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X-ray mirrors with high focusing performances are commonly used in different

sectors of science, such as X-ray astronomy, medical imaging and synchrotron/

free-electron laser beamlines. While deformations of the mirror profile may

cause degradation of the focus sharpness, a deliberate deformation of the mirror

can be made to endow the focus with a desired size and distribution, via piezo

actuators. The resulting profile can be characterized with suitable metrology

tools and correlated with the expected optical quality via a wavefront

propagation code or, sometimes, predicted using geometric optics. In the latter

case and for the special class of profile deformations with monotonically

increasing derivative, i.e. concave upwards, the point spread function (PSF) can

even be predicted analytically. Moreover, under these assumptions, the relation

can also be reversed: from the desired PSF the required profile deformation can

be computed analytically, avoiding the use of trial-and-error search codes.

However, the computation has been so far limited to geometric optics, which

entailed some limitations: for example, mirror diffraction effects and the size of

the coherent X-ray source were not considered. In this paper, the beam-shaping

formalism in the framework of physical optics is reviewed, in the limit of small

light wavelengths and in the case of Gaussian intensity wavefronts. Some

examples of shaped profiles are also shown, aiming at turning a Gaussian

intensity distribution into a top-hat one, and checks of the shaping performances

computing the at-wavelength PSF by means of the WISE code are made.

1. Introduction

A great effort has been deployed in recent years to manu-

facture X-ray mirrors with high resolving power, both in the

domain of X-ray astronomy and on-ground facilities such as

synchrotrons and free-electron lasers (FELs). The resolving

power is the size of the focal spot, usually expressed in terms

of point spread function (PSF). The shape of the PSF is the

combination of the intrinsic aperture diffraction and of the

mirror’s fabrication defects, which in turn include geometric

deformations and surface finishing imperfections.

The angular resolution in astronomical X-ray telescopes

(VanSpeybroeck & Chase, 1972), i.e. the ability to separate

individual sources in crowded fields, currently ranges from

0.5 arcsec for the Chandra X-ray Observatory (Weisskopf,

2012) to 16 arcsec for eROSITA (Burwitz et al., 2013; to be

launched in 2018). The different value stems from the different

manufacturing technique, the direct figuring/polishing of thick

mirrors for Chandra and the nickel electroforming of thin

mirror shells for eROSITA. An optical system design based on

thin mirror shells is, in particular, suitable for obtaining large

collection areas because it enables a dense nesting of a

number of shells, which makes it possible to detect distant and
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faint X-ray sources. Nonetheless, thin mirror shells are more

subject to deformations, and this is the reason why a higher

nesting density is always obtained at the expense of the

focusing accuracy, which remains – as of today – limited by

profile and surface defects.

Optical systems for terrestrial X-ray sources typically focus,

collimate and deflect intense X-ray beams; therefore, these

mirrors do not require a large effective area. Nesting is not

required either, so the mirrors in the optical setup can be thick

in order to maximize their mechanical stiffness. Hence, efforts

can be made aiming at the best possible surface finishing and

to achieve a mirror profile as close as possible to the nominal

one: e.g. an ellipsoid or a K–B system (Wolter, 1952; Kirkpa-

trick & Baez, 1948). The achieved profile accuracy can be so

high that the PSF becomes limited by the deformation induced

by the supporting system or the temperature instability, and

therefore the mirror shape has to be actively corrected at the

operation time. This can be done by equipping the mirror with

a system of benders (Raimondi et al., 2014) for overall

curvature correction or bimorph actuators to achieve the

correction over shorter spatial scales (Signorato et al., 1998).

In the best performing cases, with a focal spot of a few

nanometers, these optics are nowadays approaching the

diffraction limit in soft X-rays (Idir et al., 2010). In practice,

there are practical limitations to the corrections that can be

operated via actuators, such as the maximum strain they can

exert on the mirrors, the difficulty modeling the surface at

junctions between the actuators, and the realistic determina-

tion of the voltages to be applied (Vannoni et al., 2015).

However, for some applications the focused beam’s

maximum sharpness is not required. Rather, a deliberate

deformation can be imparted to the mirror longitudinal profile

in order to re-distribute the power intercepted by the mirror

and endow the PSF with a given profile. Beam-shaping

capabilities are possessed, for example, at the EIS-TIMEX

beamline of FERMI (Svetina et al., 2012), where an initially

Gaussian intensity distribution is turned into a top-hat PSF on

the focal plane. The mirror shape was, however, found by a

trial-and-error approach and the search will need to be iter-

ated every time the required PSF profile is changed. In

contrast, an analytical tool able to return the mirror bending

for any required PSF would be much more effective and easy

to implement.

