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High-brightness X-ray free-electron lasers (FELs) are perceived as fourth-

generation light sources providing unprecedented capabilities for frontier

scientific researches in many fields. Thin crystals are important to generate

coherent seeds in the self-seeding configuration, provide precise spectral

measurements, and split X-ray FEL pulses, etc. In all of these applications a

high-intensity X-ray FEL pulse impinges on the thin crystal and deposits a

certain amount of heat load, potentially impairing the performance. In the

present paper, transient thermal stress wave and vibrational analyses as well as

transient thermal analysis are carried out to address the thermomechanical

issues for thin diamond crystals, especially under high-repetition-rate operation

of an X-ray FEL. The material properties at elevated temperatures are

considered. It is shown that, for a typical FEL pulse depositing tens of

microjoules energy over a spot of tens of micrometers in radius, the stress wave

emission is completed on the tens of nanoseconds scale. The amount of kinetic

energy converted from a FEL pulse can reach up to �10 nJ depending on the

layer thickness. Natural frequencies of a diamond plate are also computed. The

potential vibrational amplitude is estimated as a function of frequency. Due

to the decreasing heat conductivity with increasing temperature, a runaway

temperature rise is predicted for high repetition rates where the temperature

rises abruptly after ratcheting up to a point of trivial heat damping rate relative

to heat deposition rate.

1. Introduction

Free-electron lasers (FELs) can generate ultra-fast (tens of

to a few femtoseconds) coherent high-peak-power (tens to

hundreds of gigawatts) radiation pulses over a broad spectral

range (infrared to X-ray). The combination of high peak

brightness, angstrom wavelengths and femtosecond or sub-

femtosecond pulse durations provides the necessary ingre-

dients for pursuing atomic resolution imaging and ultrafast

science. Such X-ray FELs have been operating worldwide

(Emma et al., 2010; Ishikawa et al., 2012), impacting cutting-

edge scientific research. To characterize a high-peak-bright-

ness X-ray FEL, the radiation pulse bandwidth is an important

metric. Thus, a high-resolution single-shot spectrometer is

needed for its precise measurement. Thin crystals are widely

used for this purpose (Yabashi et al., 2006; Zhu et al., 2012;

Rehanek et al., 2017). Thin crystals can also serve as mono-

chromators to generate coherent seeds in the self-seeding

configuration to improve the X-ray FEL temporal coherence

(Geloni et al., 2011; Amann et al., 2012). In other applications,
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thin crystals are used as X-ray FEL pulse splitters (Zhu et al.,

2014). More applications of thin crystals in X-ray FELs are

given by Shvyd’ko et al. (2017).

When a high-peak-brightness X-ray FEL pulse impinges

on such thin crystals, a certain amount of heat is deposited.

Adverse effects, including mounting temperature and vibra-

tion, may emerge to affect the measurement precision that is

sensitive to lattice constant and motion steadiness. Diamond is

among the best heat-conducting and mechanically robust solid

materials and has been the last reserve for optics use against

such adverse effects. Yet there has not been a quantitative

or semi-quantitative study to show the magnitudes of the

mounting temperature and thermal deformation, not to

mention the stress wave dynamics, by considering the realistic

material properties of diamond at moderate and elevated

temperatures. The thermal expansion dynamics are of general

interest and have been studied by using pump–probe high-

energy-resolution X-ray diffraction (Stoupin et al., 2012;

Navirian et al., 2014). In the present paper, transient thermal

stress wave and vibrational analyses as well as transient

thermal analysis are carried out to address the potential

thermal and mechanical issues in a thin diamond crystal under

high-repetition-rate operation of an X-ray FEL. The material

properties of diamond, including the thermal expansion and

heat capacity (Reeber & Wang, 1996) and thermal conduc-

tivity (Wei et al., 1993), valid up to elevated temperatures of

2000–3000 K, are used for the semi-quantitative calculations.

The aim is to elucidate the energy transfer mechanisms at the

nanosecond level and above in a thin diamond layer and

provide insights to the design of thin diamond-based optical

devices that can perform under extreme photo-thermo-

mechanical loadings.

The rest of the paper is organized as follows. In x2, the

problems of transient thermal conduction and stress waves

due to instantaneous thermal expansion and steady-state

vibration are formulated based on continuum mechanics.

