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A two-block X-ray Fresnel zone plate system forms two-beams – a plane wave

and a spherical wave – which interfere at the focal distance of the virtual source

of the spherical wave. An object placed in the path of the plane wave forms an

object wave and the spherical wave is the reference wave. The recorded intensity

distribution is the Fourier transform hologram of the object. Analytical and

numerical calculations show the possibilities of this scheme to record the

hologram and reconstruct the object image. Examples of recording holograms of

a one-dimensional cosine-like grating and a two-dimensional grid object as well

as reconstruction of the images are considered.

1. Introduction

X-ray holography is one of the methods of investigating

objects. In the hard X-ray region, various holographic schemes

have been presented, such as X-ray in-line holography

(Snigirev et al., 1995; Nugent et al., 1996; Paganin, 2006, and

references therein), X-ray Gabor holography and Fourier

transform holography (FTH) (McNulty et al., 1992; Leiten-

berger & Snigirev, 2001; Watanabe et al., 2003; Iwamoto &

Yagi, 2011). Watanabe et al. (2004) suggested an X-ray two-

zone-plates FTH scheme. X-ray dynamical diffraction holo-

graphy schemes have also been presented: for example, X-ray

interferometric holography (including the Momose method)

(Egiazaryan & Bezirganyan, 1980; Momose, 1995; Egiazaryan,

1998; Egiazaryan et al., 1998; Balyan, 2016a,b), X-ray Fraun-

hofer dynamical diffraction holography (Balyan, 2013) and

X-ray Fourier transform dynamical diffraction holography

(Balyan, 2015). Using hard X-ray holographic methods,

the reconstruction can be performed by visible light or

numerical (mathematical) methods.

Different schemes of X-ray phase contrast imaging with

optical magnification based on two-block Fresnel zone plate

(FZP) interferometers have been suggested (Wilhein et al.,

2001; Koyama et al., 2004, 2006; Watanabe et al., 2009). These

interferometers operate in phase-front division mode. As a

result, strong coherence requirements must be fulfilled. A

three-plate FZP interferometer (Haroutunyan, 2015, 2016),

operating in amplitude-division mode, has been suggested as

well. In Fig. 1 a scheme of the interferometer is shown. The

first block of the interferometer operates as a splitter, the

second and third as mirror and analyzer, respectively.

‘Unwanted’ propagation channels arise due to the existence

of multiple diffraction orders of the FZP. Suppression of the

influences of those channels on the registered interference

pattern is achieved by two knives located on the first and third

FZPs and sufficient analyzer–image distance f . The test phase

object (object from light elements) is located across the object
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wave, before it is focused in the second inter-block space, and

the �/2 phase shifter is located across the reference wave, after

the second FZP (see Fig. 1). The phase contrast image is

formed according to the thin lens formula.

In the present paper, based on the mentioned FZP inter-

ferometer, an X-ray FTH method is proposed and investigated

both theoretically and by numerical simulation. The capabil-

ities of the scheme for hologram recording and object image

reconstruction are considered as well. In the case of a single

zone plate it is known that the primary beam must be stopped

(McNulty et al., 1992; Leitenberger & Snigirev, 2001), which

means a loss of information from the central parts of the

hologram. McNulty et al. (1992) mentioned ‘The lower spatial

frequencies, corresponding to the larger scale features of the

test patterns, are somewhat degraded because the beam stop

blocked the central region of the hologram where the low

frequencies are encoded.’ This difficulty, as also noted by

Watanabe et al. (2004), is avoided using a two-zone-plate

system. In contrast to the scheme suggested by Watanabe et al.

(2004), the scheme considered here operates in amplitude-

division mode for low-spatial-frequency structures. The

corresponding hologram is recorded by low coherency

requirements similar to the triple-Laue X-ray interferometer

(Bonse & Hart, 1965).

