, as long as they shared a common spot.

The three-dimensional histogram was generated and refined

against the non-Euclidean movements of the two panels next

to each other. The movement is defined by the polar coordi-

nates �, ’ and , the axis for which was defined as the midpoint

between the centres of the two chosen panels. The panels are

restricted to perform equal and opposite movements (e.g.

rotation by � of one panel must be opposed with a �� rotation

of the other), to prevent unnecessary drift of panels around

the experimental hutch. A hierarchy of panels was formed for

both the CSPAD and MPCCD detectors, with ascending pairs

of panels up to the entire detector. For the CSPAD, adjacent

ASIC pairs are paired, followed by paired ASIC foursomes, up

to quadrants, halves and then the master detector. Each level

of the hierarchy was refined using the Nelder–Mead algorithm

to convergence.

The target function for the unit-cell fingerprint was calcu-

lated from the ideal unit-cell dimensions and a reciprocal-

lattice-point radius (akin to the profile radius in CrystFEL or

the crystal domain size for cctbx.xfel). These acted as toler-

ances for the lengths of vectors to be accepted as resulting

from the chosen lattice parameters. Vectors were rejected if

the magnitude of the vector exceeded 0.15 Å�1 (reciprocal

coordinate units). The angles were calculated from the toler-

ances on the lengths of the vectors such that shorter vectors

had wider tolerances. These are stored in memory with 240

voxels sampling each dimension, producing 2403 single-

precision floating points (occupying 55.3 MB in memory).

Each voxel contained a ‘score’ for a given combination of two

vector lengths and the angle. This was a linear ascent from 0 at

the edge of the acceptable tolerance to 1 at the most ideal

calculated value. Sets of three spots were taken for each target

function, and the three vectors between them were stored in

memory. For the target function, a sum of the individual scores

for each spot triad were calculated. Each pair of the three

vectors in a spot triad were given a score between 0 and 1

according to the lookup table, and multiplied together, which

can also be calculated in advance.

2.7. Calculation of anomalous signal

Diffraction patterns were indexed using a given geometry

file and orientation matrices were refined according to a

previous protocol (Ginn et al., 2015b). The peak locations for

these orientations were then predicted, and could be treated

as exact or approximate. For the former, images were inte-

grated at the exact peak locations; for the latter, after a three-

pixel local search for the highest pixel value, on which the

integration window was centred. Integration and post-refine-

ment of these diffraction patterns were performed as

previously described (Ginn et al., 2015a) and anomalous

differences were calculated per cycle.

3. Results

Geometry movements were categorized into either ‘non-

Euclidean’ or ‘Euclidean’ movements. The non-Euclidean

geometry movements are those which do not affect the rela-

tive positions of diffracted rays on the surface of the panel, i.e.

any movement on a sphere around the sample of a constant

radius. The other movements are those which only affect the

relative positions of the diffracted rays and are classed as

Euclidean movements. These two modes of movements are

refined against separate target functions, involving no

component to which the parameters are insensitive. This

means that, apart from the exception of moving an entire

single-panel detector forwards or backwards, any single

movement along the traditional X/Y/Z axes is disallowed.

These movements must be decomposed into the Euclidean

and non-Euclidean elements (Fig. 2) and refined against

separate target functions.

Two methods can be used to refine the geometry, depending

on whether indexing solutions have been obtained or not. If

the geometry is far from the truth, orientation matrices may be

extremely difficult to determine. However, the images contain

a great deal of information as the spots still obey a ‘lattice-like

nature’ defined by the unit-cell parameters and space group

centring. Hence the Euclidean and non-Euclidean movements
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Figure 4
The order of events is shown for geometry refinement from indexing
solutions for individual crystals (left) and for using the pre-indexing
‘lattice-like’ information only (right).



can be refined against related target functions, depending on

whether the geometry is close to the true positions or needs to

be refined from a far starting position.

3.1. Corrections to unit-cell parameters

The unit-cell dimensions and detector geometry parameters

must be carefully separated. Using the same target functions

to refine the unit-cell dimension as to refine the detector

geometry will lead to incorrectly determined parameters.

Hence, a method to abstract the information necessary for

unit-cell refinement from the detector geometry is performed

instead (see x2.4). This clusters the prediction of the strong

reflections around the mean wavelength recorded by inte-

gration of the spectrometer output at the XFEL for both data

sets. This method was used to update the unit-cell dimensions

used for CPV17 from 106.1 Å to 105.5 Å (deflation of

approximately 0.6%). An approximate correction was applied

to the initial detector distance (inflation by 0.6%) to

compensate for the change in unit cell.