The governing equations and relevant material properties of

diamond are summarized. In x3, simulation results of a 40 mm-

thick plate with a 20 mm waist-size Gaussian beam (relevant to

monochromator applications) are presented and discussed,

under both single-pulse and multi-pulse inputs. Also, those of

a 10 mm-thick plate with 20 mm and 100 mm waist-size and of a

20 mm-thick plate with 20 mm waist-size (relevant to a spec-

trometer application) are presented and discussed to elucidate

the aspect ratio effects on the stress wave dynamics. It is

shown that, for a typical FEL pulse releasing tens of micro-

joules of energy over a spot of tens of micrometers in radius,

the stress wave emission is completed at the tens of nanose-

conds level. The amount of kinetic energy converted from a

FEL pulse can reach up to 10 nJ per pulse. A runaway increase

of temperature is observed after a certain number of pulses

when the temperature ratchets up to a certain point. It is

reached in fewer pulses under a higher repetition rate. This is

due to the decreasing thermal conductivity (more precisely,

the decreasing thermal diffusivity) with increasing tempera-

ture. When the temperature is beyond a critical point, an

increase of temperature would lower the diffusivity rather

than enhancing the thermal gradient, resulting in a tempera-

ture runaway. Finally, a modal analysis of a millimeter-size

plate of various thicknesses is carried out. The possible

vibrational amplitude is estimated according to the amount of

kinetic energy calculated from the transient simulation.

Conclusions are drawn in x4.

2. Problem formulation

2.1. Thermal stress wave emission and conduction

Consider an X-ray FEL pulse passing through a thin crystal

and depositing an amount of energy E during its passage, as

schematically shown in Fig. 1. The energy from the light is first

absorbed by electrons and then transferred to the lattice of the

crystal. It is assumed that these processes are undertaken on a

timescale of tens of picoseconds. Over that period the lattice

is thermalized, but only following this are stress waves of

directional motion emitted converting thermal deformation

energy into kinetic energy. We aim to analyze the processes of

stress wave emission, heat transfer and possible vibrational

excitation. A cylindrical coordinate system (r, �, z) is estab-

lished with the z-axis normal to the crystal surface. Only a

laser beam perpendicular to the crystal surface is considered.

The equation of motion for the crystal is given by

�
dv

dt
¼ r � r; ð1Þ

where � is the mass density, v ð¼ du=dtÞ is the velocity, u is the

displacement, r is the stress tensor and t is the time. Assuming

isotropic thermoelasticity, the constitutive law is given by

(Shorr, 2015)

r ¼ 2G """�
1

3
tr """ð Þ I

� �
þ 3Kb

1

3
tr """ð Þ � "T

� �
I; ð2Þ

where G is the modulus of rigidity, Kb is the bulk modulus,

""" ½¼ ð1=2Þðruþ rTuÞ� is the strain tensor, "T is the thermal

strain, I is the identity matrix, the superscript T indicates the

matrix transpose, and tr """ð Þ denotes the trace of """.
The equation of energy conservation is given by

d UT þ U"

� �
dt

¼ �r � ��rTð Þ þ r :rv; ð3Þ
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Figure 1
Schematic showing instantaneous heating and subsequent stress wave
emission and heat transfer upon laser energy deposition in a thin crystal
layer. The cylindrical coordinate system with axisymmetry is established.



where UT ð¼
R
�Cv dTÞ is the thermal energy density,

U" ½¼ ð1=2Þ� : ð"""� "TIÞ� is the elastic strain energy density

(Mura, 1987), � is the thermal conductivity and Cv is the

specific heat.

The initial displacement and velocity fields are both set

equal to zero: u0 = 0 and v0 = 0. The initial temperature field

is set at T0 = 300 K. Upon a laser pulse, the laser energy is

partially absorbed raising the temperature during its passage.

The laser beam is assumed to be Gaussian. It impinges

perpendicularly to the crystal surface, assumed so that the

problem can be reduced to be axisymmetric. The change of

thermal energy density as a function of r and z is given by

�UT r; zð Þ ¼
2I0

�a2L
exp �2r2=a2

� �
expð�z=LÞ; ð4Þ

where I0 is the laser pulse energy, a is the transverse waist-size

of the Gaussian beam, and L is the attenuation length. The

corresponding temperature increase is determined from the

relationship of UT with T, which is generally a non-linear

function.

The traction-free boundary condition, r � n = 0, is applied at

all boundaries at all times, where n is the unit outward normal

vector at a surface point. Meanwhile, the boundary condition

of zero normal heat flux, ��rTð Þ � n = 0, is applied at all

boundaries at all times.

The above initial-boundary value problem of axisymmetry

is numerically solved by applying a finite-volume method

(LeVeque, 2002; Versteeg & Malalasekera, 2007). Although

the above governing equations are given in the non-conser-

vative form, the corresponding conservative-form equations

are coded to solve the problem; there is virtually no difference,

since the mass density can be set constant, i.e. the mass

conservation equation is not involved, in the case of a solid

under low pressure. Briefly, the domain (in the cylindrical

reference frame) is discretized in a rectangular mesh of finite

volume. The nodes are assigned to the centers of the finite-

volume elements. The fluxes of momentum and energy at the

boundaries of the finite-volume elements are evaluated by

a finite-difference approximation based on nodal values of

displacement and energy (temperature). The conservation

laws are enforced with these fluxes in a local integral form. By

the finite-volume method, the conservation laws are ensured

between finite volumes, even though the time derivatives and

the fluxes are approximate. For the sake of brevity, the stan-

dard procedure of the method is not described in detail herein.