While the problem of computing the PSF generated by a

perturbed mirror profile is widely studied, e.g. using dedicated

ray-tracing routines, the inverse problem is much more deli-

cate to treat. This point is illustrated in Fig. 1: if znðxÞ is the

mirror profile that exactly focuses the incident beam (e.g. an

ellipse for terrestrial sources, a parabola for an infinitely

distant source), we can alter this profile adding a small

perturbation zeðxÞ aiming at changing the intensity distribu-

tion throughout the PSF. If geometric optics can be used, the

PSF can be computed from the perturbed profile zmðxÞ =

znðxÞ + zeðxÞ, and it is only a function of the incidence angles

distribution along x. However, if the slopes are small enough,

the incidence angle variation can be approximated with z0nðxÞ +

z0eðxÞ. Since z0n returns a perfect focus by hypothesis, the PSF

should be a function of the sole z0eðxÞ, i.e. of the ‘profile error’

zeðxÞ. A similar argument based on physical optics can be used

to reach the same conclusion (Raimondi & Spiga, 2015).

Clearly, there is no unique mirror zeðxÞ that returns an

assigned PSF; rather, infinite possible profile errors can be

associated with a specified PSF form.

Fortunately, for the present scope of beam-shaping, we only

need to derive a single zeðxÞ function to yield the selected PSF.

In particular, we can select the mirror profile with the simplest

properties, e.g. without concavity changes. Based on this

hypothesis and assuming the geometric optics to be comple-

tely applicable, we have elaborated a one-dimensional form-

alism (Spiga et al., 2013a) to compute a profile deformation

from any desired PSF and an arbitrary intensity distribution

incident on the mirror. Clearly, this approach always returns

continuous deformations and might not always be compatible

with the bending/bimorph system available for the optical

system in use, typically consisting of discrete elements. Other

authors (Laundy et al., 2015; Sutter et al., 2016) have elabo-

rated methods to account for the finite extent of actuators and

reproduce a top-hat PSF as much as possible. However, in the

remainder of this paper we do not consider this limitation, but

approach the solution to the beam-shaping problem assuming

a technology enabling the application of a continuous strain

distribution along the mirror profile to become available soon.

In practice, the present treatment applies to a very large array

of very small actuators such as the one realised by Reid et

al. (2014).

Our computation based on geometric optics did not account

for the spatial coherence of the incoming wavefront, therefore

neglecting the aperture diffraction effects, and also those of

the source dimension. In this paper, we re-derive our previous

results in the framework of the more general treatment of

physical optics (x2), in the frequent case of small � values and

for Gaussian intensity wavefronts, typical of FELs in the

fundamental propagation mode (Raimondi et al., 2013). This
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Figure 1
(a) The nominal longitudinal mirror profile znðxÞ focuses exactly the
incident beam to a focal point. (b) A deliberate deformation zeðxÞ is
superposed to znðxÞ in order to change the intensity distribution on the
focal plane. The longitudinal profile is now zm = zn + ze.



not only makes us understand to which approximation the

beam-shaping formulae are valid but also offers the oppor-

tunity to check the real beam-shaping performances

accounting for the coherence of the incident wavefront, which

automatically contains all the information regarding the

source profile. To this end, we make use of the one-dimen-

sional Fresnel diffraction formalism (Spiga & Raimondi, 2014;

Raimondi & Spiga, 2015) implemented in the WISE code

(Wavefront propagatIon Simulation codE). This is described in

x3 along with some computation examples.

2. PSF shaping with deformable mirrors under Gaussian
illumination

2.1. General PSF expression in far-field conditions

As stated in x1, we hereby assume the nominal mirror shape

zn to exactly focus the source into the origin of the reference

frame, and the perturbation imparted to the mirror profile still

be described by ze (Fig. 1). If the wavefront has uniform

amplitude, the PSF at the light wavelength � has the expres-

sion (Raimondi & Spiga, 2015) in the far-field approximation,

PSFð�Þ ¼
�R

L 2�

�����
ZþL=2

�L=2

exp �
2�i

�

� �
x��

� �

� exp �
2�i

�

� �
2ze�

� �
dx

�����
2

; ð1Þ

where � is the grazing incidence angle, � is the light wave-

length, � is the angular distance from the center of the ideal

focal spot, and �R ’ L� is the mirror aperture in the plane

normal to the beam direction. We assume L, the mirror length,

to be much smaller than the distance to the observation plane.