3.2. Indexing-driven geometry refinement

If the detector geometry is sufficient to index and produce

pixel offsets not diverging too far from zero, the Euclidean and

non-Euclidean movements can be refined against the appro-

priately sensitive target functions. The Euclidean movements

are refined against the spread of pixel offsets (but need not be

equal to zero), and the non-Euclidean movements are refined

against the spread of reciprocal coordinate offsets being

centred around zero. The result of applying the two-stage

protocol on individual panels is presented in Fig. 5, and the

overall effect on the pixel offsets on each quadrant is shown

in Fig. 6.

The TakeTwo algorithm (Ginn et al., 2016b) may be able to

index with very poor geometry, in the case where the inde-

pendent panels are well oriented in their Euclidean move-

ments but are poorly oriented with respect to either each

other or the beam centre. If there are enough panels oriented

correctly with respect to the sample, and enough inter-

connected panels to find enough vectors consistent with a

single indexing solution, identifying the correct basis vectors is

very likely to be successful. However, the pixel offsets may be

extremely divergent. If the indexing rate is very low to begin

with, pre-indexing geometry refinement can be performed to

help bootstrap indexing.

3.3. Pre-indexing geometry refinement

By analysing pairs of spot-to-spot vectors, one can essen-

tially produce an orientation-less ‘unit-cell fingerprint’ of the

space group and centring (disregarding axial systematic

absences). This unit-cell fingerprint will be perturbed if the

non-Euclidean movement parameters of a single panel are

incorrect, and so can be used as a target function to lock this

information. This is demonstrated graphically in Fig. 7.

research papers

J. Synchrotron Rad. (2017). 24, 1152–1162 Ginn and Stuart � The slip-and-slide algorithm 1157

Figure 5
The shifts in predicted reflection positions on a mid-resolution panel at the start (left), after Euclidean movements (centre), and after non-Euclidean
movements (right). The former is refined against the spread of pixels (top row), resulting in a reduction of the standard deviation of reciprocal offsets by
0.8% (including outliers), whereas the latter is refined against the centre-point of the reciprocal offsets (bottom row), resulting in a reduction of the mean
reciprocal offset by 77.1%.



Due to the lack of exact orientation information, it is harder

to lock panels in an absolute position relative to the beam

centre. However, it is possible to lock panels to one another,

starting with pair-wise interactions between independent

panels, and then pair-wise interactions between pairs, in an

ascending hierarchy, until the whole of the detector has been

aligned with itself. The inter-panel vectors contain the infor-

mation which defines the relative positions of the two parti-

cipating panels and this forms the basis of this part of the

calculation.

Finally, the entire detector must be aligned with the beam

centre. However, this is unlikely to diverge far from the

original centre, since locking onto an alternative Miller index

is likely if only the entire tilt of the detector has exceeded the

2� scattering angle of the lowest resolution Bragg peak (in the

case of the CPV17 unit cell, this is 1.1�).

3.4. Geometry refinement reveals a tilt in the CSPAD

Geometry refinement using the indexing solutions

produces a 5.8% boost in indexing rate using information

from only 125 images of CPV17 data used for a previous

structure solution (Ginn et al., 2015b). The boost in the

indexing rate is comparable with that using 500 unindexed
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Figure 6
The shifts of the pixel offsets from the predicted and observed peak locations in each quadrant of the CSPAD from the original offsets in the geometry
file (top, red), and after refinement (top, blue). On the bottom is the before and after CSPAD corresponding to the graphs above, with the Z axis
spanning a 1 mm rainbow around the original detector distance. Arrows shown are proportional to the offset in X and Y of each panel from the original
position and independent of the Z axis. Geometry refinement performed using 170 indexing solutions.



patterns (Fig. 8). The former method of refinement can exploit

more information and therefore reaches convergence faster

than using pre-indexing information only. However, the

calculation time scales proportionally to the square of the

images from indexing solutions [due to equation (1)], but is

directly proportional to the number of images from the pre-

indexing information. So including more data has a reduced

impact on the calculation time using pre-indexing informa-

tion. Furthermore, the latter method cuts out the time

required to index beforehand. Therefore, under time-

constrained conditions, one can approach an approximate

solution from a larger number of unindexed diffraction

patterns, and fine-tune the geometry using a smaller number

of indexing solutions.