As we know, for X-ray FTH schemes (see, for example,

McNulty et al., 1992; Leitenberger & Snigirev, 2001) where

zone plates are used the detailed theory is not given. In our

work the theory is given in detailed form. In particular, the

necessary object–reference source distance, when the halo

does not overlap with the real and conjugate images, is esti-

mated [these estimates show that for the parameters of the

scheme used by McNulty et al. (1992) the halo will overlap

with the real and conjugate images]. In addition, in our work

an expression for the reconstructed amplitude transmission

coefficient has been obtained, where the background correc-

tions are taken into account, and the quadratic phase of the

specimen is also taken into account, which cannot be ignored

by an object of size �100 mm. The resolution is estimated

based not only on the reference source size (McNulty et al.,

1992; Leitenberger & Snigirev, 2001) but also based on the

finite size of the hologram. The maximum of these two reso-

lutions is the real resolution in an experiment.

The coherence requirements have been estimated as well.

Based on estimates of the coherency requirements it should

be mentioned that X-ray synchrotron sources or X-ray free-

electron lasers are needed for high-resolution imaging.

2. X-ray FZP interferometric FTH

Instead of the scheme given in Fig. 1 we consider the scheme

shown in Fig. 2. The third plate of the interferometer is

replaced by a photo plate or digital detector, which detects the

interference intensity of the reference and object waves. The

object is now placed at the same distance from the second

plate as the focus point after the second plate. The wave falling

onto the object may be considered as a plane wave and the

wave emerging from the focus spot after the second plate may

be considered as a spherical wave. Thus the detector detects

the interference between the spherical wave and the wave that

has passed through the object. This scheme is one of the

analogues of the FTH scheme, known in optics (Hariharan,

2002). Note that in the scheme of Fig. 2 the reference wave is

the object wave of Fig. 1, and vice versa.

Consider the conditions under which the wave propagation

channels, other than the object and reference waves, do not

disturb the intensity distribution of the hologram. Denote by

(m, n) the channel with X-ray diffraction in m and n orders on

the first and second blocks of the interferometer accordingly.

Neglecting third-order and higher diffractions, nine such

propagation channels will remain. Two of them, (0,+1) and

(+1,+1), represent the reference and object waves, respec-

tively. Consider the influence of the remaining seven channels

on the registered hologram. It is easy to show in the frame-

work of geometrical optics that six of the remaining seven

‘undesirable’ channels do not cross either the test object or the

hologram, if the condition d � R/3 is satisfied, where d is the

distance of the knife edge from the optical axes and R is the

radius of the FZP (see Fig. 2). The (+1,0) channel can only

intersect with the upper part of the test object and the rays

refracted from it at large angles can fall on the hologram. If

the stronger condition d � R/2 is satisfied, the channel passes

above the test object and the hologram is not distorted.

The amplitude of the wave in the detection plane is

Ehol ¼ Eref þ Eobj; ð1Þ

and the corresponding intensity is
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Figure 2
Scheme of FTH using a two-block FZP interferometer.

Figure 1
Experimental set-up for phase contrast imaging using a three-block FZP
interferometer. B1, B2 and B3 are the blocks of the interferometer, K1
and K2 are knives, P is the phase shifter, O is the phase object and IM is
phase contrast image.



Ihol ¼ Ehol

�� ��2
¼ Eref

�� ��2þErefE
�
obj þ E�refEobj þ Eobj

�� ��2

¼
X4

i¼ 1

Ihol i: ð2Þ

Here, Eref is the reference wave and Eobj is the object wave.

The detected intensity (2) is the hologram of the object under

investigation.

3. Intensity distribution of the hologram and image
reconstruction

Let us consider the expressions (1) and (2) analytically. A

detailed scheme and coordinate systems are shown in Fig. 3.