With respect to the expression in the original paper, we have

changed the notation replacing x by �x, because x now denotes

the coordinate over the mirror length rather than the entrance

pupil.

If the wavefront is nonuniform, i.e. characterized by a

variation in intensity with x, the PSF expression is easily

adapted,

PSFð�Þ ¼
�R

L�

�����
ZþL=2

�L=2

uðxÞ exp �
2�i

�

� �
2ze�

� �� �

� exp �
2�i

�

� �
x��

� �
dx

�����
2

; ð2Þ

where uðxÞ is a real function representing the electric field

amplitude at the mirror surface, and is supposed to be

normalized to 1 in intensity,

RþL=2

�L=2

uðxÞ2 dx ¼ 1; ð3Þ

having absorbed a constant mirror reflectivity into the uðxÞ

definition. The units of uðxÞ are those of length�1=2, and for this

reason L appears at the first power in equation (2). The

expression { . . . } in equation (2) is known as the complex pupil

function (CPF).

We now extend the integration range to ð�1;þ1Þ, setting

the uðxÞ value to zero outside the mirror length. Then we apply

the Wiener–Khintchine theorem to equation (2), and remove

the squared module,

PSFð�Þ ¼
�R

L�

Zþ1
�1

dh exp �
2�i

�

� �
h��

� �

�

Zþ1
�1

dx uðxÞ uðxþ hÞ exp
2�i

�

� �
2�zeðxþ hÞ

� �

� exp �
2�i

�

� �
2�zeðxÞ

� �
; ð4Þ

where the second integral is the autocorrelation function of

the CPF and h is the ‘lag’ between the amplitude profile uðxÞ

and its shifted copy uðxþ hÞ. Re-arranging the terms, we can

rewrite equation (4) in the form

PSFð�Þ ¼
�R

L�

Zþ1
�1

dh

Zþ1
�1

dx uðxÞ uðxþ hÞ

� exp
2�i

�

� �
�
	
2zeðxþ hÞ � 2zeðxÞ � h�


� �
: ð5Þ

We are not including in ze any roughness (i.e. fractal)

component, therefore the profile has a derivative everywhere

and we are allowed to write zeðxþ hÞ � zeðxÞ = h z0eðxþ thÞ,

with 0< t< 1. In this way, we obtain

PSFð�Þ ¼
�R

L�

Zþ1
�1

dh

Zþ1
�1

dx uðxÞ uðxþ hÞ

� exp
2�i

�

� �
h�
	
2z 0eðxþ thÞ � �


� �
: ð6Þ

2.2. The case of Gaussian beams at small k

We now limit ourselves to the case of a Gaussian anisotropic

beam, i.e.

uðxÞ ¼
2�2

�!2

� �1=4

exp �
�2

!2
x2

� �
; ð7Þ

where the normalization factor was chosen for u2ðxÞ to fulfill

equation (3), and !=
ffiffiffi
2
p

is the amplitude width r.m.s. at the

mirror location, measured in the plane transversal to the

propagation direction. The Gaussian beam propagation

theory shows that ! ’ �D=�!0, where !0=
ffiffiffi
2
p

is the source

width r.m.s. and D is the mirror–source distance (Raimondi et

al., 2013). Substituting the expression of uðxÞ into equation (6)

and exchanging the integration order, we obtain
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PSFð�Þ ¼
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where we have substituted �R = L�. We additionally assume

that for X-rays the wavelength is much smaller than the

coherence length of the surface, i.e. h=� � 1, and therefore

only a small interval of jhj ’ 0 contributes to the integral.

Hence, we can write z0eðxþ thÞ ’ z0eðxÞ. If we now set fx =

½2z0eðxÞ � ��=�, equation (8) reads

PSFð�Þ ¼
�2

�!