2.2. Modal analysis

Under high-repetition-rate laser pulses, the thin crystal may

be excited to vibrate at a non-trivial amplitude, which can be

detrimental to any optical component that requires steadiness.

The problem may become severe especially when the repeti-

tion rate becomes close to any of the resonant frequencies and

when the kinetic energy in the system, converted from the

laser heat load, cumulates. The plate model is applied to

calculate the resonant frequencies of the thin crystal. The

governing equations for the in-plane and the flexural modes

are given, respectively, by (Donaldson, 2006)

r � r þ �!2 u ¼ 0; ð5Þ

Dr2
r

2w ¼ 2�h!2w; ð6Þ

where D is the flexural rigidity, h is the thickness and ! is the

angular frequency. Here, all of �rr, �uu and w (the transverse

deflection, i.e. the z-component of displacement �uu) should

be treated as their amplitude in time harmonics. Only the in-

plane components of both displacement �uu and stress �rr are

effective in equation (5), and the out-of-plane component

in equation (6). The fully traction-free and the one-edge-

clamped boundary conditions will be considered. The above

problem is numerically solved by using the commercial finite-

element software ANSYS. By decoupling the whole problem

in the in-plane and flexural modes as described in equations

(5) and (6), those breathing modes corresponding to Lamb’s

waves with a wavelength comparable with the plate thickness

are neglected. For the cases of our interest, those resonant

frequencies are in the range of tens of millions of Hertz.

2.3. Materials properties

For diamond, to be analyzed below, the work of Reeber &

Wang (1996) is adopted to describe the thermal strain and

specific heat capacity. The thermal strain as a function of

temperature T is given by

"T ¼
X3

i¼ 1

Xi�i

exp �i=Tð Þ � 1
; ð7Þ

where �i and Xi are constants, given by �1 = 200 K, �2 = 880 K,

�3 = 2137.5 K, X1 = 0.4369 � 10�7 K�1, X2 = 15.7867 �

10�7 K�1, X3 = 42.5598 � 10�7 K�1. The linear thermal

expansion coefficient is defined as �T = @"T=@T. �T is about

10�6 K�1 at T = 300 K, but rises to �2 � 10�6 K�1 at T =

500 K, and to�4� 10�6 K�1 at T = 900 K, and keeps on rising

with higher temperature, according to equation (7). For

high-temperature calculation, equation (7) is necessary. The

thermal strain and linear thermal expansion coefficient are

plotted against temperature in Fig. 2.

The thermal energy density UT is obtained by numerically

integrating
R
�Cv dT with tabulated values of specific heat Cv

up to T = 3000 K (Reeber & Wang, 1996). Cv is small at low

temperatures. It rises rapidly at around room temperature up

to about 1000 K, but saturates then at elevated temperatures.

For T > 3000 K, Cv is set to be constant, equal to the value at

T = 3000 K. The thermal conductivity � = 2200 W m�1 K�1

for diamond at 300 K. However, it decreases rapidly with

increasing temperature. It drops to only about 100 W m�1 K�1

at T = 2000 K. The data of Wei et al. (1993) from 300 K to

2000 K are averaged and fit to a power law: � = 23.9 �

106 T �1.63 for simplicity. It is used in the following simulations.

The specific heat and heat conductivity are plotted against

temperature in Fig. 3.

Other materials constants are given as density � =

3.51 g cm�3, shear modulus G = 508 GPa and bulk modulus

Kb = 678 GPa. For the range of thermal and mechanical

loading under consideration, the density and moduli may be

reasonably assumed to be constant. These values of G and Kb
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correspond to Young’s modulus equal to 1220 GPa and the

Poisson ratio equal to 0.2 (Spear & Dismukes, 1994, p. 4). The

radiation heat transfer in the crystal layer and the radiation

heat loss at the side surfaces are neglected; if considered, they

would effectively shorten somewhat the thermal relaxation

time.

The corresponding dilatational, shear and surface

(Rayleigh) wave speeds are equal to 18.6, 12.0 and

10.9 km s�1, respectively. The thermal diffusivity is equal to

12.2 cm2 s�1 at T = 300 K, 1.5 cm2 s�1 at T = 600 K, 0.5 cm2 s�1

at T = 1000 K and 0.14 cm2 s�1 at T = 2000 K, based on the

above values of � and Cv. These values are useful for esti-

mating the characteristic time/length scales of various events

of stress wave emission and propagation and thermal relaxa-

tion.