The incident wave on the object entrance surface may be

considered as a plane wave with unit amplitude. Thus, the

object wave in the detection plane may be written in the form

Eobj ¼ � i
k

2�F

Za

�a

Za

�a

t ðX 0; y 0Þ

� exp
ik

2F
ðX � X 0Þ

2
þ ðy� y 0Þ

2
� �� �

dX 0 dy 0; ð3Þ

where t is the amplitude transmission coefficient of the object,

2a is the size of the object, and the integration is performed

over the exit surface of the object; k is the wavenumber. In (3)

the Huygens–Fresnel principle is applied (Paganin, 2006). For

the reference wave in parabolic approximation one may write

Eref ’
tr

r

� �1=2

exp ik X sin � þ
X2cos2�

2�0

þ
y2

2�0

	 
� �
; ð4Þ

where r is the intensity reflection coefficient and tr is the

intensity transmission coefficient of the FZP, �0 is the distance

between the focus point after the second plate and the

X = y = 0 point of the detection plane. Since F = �0 cos �, and

� � ðRþ dÞ=2F � R=2F � 10�4 is sufficiently small, then the

approximations cos � � 1, �0 � F are valid. After these

approximations, instead of equation (4) we have

Eref ’
tr

r

� �1=2

exp ik X sin � þ
X2

2F
þ

y2

2F

	 
� �
: ð5Þ

Let us consider the third term on the right-hand side of (2),

Ihol3ðp; qÞ ¼ �
ika2

2�F

tr

r

� �1=2
Z1

�1

Z1

�1

t ðaX 00; ay 00Þ

� exp
ika2

2F
X 00

2
þ y 00

2
� �� �

ð6Þ

� exp �ip X 00 þ
F sin �

a

	 

� iqy 00

� �
dX 00 dy 00;

where the following dimensionless coordinates are entered,

X1 ¼ X=a; y1 ¼ y=a; X 00 ¼ X 0=a; y 00 ¼ y 0=a;

p ¼ ka2X1=F; q ¼ ka2y1=F:

If ka2=F 	 1, the first term in the exponential under the

integral sign of (6) may be neglected and (6) represents the

Fourier transform of the amplitude transmission coefficient of

the object. In the general case these terms must be taken into

account. One may reconstruct the amplitude transmission

coefficient taking the inverse Fourier transform of (6),

Erec3ðu; vÞ ¼

Zka2=F

�ka2=F

Zka2=F

�ka2=F

Ihol3ðp; qÞ expðipu þ iqvÞ dp dq: ð7Þ

Here, u and v are dimensionless parameters. The connection

between them and the X and y coordinates will be established

below. Integrations over p; q in the limits ð�1;1Þ give

Erec3ðu; vÞ ¼ � i
2�ka2

F

tr

r

� �1=2

t ðau� F sin �; avÞ

� exp
ika2

2F
ðu� F sin �=aÞ

2
þ v2

� �� �
: ð8Þ

In the same way, for the reconstruction of the second term in

equation (2) we have

Erec2ðu; vÞ ¼ i
2�ka2

F

tr

r

� �1=2

t�ð�au� F sin �;�avÞ

� exp
ika2

2F
ðuþ F sin �=aÞ

2
þ v2

� �� �
: ð9Þ

As follows from the expression of t in equation (8), X =

au� F sin �, y = av. Since t is localized in the limits

�a 
 X 
 a, �a 
 y 
 a, then in equation (8) the image is

localized in the limits

F sin �

a
� 1 
 u 


F sin �

a
þ 1; �1 
 v 
 1; ð10Þ

and the conjugate image in the limits

�
F sin �

a
� 1 
 u 
 �

F sin �

a
þ 1; �1 
 v 
 1: ð11Þ
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Figure 3
Coordinate system and definitions used in the FTH scheme.



The regions (10) and (11) are separated along the OX axes

since F sin� > a, which is seen from Fig. 3, where O is the origin

of the coordinate system shown in Fig. 3.

For the reconstructed field of the first term in equation (2)

we have

Erec1ðu; vÞ ¼
tr

r

Zka2=F

�ka2=F

Zka2=F

�ka2=F

expðipuþ iqvÞ dp dq

¼ 4
tr

r

sinðka2u=FÞ

u

sinðka2v=FÞ

v
: ð12Þ

Here the finite limits of integration are taken into account. As

can be seen from (12), Erec1 along OX is localized in the region

j�uj � �F=ka2 � �=ka� � 10�3. This estimation shows that

this region and images are strongly separated.