Because the geometry is run separately on individual panels

using indexing solutions (and for the Euclidean stages of pre-

indexing information), any global trends which are observed

throughout the detector can be considered to have been

reached in an unbiased manner. In this case, both forms of

geometry refinement reveal a tilt in the detector (Fig. 9) of

approximately 0.3�, which produces a 1.1% error in the Z axis

(a detector distance in the centre of 90.3 mm). Integration

and post-refinement confirms that the

nominal beam centre passes through the

(0, 0, 0) Miller index.

3.5. Improvement in random error
reduction and indexing rates

In order to judge the reduction in

random error, images in the data sets

were split into odd and even chunks.

Indexing solutions from each half were

used to direct geometry refinement

using both indexing solutions and pre-

indexing information only. The changes

in the X, Y and Z coordinates of the

four panel corners (all of which are a net

effect of both movement modes) were

stored for each half after refinement,

and the correlation between them

measured for increasing numbers of

images. This increases with use of

additional images and rises faster for

indexing information than pre-indexing

information (Fig. 8).

The indexing rates show an

immediate improvement after geometry

refinement even with the minimum

number of images (125 images), despite

reducing the local search area to zero

pixels, which produce more stringent

indexing solution checks. The vectors

used for indexing via the TakeTwo

algorithm can also be plotted on a single

image and this may reveal portions of

the detector (or vectors between parts

of the detector) which are not used during indexing. This ‘iron

filing’ plot can highlight poor geometry between two areas or

with an area of the detector (Fig. 10).

3.6. Data set quality improvement

In order to judge the reduction of systematic error, the

anomalous signal was chosen as an independent metric, using

ANODE (Thorn & Sheldrick, 2011) to calculate the average

sulfur signal from Met and Cys residues after refinement. This

was performed for (a) the initial geometry without a local

maximum search, (b) the initial geometry with a three-pixel

maximum search, and (c) the best diffraction geometry

without a local maximum search. Post-refinement was

performed on indexing solutions derived and initially refined

with the best geometry, and then post-refined with either

initial or refined geometry definitions. Indexing solutions were

initially obtained and refined using the best geometry,

resulting in 7613 indexed lattices (from 7000 images).

All data sets respond to post-refinement, increasing the

anomalous signal per cycle (Fig. 11). Integrating the 7613-

lattice data set using the initial geometry without performing
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Figure 7
Representation of the three-dimensional histogram of inter-spot vectors using Coot. Atoms denote
the positions of the expected positions, calculated with a buffer region outside of the observed
vector positions (within the bounds of the unit cell). The map density reflects the set of observed
vectors, contoured at 6.5�. Reciprocal distances cover the range 0–0.04 Å�1. The top diagram is
shown with all angles projected down perpendicular to the page. The bottom diagram is a stereo
image showing two lengths (x, y axes) and angle (z axis) illustrating all dimensions.



any local search produced the worst anomalous signal,

reaching a maximum of 3.21� across all sulfur atoms (an

increase of 43% from cycle 0). Integrating using initial

geometry combined with a local maximum search stabilizes

the post-refinement process, with a maximum anomalous

signal of 3.45� (an increase of 41% from cycle 0). However,

this will be held back by poorly estimated integration windows

for weak reflections and would be unsuitable for careful

structural analysis. This causes a systematic inflation of weak

reflections which perturbs the twinning H-test by skewing the

intensity distribution [Truncate (Winn et al., 2011) reports a

twinning fraction of 9.1% for the reflection intensities after a

local search, versus 0% for reflection intensities without]. The

systematic inflation of weak reflections could leave a structure

prone to model bias, as phases of inflated weak reflections can

be manipulated to add Fourier waves supporting any correct

or incorrect input model in the electron density map. Using

the best geometry to predict exact peak locations for the 7613-

lattice data set, the anomalous signal reaches a maximum of

3.89 (an increase of 49% from cycle 0), showing a significant

improvement derived from a more accurate prediction of the

spot locations, and does not systematically inflate weak

reflections.

In summary, a local search for strong reflections can miti-

gate the effect of poor geometry definition, improving the

anomalous signal over predicting at exact locations. However,

it is no substitute for accurate geometry determination.