3. Simulation results and discussion

3.1. Transient thermal transfer analyses

3.1.1. Single-pulse input. We first describe the results of

transient thermal transfer from the simulation of a single-

pulse input with pulse energy I0 = 100 mJ. The Gaussian beam

size is set to be a = 20 mm. The attenuation length L = 50 mm,

corresponding to an X-ray energy of �3.5 keV. The crystal

plate thickness h = 40 mm, which is at the lower end for the

diamond crystals used for X-ray FEL self-seeding due to large

absorption for such low-energy photons (�4 keV). In this

case, the laser energy absorbed by the crystal is about 55%. As

the laser energy decreases, it raises the internal energy at the

front surface by about 2.2 times that at the back surface. This

energy deposition field is added to the initial field, and the

simulation begins. Twenty equal divisions are used to discre-

tize the domain in the thickness direction. An adaptive mesh is

used in the radial direction, with ten equal divisions in the near

10 mm distance, and 200 unequal divisions of increasing size

outwards by gradient 1.015 in the following 1490 mm distance,

from the center. The time step is 1 ns. We carried out the

purely thermal transfer analysis by solving equation (3) after

idling the mechanical terms. This allows us to simulate the

process in a much longer timescale than the later transient

thermal stress wave case. It is justified that the stress field

should have a trivial effect on the thermal conduction process,

which involves a different amount of energy by orders of

magnitude.

Selected results are presented in Figs. 4 and 5. Figs. 4(a)–

4( f) show snapshots of the thermal field at various times in

100 ns increments. Fig. 5 shows the time evolution of the

temperature (minus the initial temperature of 300 K) at three

different radial distances, r = 0, 20 and 50 mm, on the front and

back surfaces, z = 0, and 40 mm up to 100 ms. For a diffusion

coefficient equal to �10 cm2 s�1, the time of 100 ms corre-

sponds to a diffusion distance of a small fraction of a milli-

meter. Thus, the simulation domain is wide enough to avoid

any remote boundary effects.

It can be seen in Fig. 4 that the early temperature is higher

on the front surface than on the back surface due to laser

attenuation. However, the temperature difference is smaller

than 2.2 times the internal energy mentioned earlier. This is

because the specific heat capacity of diamond varies sensi-

tively with temperature below 1000 K (Reeber & Wang, 1996),

as shown in Fig. 3. The initial highest temperature is 2315 K at

the center on the front surface. It drops nearly linearly in the

early 150 ns, and slightly more rapidly in the following 300 ns,

and then the thermal relaxation rate decreases gradually. The

thermal relaxation is undertaken over about 1000 ns across

the thickness, as indicated by the convergence of the

temperature histories on the front and back surfaces in Fig. 5.

In the radial direction, it occurs on a similar time scale over

the laser heating spot, as also shown in Fig. 5, but extends to

a much longer time scale over a plate size of millimeters.

However, since the laser energy is small when averaged over

the entire effective volume, the temperature rise is only

�1.5 K after 30 ms and �0.4 K after 100 ms near the laser

impinging spot. It would continue to decrease over a longer

period. It might be worth noting that we carried out the same

simulation but with a constant thermal conductivity equal

to the room-temperature value for all temperatures and

compared the results. It was found that the true thermal

relaxation presented herein is much slower, especially inside
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Figure 3
Variation of thermal conductivity and specific heat with temperature.

Figure 2
Variation of thermal strain (right) and linear thermal expansion
coefficient (left) with temperature.



the laser spot at elevated temperatures at the short timescale.

For instance, the relaxation time of an uneven thermal field in

the through-thickness direction is different by one order of

magnitude, reflecting the strong temperature dependence of

the thermal diffusivity. Thus, if the realistic material constants

are not considered, it would substan-

tially underestimate the adverse effects

of the heat load of the laser pulses.

3.1.2. Multiple-pulse input. Moti-

vated by the current pursuit of FELs at

high repetition rates (Raubenheimer,

2014; Tsentscher et al., 2006), we ran

simulations of transient heat transfer at

four different repetition rates, 0.1, 0.2,

0.5 and 1 MHz. All the parameters are

the same as those in the above case, but

the energy of individual laser pulses

is added to the system periodically

according to the repetition rates. The

simulations are run over a period of

200 ms, respectively 20, 40, 100 and

200 pulses in total in the four cases. The

time histories of the temperature at

radial distances r = 0, 20 and 50 mm on

the front surface z = 0 are recorded and

plotted in Figs. 6(a)–6(d). Although

the mechanical deformation and stress

wave effects are excluded, it can be

expected that similar wave dynamics are

being generated by each pulse. On the

other hand, the stress waves should

have a trivial effect on the heat transfer

due to the great difference of thermal

energy versus mechanical energy, even

though the deformation energy is seen

to be partially converted back to

thermal energy, as discussed later.

As shown in Figs. 6(a)–6(d), the

temperature within the laser spot rises instantaneously upon

each shot. It evolves over time in a similar way to the above

single-shot case. However, each shot would have some resi-

dual thermal energy left behind, and the temperature that

each shot sees keeps on rising, due to the finite thermal

conductivity. This effect raises the practical question at what

repetition rate the residual heat effect would become non-

trivial to affect the optical performance of the crystal plate.