For Erec4 one finds

Erec4 ¼
k2a4

F2

Z1

�1

Z1

�1

t ðaX 0; ay 0Þ t�
�
aðX 0 � uÞ; aðy 0 � vÞ

�
ð13Þ

� exp
ika2

2F
X 0

2
� ðX 0 � uÞ

2
þ y 0

2
� ðy 0 � vÞ

2
h i� �

� dX 0 dy 0;

if

u 2 ½�2; 2�; ð14Þ

and Erec4 = 0 otherwise. Thus, Erec4 forms a halo around the

centre of the reconstructed field. As can be seen from (10),

(11) and (14), the halo does not intersect with the images when

a 
 F sin �=3, which is equivalent to the condition

d � R=2; ð15Þ

since a = ðR� dÞ=2 and F sin � ’ F� = a + d. It should be

mentioned that the condition (15) must be strongly satisfied

when the amplitude transmission coefficient is determined,

but it may not be strongly satisfied if an object image is

reconstructed.

4. Determination of the amplitude transmission
coefficient

The reconstructed field may be written as

Erec ¼ Erec1 þ Erec2 þ Erec3 þ Erec4: ð16Þ

If the condition (15) is fulfilled, in the region of the image

Erecðu; vÞ � Erec3ðu; vÞ. Using the hologram, one may calculate

Erecðu; vÞ and, in the region of the image,

t ðau� F sin �; avÞ ¼ i
F

2�ka2

r

tr

	 
1=2

� exp �
ika2

2F
ðu� F sin �=aÞ

2
þ v2

� �� �

� Erec3ðu; vÞ

’ i
F

2�ka2

r

tr

	 
1=2

ð17Þ

� exp �
ika2

2F
ðu� F sin �=aÞ2 þ v2
� �� �

� Erecðu; vÞ:

For each value of ðu; vÞ taken in the region (10) the corre-

sponding coordinates of the object can be found as X =

au� F sin �, y = av, and for these values using the known

Erecðu; vÞ the amplitude transmission coefficient t X; yð Þ may

be found according to (17).

5. Resolution

The resolution of the scheme is determined by three factors:

the size of the reference source, the finite sizes of the hologram

and the resolution of the detector (McNulty et al., 1992;

Leitenberger & Snigirev, 2001). As has been mentioned by

Leitenberger & Snigirev (2001), ‘a hologram recording using a

lower resolution detector does not change the achievable image

resolution’. The fact that the resolution in FTH is independent

of the resolution of the detector has been mentioned by

Watanabe et al. (2004) as well. This fact is also known in optics

(Stroke et al., 1965). So the maximum of the reference source

size and the resolution determined by the finite sizes of the

hologram is the resolution of the scheme. The size of the

reference source is the size of the focus spot of the FZP, which

is equal to the size of the outermost Fresnel zone. This type of

resolution has been considered in detail (McNulty et al., 1992;

Leitenberger & Snigirev, 2001).

Consider the resolution, determined by the finite sizes of

the hologram. The object may have a continuous distribution

of matter or may consist of localized points. Let us first

determine the resolution of the scheme for the case of a

continuous amplitude transmission coefficient. Let us turn to

the formulae of the reconstruction (6)–(9). The integrations

over p; q, if one takes the limits ð�1;1Þ, give the �-functions

Z1

�1

Z1

�1

exp �ip X 00 þ
F sin �

a
� u

	 

� iqðy 00 � vÞ

� �
dp dq

¼ ð2�Þ2 � X 00 þ
F sin �

a
� u

	 

�ðy 00 � vÞ: ð18Þ

For finite size holograms in the formulas of reconstruction (6)–

(9) we must take into account the finite integration limits when

integrating over ðp; qÞ. As a result, instead of �-functions one

finds
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Zka2=F

�ka2=F

Zka2=F

�ka2=F

exp �ip X 00 þ
F sin �

a
� u

	 