4. Discussion

Using non-indexed diffraction information relies on good

spot-finding information and consistent unit-cell parameters

from crystal to crystal, and computation time scales with the

number of images.
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Figure 8
From the CPV17 data set: the correlation coefficients of the X (blue), Y (yellow) and Z (red) coordinate offsets of the four panel corners from the
original positions are plotted (left), from 125 images to 2000 images (top, with indexing solutions) and from 125 to 3500 images (bottom, pre-indexing
only). At the top right, the base indexing rate is shown in black for the original, partially refined CrystFEL format geometry file for CPV17, with a local
search size of 5 pixels for the maximum peak (used for indexing solution verification). After refinement from indexing solutions, with a local search size
reduced to 0 in all cases, the improvement in the indexing rates are shown. A noticeable improvement in the indexing rate can be seen from 125 images
using indexing solutions. At the bottom right, 125 images fail to produce verifiable indexing solutions, but 250 images produce a small improvement in the
indexing rate.



Using indexed diffraction information relies heavily on the

ability to index, and computation time scales with the square

of the number of images. However, it will be more robust for

weak data where the knowledge of the predicted peak location

can be used to select high value pixels that are more likely to

be from a Bragg peak-diffracted X-ray. The geometry refine-

ment described here allowed the structure solution of bovine

enterovirus type 2 by using only 352 indexed diffraction

patterns (Roedig et al., 2017). In that case geometry refine-

ment revealed a 0.5 mm tilt across the detector, correction for

which enabled significantly more accurate prediction of Bragg

spot locations and hence more reliable intensity estimates.

This algorithm leaves one type of parameter correlation not

particularly well separated: the radial distance often has quite

a similar effect to tilting along both of the perpendicular axes

simultaneously. These effects can only be separated if there is

a sufficient distortion in the spread of spots due to a tilt: the

spots at one extreme end of a panel would be clustered

together compared with those at the other extreme end. If

the spread of angles between diffracted rays allows sufficient

sensitivity to separate these effects, the geometry algorithm is

capable of doing so. However, this becomes harder to separate

as the wavelength becomes shorter (leading to a flatter Ewald

sphere) and when the detector distance is large. This is a loss

of information which is inherent to all geometry refinement

experiments, and therefore experiments to acquire good

geometry should be performed with a long wavelength and

short sample-to-detector distance.

Because the DIALS framework adjusts the position and

rotation of the detector panels with respect to the vectors

which define the panel edges and the cross product of the two,

the refinement of the detector at the I23 beamline would

heavily emulate the non-Euclidean movement modes

described here, as the panels are deliberately arranged in a

circle to match the origin of the Ewald sphere (sample posi-
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Figure 9
Side-by-side comparison of geometry refinement with indexed and
unindexed diffraction patterns. Images of the CSPAD after geometry
refinement from oriented indexing solutions (left), and using the pre-
indexing information contained within the diffraction patterns only
(right). Each column is divided into two half-data sets which were used to
run the geometry calculation independently. The number of images which
were given to each half are displayed on the left-hand side.

Figure 10
All inter-spot vectors used for indexing displayed on a single ‘iron filing’
plot, before (left) and after (right) geometry refinement with indexing
solutions from 2000 images. Notice that the quadrant in the top left of the
image has a poor share of the total used vectors, and, after being shifted
significantly further back after refinement, has regained a more equal
share of the used vectors.

Figure 11
Graph showing the average sulfur atom anomalous signal per post-
refinement cycle number for various treatments. 7613 orientations were
derived from indexing and initial refinement using the best geometry file
(2000 images and their indexing solutions). Crystal orientations were
used to re-predict peak locations using the initial geometry integrating
at the exact location (blue), or with a three-pixel local maximum search
(magenta), or using the best geometry file and integrating at the exact
location (black).



tion). However, in the vast majority of experiments the

detector panels lie on a largely flat surface.

Assuming correct unit-cell information, one can evaluate

the success of the detector geometry refinement by (a) starting

from different detector distances and seeing its ability to

converge on a solution from different initial positions, (b)

comparing the similarity of two half-data sets and their

convergence and (c) checking that the spread in pixel or

reciprocal offsets has reduced from indexing solutions. If the

unit-cell dimensions are inflated or contracted from their true

value, this may cause the detector to become concave or

convex to try to correct for the error in the Ewald sphere

curvature. Hence, the unit-cell dimensions may need correc-

tion beforehand.

This algorithm provides a method to quickly uncover

previously unnoticed tilts in the detector using a very small

number of images. This is achieved by taking the set of

observations and dividing the target function into parts which

are sensitive to different types of motions of the detector.

These two parts of the target function can converge inde-

pendently. Using indexing solutions, tilts revealed across the

entire detector are unbiased because the hierarchy of the

detector is not considered, and each panel is refined inde-

pendently. The effect of geometry refinement has a positive

effect on indexing solutions and anomalous peak heights. The

code has been released for use in cppxfel (Ginn et al., 2016a).
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