The answer should depend on how the optical component

operates in a specific case and it is not our intent here to

provide it. In the four cases analyzed, the residual tempera-

tures that the second pulse sees are 304.7 K, 310.3 K, 334.4 K

and 411.1 K, respectively, worsening rapidly when the repeti-

tion rate reaches near the MHz level. In particular, a runaway

temperature increase is observed after only a few pulses in the

case of 1 MHz. For the case of 500 kHz, the temperature

seems to have ratcheted up ready for a runaway rise after

100 pulses. For the other two cases of 100 and 200 kHz, the

residual temperature that each pulse sees increases more

slowly. The runaway temperature rise upon a threshold

temperature level is explained by the fact that the thermal

conductivity (more precisely, the thermal diffusivity) of

diamond decreases rapidly with increasing temperature [by a

power law which we use to roughly fit the experimental data

research papers

170 Bo Yang et al. � Transient thermal stress wave and vibrational analyses J. Synchrotron Rad. (2018). 25, 166–176

Figure 4
Snapshots of the temperature field in a 40 mm-thick diamond plate upon a single-pulse laser of
20 mm waist-size at various times in 100 ns increments.

Figure 5
Time histories of temperature at three different distance r = 0, 20, 50 mm
on the front surface (z = 0, solid) and back surface (z = 40 mm, dashed) in
a 40 mm-thick diamond plate upon a single-pulse laser of 20 mm waist-
size.



(Reeber & Wang, 1996)]. When the

temperature becomes sufficiently high,

the dissipation rate is lowered so much,

while the energy input rate is main-

tained constant, as to result in a thermal

blowout, i.e. a spontaneous hotspot.

This rapid temperature increase may

lead to local permanent damage to

the diamond if no other dissipation

mechanism is instated. In the two cases

of 100 and 200 kHz, a steady state of

competing heat deposition and heat

damping may not be reached before the

runaway instability occurs and hence

before the material is damaged, unlike

the typical expectation of a steady state

in previous gas attenuator simulations

(Feng et al., 2016; Yang et al., 2017).

Again, we ran the same simulations but

with constant thermal conductivity set

to be the room temperature value for

comparison. It was found that the

temperature rise scales linearly with the

number of pulses, N, in the early few to

tens of pulses, but scales as log(N)

afterwards. It is very different from

the runaway phenomenon described above when the more

realistic material constants are considered, again suggesting

the necessity to use realistic material properties for mean-

ingful analysis.

3.2. Transient thermal stress wave analyses

We ran simulations for transient thermal stress wave

analysis for four cases with different diamond thickness h or

laser spot size a: h = 10 mm, a = 20 mm; h = 20 mm, a = 20 mm;

h = 40 mm, a = 20 mm; h = 10 mm, a = 100 mm. Only a single

pulse input is examined, with common pulse energy I0 = 100 mJ

and attenuation length L = 50 mm, the same as above. For h =

10 mm, 20 mm and 40 mm, the laser energy is about 18%, 32%

and 55%, respectively, absorbed by the crystal. Twenty, 30 and

40 equal divisions, respectively, are used to discretize the

domain in the thickness direction for these three thicknesses.

An adaptive mesh is used in the radial direction. Twenty equal

divisions are used in the near 10 mm distance, and 600 unequal

divisions with increasing size by gradient 1.003 in the following

790 mm distance, for a laser spot size of 10 mm. One hundred

equal divisions are used in the near 50 mm distance, and 650

unequal divisions with increasing size by gradient 1.003 in the

following 850 mm distance, for a laser spot size of 50 mm. The

time step is 10 ps for all of the cases. It was checked that this

time step is fine enough to generate reasonably accurate

results compared with time steps of 2.5 and 5 ps. The stress

waves would propagate by <0.2 mm in space each time step,

smaller than the spatial grid size. Since we use an implicit

finite-difference scheme for time integration and an iterative

algorithm for coping with non-linear effects in thermal energy,

thermal strain and heat conduction, which are all coupled, the

solution is unconditionally stable. The simulation is termi-

nated at t = 40 ns before the emitted stress waves reach the

simulation domain boundary. Selected results are plotted in

Figs. 7, 8 and 9.

The total deformation energy,
R

V U" dV, the total kinetic

energy
R

V ð1=2Þ�v � v dV, and the change of thermal energy,R
V ðUT � UT0Þ dV, are calculated at each time step, where V is

the domain and UT0 is the initial thermal energy density upon

the laser energy deposition. The r-component and z-compo-

nent of kinetic energy,
R

V ð1=2Þ�v2
r dV and

R
V ð1=2Þ�v2

z dV,

are also calculated, representing the wave activity in the

two corresponding directions, respectively. They are shown in

Figs. 7(a)–7(d), respectively, for the four cases. Some snap-

shots of the velocity fields at t = 0.1, 0.5, 1, 2 and 3 ns are

captured and plotted in Figs. 8(A)–8(E) and Figs. 8(a)–8(e)

for the case of h = 40 mm, a = 20 mm. In the left-hand column,

(A)–(E), the three-dimensional (3D) surface plot is used to

show the velocity component vz, and the color code to indicate

strain component "zz. In the right-hand column, (a)–(e), the

3D surface plot is used to show the velocity component vr, and

the color code to indicate strain component "rr. Similarly,

snapshots at t = 0.1, 0.3, 0.5, 1.5 and 3 ns are captured and

plotted in Figs. 9(A)–9(E) and Figs. 9(a)–9(e) for the case of

h = 10 mm, a = 20 mm. The other two cases are also examined

but not shown here.