� iqðy 00 � vÞ

� �
dp dq

¼
2 sin ka2

F X 00 þ F sin �
a � u


 �
X 00 þ F sin �

a � u

 � 2 sin ka2

F ðy
00 � vÞ

ðy 00 � vÞ
: ð19Þ

In dimensional coordinates this gives the effective integration

region about 2�F=ka. In dimensional coordinates the function

t ðX; yÞ around the central point ðX0; y0Þ = ðau� F sin �; avÞ of

equation (19) may be approximated as t ðX; yÞ = t ðX0; y0Þ +

tXðX0; y0Þ�X + tyðX0; y0Þ�y. For resolving the object the

variation t ðX; yÞ � t ðX0; y0Þ = tXðX0; y0Þ�X + tyðX0; y0Þ�y of

the amplitude transmission coefficient when �Xj j = �y
�� �� =

�F=ka must be less than the average value of the modulus of t,

i.e. jtXðX0; y0Þj�F=ka	 j �tt j, jtyðX0; y0Þj�F=ka	 j �tt j. This

means that continuous amplitude transmission coefficients

may be reconstructed which are almost constant in the regions

with size �F=ka in both directions X and y.

If the object contains localized inhomogeneities, two inho-

mogeneities (points) that are separated by the distances

�F=ka in both X and y directions may be resolved.

So, the resolution determined by the finite sizes of the

hologram for both directions in dimensional coordinates is

about

�F=ka ¼ R2=2aN ¼ 4R=2N ¼ 4�RN; ð20Þ

where �RN = R=2N is the size of the outermost zone. In (20),

for definiteness, d = R/2 (a = R/4) is taken.

6. Coherency requirements

The spatial and temporal coherency requirements of the

incident radiation are determined by the scattering angle of

the object wave on the object. The trajectories of the object

and reference wave for both small and large scattering angles

are shown in Fig. 4. As can be seen from Fig. 4, for small

scattering angles the interferometer operates in amplitude-

division mode with an equal path of trajectories in both

channels of propagation. As a result the scheme works under

low spatial and temporal coherency requirements of incident

radiation. For large scattering angles the interferometer does

not work in amplitude-division mode. The trajectories of the

rays, coming to the same point of the hologram, are separated

on the entrance surface of the interferometer. The maximal

separation in the transverse direction is �xm = �ym = 2a, and

maximal path difference is �lm ’ 2R(R � d)/F. The long-

itudinal (temporal) coherence length lL is connected to the

quasimonochromaticity of the beam, lL = �2/��. Here, �� is

the range of wavelengths in the incident beam. The quasi-

monochromaticity does not disturb the intensity distribution

of the hologram when the requirement lL � �lm is satisfied.

According to the Van Cittert–Zernike theorem (Born & Wolf,

2002) the spatial (transverse) coherence length lT = L�/us,

where us is the size of the source and L is the source-to-system

distance. lT is connected to the size of the source. The size of

the source does not disturb the intensity distribution of the

hologram, when the condition lT� 2a is fulfilled. In particular,

taking d = R/2 [see equation (15)], one obtains the following

conditions of coherency: lL � R2/F = �N and lT � R/2, where

N is the number of zones.

Large-scale features of the object under investigation

correspond to low spatial Fourier harmonics and low scat-

tering angles of the object wave. In this case the hologram may

be recorded under low coherency requirements. Small-scale

features of the object correspond to high spatial Fourier

harmonics and large scattering angles of the object wave.

Accordingly the coherency requirements increase up to lL for

temporal and lT for spatial coherences.

7. Examples

Consider two examples of hologram recording and recon-

struction.