2

�

� �1=2 Zþ1
�1

dx exp �
�2

!2

� �
x2

� �

�

Zþ1
�1

dh exp �
�2

!2

� �
ðxþ hÞ

2
þ 2�i� fxh

� �
: ð9Þ

Changing the integration variable h! h� x in the second

integral, after some handling we remain with

PSFð�Þ ¼
�2
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and the integral in dh clearly equals !
ffiffiffi
�
p

=�, so we obtain

PSFð�Þ ¼
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In the case of a perfect mirror, z0eðxÞ = 0, fx = ��=� and

equation (11) yields
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�

ffiffiffi
2
p

�

Zþ1
�1

exp �
�2

!2
x2 � 2i

���

�
xþ

�

�
!�

� 
2
� �� �

dx;

ð12Þ

which returns, after some easy passages,
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As expected, the coherent propagation of a Gaussian wave-

front returned an image that reproduces the profile of the

source, i.e. with the same characteristic width !0=D = �=�!.

In general, the integral in equation (11) cannot be solved

analytically because fx depends on the functional form of z0eðxÞ.

2.3. Beam-shaping formulae in the geometric optic limit

By some manipulation, equation (11) can be put in the form

PSFð�Þ ¼
�

ffiffiffi
2
p

�

Zþ1
�1

exp �2
�2

!2
x2

� �

� exp � �!fx þ i
�

!
x

� 
2
� �

dx: ð14Þ

At sufficiently high energies we can assume !2�=� � �L, so

we can neglect the term i�x=! in the second exponent. We

remain with

PSFð�Þ ’
�� 0

Zþ1
�1

�

!

2

�

� �1=2

exp �2
�2

!2
x2

� �" #

�
D

!0
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�
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!2
0

� � 2z0eð Þ
2

� �� �
dx; ð15Þ

where we have made use of the relation !0=D = �=�!. The

second factor in the integral is simply the amplitude profile of

the source seen to a distance D and ‘distorted’ by the profile

perturbation. Equation (15) does no longer depend on �,

therefore the approximation we made is the passage to the

geometric optics. We also note that in the limit of a point

source !0 ! 0, the source profile becomes a Dirac delta

function, and equation (15) assumes the simpler form

PSFð�Þ �!
!0! 0

Zþ1
�1

u2
ðxÞ �ð� � 2z0eÞ dx; ð16Þ

which simply represents the re-distribution of the wavefront

intensity according to the function � = 2z0eðxÞ.

We now make use of the additional hypothesis, that z0e be an

increasing function of x. This means that the function mðxÞ =

2z0eðxÞ can be inverted, so we can change the integration

variable to m in equation (15),

PSFð�Þ ¼

ZmM

mm

u2ðxÞ

2z00eðxÞ

D

!0

ffiffiffi
�
p exp �

D2

!2
0

ð� �mÞ
2

� �� �
dm; ð17Þ

where m varies between the minimum mm = 2z0eð�L=2Þ and

the maximum value mM = 2z0eðþL=2Þ.

Finally, in the limit of a point-like source, the Gaussian term

in equation (17) becomes a delta and the result becomes

PSFð�Þ ¼
!0!0 u2ðxÞ

2z00eðxÞ

����
x¼m�1ð�Þ

; ð18Þ

for all values of � that correspond to some x via the equation

� ¼ mðxÞ ¼ 2z0eðxÞ; ð19Þ

which sets a one-to-one mapping between the location on the

mirror profile, x, and the angular coordinate of the PSF, �. This

is exactly the PSF expression we already derived (Spiga et al.,

photondiag2017 workshop

126 D. Spiga � X-ray beam-shaping via deformable mirrors J. Synchrotron Rad. (2018). 25, 123–130



2013a) via a purely geometric reasoning. This approach, based

on curvature detection, has been also extended to the intra-

focal configuration for mirror shape reconstruction under

X-ray illumination (Spiga et al., 2013b).