3.2.1. Case study with h = 40 mm, a = 20 mm. In this case,

55% of the laser energy, i.e. 55 mJ out of 100 mJ, is deposited

into the diamond. Amongst this, the majority is stored in the

form of thermal energy, but only 0.36 mJ is stored in the form

of deformation energy due to thermal strain, as shown at t = 0
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Figure 6
Time histories of temperature at three different distance r = 0 (red), 20 (green), 50 mm (blue) on the
front surface (z = 0) in a 40 mm-thick diamond plate under continuous pulses at various repetition
rates: (a) 100 kHz; (b) 200 kHz; (c) 500 kHz; (d) 1 MHz.



in Fig. 7(a). It is this seemingly tiny deformation energy that

launches stress waves with particle velocities reaching over

200 m s�1. The stress wave emission is different in the

through-thickness z-direction and in the radial r-direction. In

the z-direction, the stress waves, which are dilatational, break

out at the two traction-free side surfaces and propagate

inwards, as seen in the left-hand column of Fig. 8. In the r-

direction, it is more complicated because the radial strain

gradient drives dilatational wave emission in the middle

portion propagating at the longitudinal wave speed equal to

18.6 km s�1. Near the surfaces, Rayleigh surface waves are

emitted propagating at a Rayleigh wave speed equal to

10.9 km s�1, which is much slower, resulting in a complicated

wave pattern, as seen in the right-hand column of Fig. 8.

Subsequently the radial dilatational and surface waves

propagate cylindrically outwards. In contrast, the early dila-

tational waves in the z-direction are quickly shattered by

radial shear wave emission due to the surrounding constraint.

This effect is significant due to the large plate thickness

compared with the laser transverse radius, with ratio 4 :1. Only

the deformation energy in a shallow depth can be released in

this mode. It quickly results in a rugged vz field. While this

mode of thermal strain relaxation is ineffective, it takes a long

time for the stress waves in the z-direction to die out relative

to other cases in Figs. 7(c) and 7(d), which will be discussed

more in the following.

During the stress wave emission, the initial thermal strain

energy is partially converted into kinetic energy. As can be

seen in Fig. 7(a), the kinetic energy peaks at 70 nJ at t = 0.6 ns,

but then gradually decreases. The peak time corresponds to a

wave travel distance of �10 mm, consistent with the laser

transverse radius. It is thus the stress

wave emission time, as expected. At the

same time, the deformation energy also

decreases, but the thermal energy

increases. The deformation energy and

kinetic energy (as well as the thermal

energy) oscillate out of phase indicating

their constant exchange back and forth

due to the wave reflection at the side

surfaces. Surprisingly, at this short time

scale, the thermal field evolves fast

enough to affect the mechanical wave

event; that is, as the temperature field

evolves, the thermal strain field relaxes,

resulting in conversion/dissipation of

mechanical energy into thermal energy

and entropy increase. Since no other

dissipative mechanism (such as visc-

osity) is introduced, the mechanical

energy would no longer decay after the

stress waves propagate out of the hot

zone. This is important because it means

that each laser pulse would generate a

certain amount of ‘permanent’ kinetic

energy in the crystal plate. Its potential

consequence to vibration under

multiple laser pulses will be discussed later. At t = 40 ns, there

remains about 12 nJ kinetic energy in the system; it is still

dropping slightly but is expected to reach a steady value soon.

3.2.2. Aspect ratio effects. By comparing Figs. 7(a)–7(c),

and Figs. 8 and 9, it can be seen that the stress wave emission

process is different in the cases of different thicknesses but

same laser spot size. In the thick-layer case, the laser-heated

volume is pencil-like, in which the through-thickness dilata-

tional stress waves only manifest themselves near the surfaces

in a shallow volume and are rapidly shattered due to the

surrounding constraint. There is not much oscillation seen in

the evolution of the energy terms in Fig. 7(a). In contrast, in

the thin-layer cases, the heated volume is more like a thin disc.

The through-thickness dilatational stress waves can be emitted

more freely and sustained as a planar wave within the heated

zone (Stoupin et al., 2012). The mechanical energy stored in

the through-thickness dilatational stress waves are drained by

emitting shear and dilatational stress waves outwards in the

radial direction at the boundary of the heated zone. Due to the

longer perimeter of the hot–cold front, this energy conversion

process is more efficient in the thin-layer case. The z-compo-

nent of the kinetic energy diminishes at t = 10 ns as shown in

Fig. 7(c). In contrast, it remains non-trivial (relative to the

amplitude at the beginning) at the same time in the thick-layer

cases as shown in Figs. 7(a) and 7(b), although it dies out soon

after.