Example (1). Consider the amplitude transmission coeffi-

cient t ðXÞ of a one-dimensional cosine grating, which is given

by the expression

t ðXÞ ¼ cos2 �X=�; ð21Þ

where � = 4 mm is taken. The case where the radiation

wavelength � = 0.1 nm, FZP focal length F = 1 m, FZP radius

R = 195 mm, outermost Fresnel zone size = 0.25 mm, a = 0.25R

(d = R/2), � = 1.46� 10�4 and Fsin� = 0.75R is considered. The

resolution due to the finite size of the reference source is

0.25 mm and according to (20) the resolution determined by

the finite size of the hologram is 1 mm. The resulting resolution

will be 1 mm. The image and conjugate image are located in

the limits 2 
 u 
 4 and �4 
 u 
 �2, respectively; the halo

and primary reconstructed field are located in the limits

�2 
 u 
 2. In Fig. 5 the corresponding hologram intensity

distribution is presented. The calculations are made using

equation (2) taking into account the finite limits of the holo-

gram. In Fig. 6 the real and imaginary parts of the recon-

structed amplitude transmission coefficient are shown. The

reconstructed image is disturbed by the background, formed

due to the reconstructed reference wave amplitude. This

background is sufficiently high, since the amplitude of the

reference wave is more than two times larger compared with
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Figure 4
Trajectories of object and reference waves interfering at the same point of
the hologram. A ray of the object wave falling on the object is indicated
by the solid line, and that scattered on the object at low angles and the
reference wave rays are indicated by dashed lines. The dotted lines
indicate the rays related to the case of large angle scattering.



the amplitude of the object wave. This background may be

taken into account using the formulae (12) and (17). Formula

(17) may be rewritten as

t ðau� F sin �; avÞ ’ i
F

2�ka2

r

tr

	 
1=2

� exp
n
�

ika2

2F
ðu� F sin �=aÞ

2
þ v2

� �o

�
�
Erecðu; vÞ � Erec1ðu; vÞ

�
: ð22Þ

The reconstructed amplitude transmission coefficient, taking

into account the background correction, is shown in Fig. 7. It

can be seen that in the middle part of the reconstructed image

the reconstructed values are close to the values of the object

amplitude transmission coefficient. At the edges the resolution

is low. Erecðu; vÞ is calculated using (16), in which for the first

three terms the finite size of the hologram is taken into

account, and for the fourth term the formula (13) is used for

simplicity.

Example (2). The numerical simulation of the hologram of

the two-dimensional amplitude object (see Fig. 8), as well as

further image reconstruction, was performed (Fig. 9). The

following values of the main experimental parameters were

used in the numerical calculations: � = 0.1 nm, F = 1 m, R =

275.7 mm, FZP outermost zone width = 181.5 nm, d = 43.1 mm,

half-width of rectangle test object a = 78.6 mm. As can be seen

from a comparison of Figs. 8(a) and 9, the reconstructed image

matches well with the tested object. The authors consider that

the noise at the bottom of the reconstructed image, as well as

the radial pattern in its lower half, are caused by the failure of

above-mentioned condition d � R=3, required for blocking of

‘unwanted’ channels of the wave propagation. As a result, part

of the propagation channel (+1,0), passing through the test

object, falls on the hologram. The additional numerical

simulations, performed for different values of d, show the

vanishing of the mentioned imperfections of reconstruction at

d = R=3 and higher. The value of d in the case of Fig. 9 was

chosen as d = 0.156R, with the aim to increase the size of the

tested object as much as possible.
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Figure 6
(a) Real and (b) imaginary parts of the reconstructed amplitude
transmission coefficient of the cosine grating without background
correction.

Figure 7
(a) Real and (b) imaginary parts of the reconstructed amplitude
transmission coefficient of the cosine grating taking into account
background correction.

Figure 5
Two-block FZP FTH hologram of a one-dimensional cosine grating.



8. Summary

In this paper an X-ray FTH scheme based on a two-block FZP

interferometric system operating in amplitude-division mode

is suggested and theoretically and numerically considered. In

the case of recording the low-spatial-frequency structures of

the object the interferometer operates in amplitude-division

mode and does not impose high requirements on the coher-

ency of the initial radiation. The capability of the scheme

to reconstruct the amplitude transmission coefficient of the

amplitude and phase objects is shown. The resolution and

coherence requirements of the scheme are estimated. Exam-

ples of reconstruction of the amplitude transmission coeffi-

cient of a cosine grating and a two-dimensional object image

are considered. This scheme may be part of an X-ray micro-

scope, and may be realised using both synchrotron sources of

X-ray radiation and X-ray free-electron lasers.
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Figure 8
(a) Two-dimensional amplitude object and (b) numerically simulated
hologram.

Figure 9
Reconstructed two-dimensional object image from the simulated
hologram.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5163&bbid=BB26