The monotonic trend of z0e clearly implies that z00e � 0 over

all the entire mirror length. At the locations where z00e = 0, the

PSF exhibits either cusps or Dirac delta-like peaks, depending

on whether z00e vanishes either at isolated points or in mirror

segments [see Spiga et al. (2013a) for further details]. In any

case, the PSF provided by equation (18) is normalized,

Z�M

�m

PSFð�Þ d� ¼

Z�M

�m

u2

2z00e
2 dz0e ¼

ZþL=2

�L=2

u2 dx ¼ 1: ð20Þ

Using equation (19), we can rewrite equation (18) as follows,

PSFð�Þ � 0ðxÞ ¼ u2
ðxÞ; ð21Þ

and the solution to this equation is

Z2z0e

�m

PSFð�Þ d� ¼

Zx

�L=2

u2ðtÞ dt: ð22Þ

The validity of equations (18) and (22) is not limited to the

case of Gaussian wavefronts. We can now replace any two

functional forms for PSF(�) and uðxÞ – non-negative and

fulfilling the normalization conditions (3) and (20) – into

equation (22) and solve it for z0eðxÞ. Doing this, problems may

arise whenever u2ðxÞ = 0 in one or more intervals of the mirror

profile, or should the PSF be zero in some region of the focal

plane (as in the example shown in Fig. 6). Fortunately, these

special cases can be managed easily: a detailed discussion on

these topics is reported by Spiga et al. (2013a).

We finally notice that the treatment exposed here is valid in

the limit that the distance to the observation plane is much

larger than L. Should this condition be violated, we can

account for the finite focal length correcting equations (18)

through (22) with a proper asymmetry factor. Once again, a

detailed discussion on this topic can be retrieved from Spiga et

al. (2013a).

3. Some computation examples

We now consider some examples of application of the beam-

shaping formulae reported in the previous section. We initially

consider the most frequently requested PSF shape, i.e. the top-

hat one,

PSFð�Þ ¼
n

1=w �w=2 < � < þ w=2;
0 elsewhere:

ð23Þ

Replacing now the expressions of u2ðxÞ [equation (7)] and of

the top-hat PSF into equation (22) and solving numerically for

various ! values, we obtain different ze profiles as shown in

Fig. 2(a), always aiming at the same top-hat PSF (Fig. 2b).

We may now want to check the effectiveness of the shaped

profiles using equation (1) implemented in the WISE code

(Raimondi & Spiga, 2015). In these simulations, we have

superimposed the perturbations displayed in Fig. 2(a) to an

elliptical mirror with a sagittal curvature radius R0 = 1165 mm,

a distance f = 40 m to the focal plane, and a distance D = 200 m

to the light source. The incidence angle is � = 1	. The PSFs are

computed at � = 30 Å in Fig. 3 and at � = 10 Å in Fig. 4. We

immediately note that the physical optics simulations deviate

from the targeted PSF because the edges are not abrupt, and

because there are diffraction fringes of variable amplitude and

frequency. The best approximation to the top-hat profile is

clearly obtained at higher energy with the broader beam (the

case ! = 2 mm in Fig. 4). This corresponds to our findings of

x2.3 that the geometric optics results are approached in the

limits of small � and !0. The smallest !0 values, corresponding

to the larger apertures of the beam on the mirror, cause the

lower departures from the geometric optics because the beam

is diffracted through a broader ‘slit’ (roughly 2! wide). The

contrary occurs at large values of � and !0, corresponding to a

diffraction through a small 2!. This is seen for example in

Fig. 5, where we displayed the PSF evolution for a hypothe-

tically fixed value ! = 1 mm and variable X-ray wavelength: in

the case of � = 30 Å, the top-hat profile is completely hidden

by the Gaussian profile of the source. Therefore, using the

physical optics method for PSF computation we do not even
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Figure 2
(a) Solid lines: the profile deformations required to turn Gaussian
amplitude distributions (dashed lines) of variable ! [equation (7)] into
the same top-hat PSF, shown in (b). We have adopted the values L =
400 mm, � = 1	 and equation (23) with w = 4 mrad; the Gaussian
amplitude graphs have arbitrary units.



need to convolve the PSF with the demagnified source profile

because all of the information regarding the source size is

already included in the width of the Gaussian wavefront at the

mirror. This is possible because the wavefront is assumed to

be highly spatially coherent, as typical of FELs and of most

beamlines in synchrotron facilities.