When the same amount of heat is deposited over a wider

laser spot, the initial temperature is substantially reduced. The

initial thermal deformation energy is even more substantially

reduced because of the much lower thermal expansion coef-

ficient at lower temperature. It reduces by three orders of
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Figure 7
Time histories of thermal energy change (gray solid), deformation energy (red solid) and total (blue
solid), r-portion (green dashed) and z-portion (purple dashed) of kinetic energy in a diamond plate
upon a single-pulse laser of thickness h and waist-size a: (a) h = 40 mm, a = 20 mm; (b) h = 20 mm,
a = 20 mm; (c) h = 10 mm, a = 20 mm; (d) h = 10 mm, a = 100 mm.



magnitude when the laser spot size increases by five times, as

seen in Figs. 7(a) and 7(d). Despite the much reduced inten-

sity, the stress wave emission remains unchanged character-

istically except for the time of the kinetic energy to reach its

peak. In the cases of a = 20 mm [Figs. 7(a)–7(c)], the kinetic

energy peaks at the first wave oscillation, even for the thinnest

case [Fig. 7(c)]. In contrast, it peaks after four wave oscilla-

tions in the case of a = 100 mm [Fig. 7(d)], indicating the

different time scales of stress wave

emission along the through-thickness

direction from that along the z-direc-

tion.

After the stress waves are moved out

of the hot zone, they survive for a long

time due to the lack of an intrinsic

dissipation mechanism such as viscosity

in diamond. Most importantly, this

study demonstrates that a certain

amount of kinetic energy can be left

‘permanent’ in the system by each laser

pulse. From Figs. 7(a)–7(d), the amount

of kinetic energy can be seen to strongly

depend on the laser spot size and the

deposited energy (i.e. thickness). The

next question is whether vibrations

and similar would cause problems if

the plate is not properly mounted.

3.3. Vibrational analysis

Based on the above transient

dynamic analysis, it is clear that the

instantaneous laser energy deposition

would locally raise the temperature

during its passage and introduce

thermal strain. The linear thermal

expansion coefficient in diamond is

small at low temperature but can

increase dramatically at high tempera-

ture upon absorption of soft X-rays.

The thermal strain can generate stress

waves. After the stress waves propagate

out of the hot zone, the kinetic energy

carried by them becomes ‘permanent’

in the diamond due to a lack of other

intrinsic dissipation mechanisms such

as viscosity. If no appropriate passive

damping is instated, the kinetic energy

would cumulate pulse after pulse. For

the sake of an estimate by order of

magnitude, the kinetic energy may be

reasonably set to be 10 nJ for a laser

spot size of 20 mm and a fraction of nJ

for a laser spot size of 100 mm, from a

deposited energy of tens of mJ per pulse,

as indicated in the examples analyzed

above. The question is at what ampli-

tude it may drive a diamond plate to

vibrate at a given frequency.

We conducted a modal analysis of a

thin diamond layer, 3 mm � 5 mm, in-
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Figure 8
Snapshots of stress waves emission in a 40 mm-thick diamond plate upon a single-pulse laser of
20 mm waist-size at various times: (A,a) 0.1 ns; (B, b) 0.5 ns; (C, c) 1 ns; (D,d) 2 ns; (E, e) 3 ns. In the
left-hand column (A)–(E), the 3D profiles show the field of velocity component vz, and the color
code indicates the field of strain component "zz. In the right-hand column (a)–(e), the 3D profiles
show the field of velocity component vr, and the color code indicates the field of strain
component "rr.



plane and of various thicknesses, using

the finite-element software package

ANSYS. Free vibrations and vibrations

with one edge fixed were analyzed. The

natural frequencies were acquired up to

5 MHz. The number of vibrational

states for the 40 mm-thick case is plotted

in Fig. 10. The insets are the first and

second mode shapes, as directed by the

arrows pointing to the corresponding

frequencies. The first mode frequencies

are plotted as a function of thickness

in Fig. 11. The first mode frequencies

depend linearly on the thickness. For

the thinnest plate, 10 mm-thick, the first

mode frequency is 1500 Hz in the fixed

case and 6940 Hz in the free case. These

frequencies are one order of magnitude

higher than the repetition rate of

120 Hz at the Linac Coherent Light

Source (LCLS) (Amann et al., 2012).

However, it should be noted that, if the

plate is not properly constrained, the

null modes of rigid body motion can be

active. For instance, if a plate is placed

against a wall or a trench it would move

like a pendulum. In this case, the

frequency may be estimated by ðg=LÞ
1=2,

where L is the characteristic length

(plate size) and g is the acceleration

due to gravity; setting L = 1 mm, the

frequency is �100 Hz, near the LCLS

repetition rate.

The energy of a plate vibrating at

angular frequency ! may be expressed

by ð1=2ÞM!2 �uu2, where M is the total

mass and �uu can be understood as a

measure of the vibration amplitude. For

a diamond plate of dimensions 5 mm �

3 mm� 0.04 mm, the mass M = 2.11 mg.

From the above dynamic simulation,

each pulse of 100 mJ with one half

deposited would generate, for example,

10 nJ of kinetic energy. For only one

shot, the plate would vibrate by about

1 mm in amplitude for a frequency of

100 Hz, scaled by 1=!. For frequencies

up to 1 MHz, the vibrational amplitude

would drop below 1 mm for a single

shot. However, the vibration may be

excited and reach harmful levels over

tens to hundreds of shots. It might be

worth noting again that the vibrational

states are populated linearly with

frequency after thousands to tens of

thousands Hertz depending on the plate

thickness, as shown in Figs. 10 and 11.
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Figure 9
Snapshots of stress waves emission in a 10 mm-thick diamond plate upon a single-pulse laser of
20 mm waist-size at various times: (A, a) 0.1 ns; (B, b) 0.3 ns; (C, c) 0.5 ns; (D, d) 1.5 ns; (E, e) 3 ns. In
the left-hand column (A)–(E), the 3D profiles show the field of velocity component vz, and the color
code indicates the field of strain component "zz. In the right-hand column (a)–(e), the 3D profiles
show the field of velocity component vr, and the color code indicates the field of strain
component "rr.



Any operational frequency above this threshold would be

surrounded by many resonant modes, resulting in vibrational

excitation. If a motion steadiness at a vibration level better

than tens of micrometers is required, passive damping or other

intrinsic damping mechanisms must be introduced to mitigate

the effect.

4. Conclusions

We have performed a computational study of the transient

thermal stress wave emission and thermal conduction in a thin

diamond crystal under high-intensity laser shock. The reso-

nant vibration has also been examined. The problem is

formulated on the continuum mechanics. The transient

dynamic analysis is based on an in-house code. The modal

analysis is conducted by using the commercial finite-element

software package ANSYS. Cases of various laser spot size

and plate thickness are analyzed. This reveals the transient

dynamics of both mechanical deformation and thermal

transfer and the energy transfer mechanisms among the

thermal energy, strain energy and kinetic energy. It is shown

that the radial dilatational stress wave emission dominates,

which is driven by the radial thermal gradient. The main stress

wave emission is completed in a fraction of a nanosecond or

several nanoseconds for laser spot sizes of 20 mm or 100 mm,

respectively. It then takes tens of nanoseconds for the

through-thickness dilatational stress waves to diminish by

emitting radial dilatational and shear stress waves due to the

coupling of the different mechanical deformation components.

In the case of a thick layer relative to the laser spot size, the

heated volume is pencil-like, and the through-thickness dila-

tational stress waves are confined to the surface. In contrast,

they are generated more freely within the heated zone in the

thin layer case where the heated volume is more like a thin

disc. Consequently, the relaxation of wave activity is more

efficient in the thin layer case of an effectively longer peri-

meter along the hot–cold front. The stress waves are

conserved in energy after propagating out of the hot zone

due to the lack of an intrinsic dissipative mechanism such as

viscosity in diamond. This results in the emission of a certain

amount of ‘permanent’ kinetic energy in the system. It is also

found that the thermal relaxation effect is already apparent

during the time scale of stress wave events. This leads to a

continuous conversion of the mechanical energy back to

thermal energy. The transient thermal conduction has also

been analyzed under multiple pulses at various repetition

rates. It is shown that the temperature that the next pulse sees

increases rapidly with the number of pulses, especially when

the repetition rate is near the MHz range, for a typical laser

pulse energy of the LCLS. Finally, it was shown that the

resonant frequencies start at the thousands of Hz to tens of

thousand of Hz range depending on thickness. They are

populated linearly in terms of frequency. The potential

vibrational amplitude is estimated as a function of frequency,

given an amount of kinetic energy. It was shown that, for the

amount of kinetic energy predicted above from the transient

dynamic analysis, the vibrational amplitude can be harmful at

the LCLS at a repetition rate of 120 Hz if the plate is not

properly constrained. For high repetition rates, the vibrational

amplitude is trivial in the case of a single shot, but can add up

to a harmful level too after tens to hundreds of pulses. These

results should be helpful in the design of monochromators and

spectrometers based on thin diamond crystals for high-inten-

sity XFEL applications at high repetition rates.
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Figure 10
Number of vibrational states as a function of frequency for a free plate
(circles) and a plate fixed at one edge (triangles). The insets illustrate the
mode shapes at the first and second modes of each case, as directed by the
arrows to the frequencies.

Figure 11
First natural frequency as a function of thickness for a free plate and plate
with one edge fixed.
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