We have hitherto considered the case of a top-hat PSF, but

the method exposed in this paper equally works for any non-

negative and normalized PSF. For example, the PSF shown

in Fig. 6(b), made of three separated peaks, can be easily

reproduced – from Gaussian wavefronts at the mirror – by

imparting deformations ze as shown in Fig. 6(a): also in this

case, the profile shape was adapted to the actual width of the

Gaussian beam in order to always return the same PSF. In this

case, the solution of equation (22) may pose some problems

because the left-hand side becomes constant in correspon-

dence to the PSF gaps, and therefore infinite values of z0e are

possible. This issue can be managed adopting for z0e the limit

value at the closest edge of the intervals where the left-hand of

equation (22) is constant. This usually results in z0e disconti-

nuities, and consequently kinks in ze just like the ones visible

in Fig. 6(a).
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Figure 6
(a) Solid lines: the profile deformations required to turn Gaussian
amplitude distributions (dashed lines) of variable ! [equation (7)] into
the same PSF (b), consisting of three separated blocks. As we did in the
top-hat PSF simulations, we used the values L = 400 mm, � = 1	 and the
Gaussian amplitude graphs have arbitrary units. The full range of the
profiles is not shown in order to draw attention to the shaped center,
where the beam intensity is relevant: the omitted parts correspond to the
tails of the Gaussian and simply consist of straight (non-shaping)
segments. The arrows mark the profile kinks needed to make the gaps
in the PSF.

Figure 4
WISE simulation of PSFs for the profile perturbations shown in Fig. 2 at
� = 10 Å, at variable ! values. The characteristic width of the Gaussian
source !0=D equals 0.16, 0.32 and 0.64 mrad in the three respective cases.

Figure 5
WISE simulation of PSFs for the profile perturbation shown in Fig. 2 in
the case ! = 1 mm, at decreasing � values. The characteristic width of the
Gaussian source !0=D equals 0.96, 0.32 and 0.03 mrad for the three
wavelengths, respectively.

Figure 3
WISE simulation of PSFs for the profile perturbations shown in Fig. 2 at
� = 30 Å, at variable ! values. The characteristic width of the Gaussian
source !0=D equals 0.48, 0.96 and 1.92 mrad in the three respective cases.



Also with this profile deformation, we have verified the real

PSF using the WISE code at different X-ray wavelengths

(Figs. 7 and 8), limited to the case in which we expect to

minimize the diffractive effects, i.e. ! = 2 mm. In reality, the

diffraction features are even more apparent in this example

than in the top-hat profile considered beforehand, because the

PSF is more peaked toward the center. In the simulation

(Fig. 7) at 30 Å, the three peaks appear confused in one

because the angular diameter of the source is of the order of

1 mrad, close to the dimension of the gaps (2 mrad) expected

geometrically. At 10 Å, the structures of the individual peaks

have started emerging (Fig. 7), but are still partially hidden

by prominent diffraction fringes. At higher energies (Fig. 8),

there are still fringes but the overall PSF is now following

better the expected PSF profile, and the gaps between the

three blocks are now better visible. Finally, at � = 0.3 Å, the

geometric pattern is well reproduced in the simulation (Fig. 8),

even if some edge effects can still be seen. We can therefore

state that, for a PSF of this kind and a Gaussian beam of this

width, the performances of the deterministic beam-shaping

method are satisfactory at energies beyond 40 keV.

4. Conclusions

In this paper, we have provided a complete derivation of the

analytical formulae [equations (18) and (22)] for the deter-

ministic beam-shaping of coherent Gaussian wavefronts,

starting from the physical optics expressions of the PSF, in

the limit of small wavelengths and small X-ray sources. The

method is limited to continuous profile deformations and does

not account for the discreteness of the actuators that, in the

current piezo technology, can be used to actively correct the

shape of deformable mirrors. However, the analytical method

allows us to avoid complex search algorithms and returns, at

sufficiently high X-ray energies, a PSF very close to the

required one, as we could easily verify by means of the WISE

code. Therefore, this approach can effectively provide an

initial profile correction to be later refined by numerical

algorithms in order to account for the mentioned limitations

(finite dimensions of the source and of the piezoelectric

elements). Future work will be aimed at the search of more

general formulae to describe the beam-shaping formalism at

the wavelength in use, without the need to pass to the

geometric optics limit.
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Figure 7
WISE simulation of PSFs for the profile perturbation shown in Fig. 6(a) in
the case ! = 2 mm, at two different � values. The characteristic width of
the Gaussian source !0=D equals 0.48 and 0.16 mrad in the two respective
cases. Simulations at two smaller values of � have been included in Fig. 8
to avoid confusion in the figure.

Figure 8
WISE simulation of PSFs for the profile perturbation shown in Fig. 6(a) in
the case ! = 2 mm, at two � values smaller than the ones used in Fig. 7.
The characteristic width of the Gaussian source !0=D equals 0.08 and
0.005 mrad in the two respective cases.
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