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The accurate calibration of powder diffraction data acquired from area

detectors using calibration standards is a crucial step in the data reduction

process to attain high-quality one-dimensional patterns. A novel algorithm has

been developed for extracting Debye–Scherrer rings automatically using an

approach based on computer vision and pattern recognition techniques. The

presented technique requires no human intervention and, unlike previous

approaches, makes no restrictive assumptions on the diffraction setup and/or

rings. It can detect complete rings as well as portions of them, and works on

several types of diffraction images with various degrees of ring graininess,

textured diffraction patterns and detector tilt with respect to the incoming beam.

1. Introduction

The increasingly wider use of area detectors for X-ray powder

diffraction (XRPD) measurements at advanced synchrotron

radiation sources has led to numerous innovative experiments

exploiting nanosized X-ray beams (Dinnebier & Hinrichsen,

2012). The considerable advantages of 2D data collection are

the excellent data statistics and the very short exposure times

(down to some microseconds), which entail extremely reduced

experiment durations, as compared with just a very few years

ago. Nowadays, in the frame of an XRPD mapping experiment

one may collect good quality frames at frame rates as high as

3 kHz in continuous mode or 9 kHz in 30 s bursts by using,

for example, one of the Eiger detectors (Johnson et al., 2012;

Gorfman, 2014).

Although in most measurements the detector is centred

orthogonally to the incident beam, in the most general case

the detector is tilted and offset with respect to the primary

beam axis. In this case the diffracted Debye–Scherrer rings can

take the form of any conical section (ellipse, hyperbola and

parabola or even pairs of straight lines). In the majority of

cases the powder patterns are actually ellipses. The customary

practice is to azimuthally integrate the image along the ellipses

(Hammersley et al., 1996), thus reducing the amount of

information by the square root of the number of pixels and

consequently the disk storage space (Dinnebier & Hinrichsen,

2012).

Since the experimental setup for powder diffraction

measurement has been extensively described elsewhere [see,

for example, the review by Lavina et al. (2014)], we will focus

essentially on the calibration procedure. To this effect, one

needs to determine and refine numerically the experimental

parameters of the beam centre, the sample-to-detector

distance, in some particular cases the X-ray wavelength and

the spatial orientation of the detector with respect to the beam
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(De Nolf et al., 2014). Typically, high-quality patterns of

standard samples are used to determine and refine the

required parameters. Several methods have been used for

refining the calibration parameters [see, for example,

Dinnebier & Hinrichsen (2012), and references therein; Hart

et al. (2013); De Nolf et al. (2014); Tantau et al. (2014);

Lutterotti et al. (2014)]. The calibration process was totally

manual for early experiments. Some semi-manual approaches

were developed later [Fit2d (Hammersley, 2016) and PyFAI

(Kieffer & Karkoulis, 2013)], which estimate parameters on

rings chosen manually. Well known computer programs

commonly employed for calibration purposes and for

analysing diffraction images include Two2One (Vogel &

Knorr, 2005), Powder3d (Hinrichsen et al., 2006), Datasqueeze

(Heiney, 2005) and the aformentioned Fit2d and PyFAI.

Pattern recognition techniques were developed to estimate

calibration parameters featuring high accuracy along with

some degree of automation (Rajiv et al., 2007; Cervellino et al.,

2006; Hart & Drakopoulos, 2013). However, these approaches

make restrictive assumptions about the diffraction setup and/

or the diffraction rings.

Several synchrotron sources are currently following update

programs to face the new challenges posed by science and

technology. The size of the beam is becoming of the same

order of magnitude as the grains in the powder used. In this

case, the problem tends to become that of diffraction from

single crystals, with less random orientations of the crystals.

The diffraction pattern shows more scattered peaks than well

defined rings. As it is very difficult to reduce even further the

size of grains in the powder, one has to deal with this problem

at the image-processing level.

The basic task of the present work has been to develop a

novel algorithm for extracting diffraction rings, which should

not need human intervention to capture the rings or portions

thereof. Another point is that it should work on several types

of image, with various degrees of graininess. The basic idea is

to use a computer vision approach automatically to analyse

the two-dimensional diffraction frames and search and classify

the ring-like shapes by sub-families of conic sections, the

geometric parameters of which would enable the refinement

of the instrumental parameters.

In the following sections the different steps toward the

automatic extraction of the Debye–Scherrer rings are illu-

strated, starting from the image pre-processing, followed by

morphological dilation and thinning operations (x2.1). These

morphological operations are parts of an algorithm to control

the growth of regions bearing conic candidates (x2.2) and use

an incremental detection mechanism (x2.3). The algorithm has

been validated for ellipses. The main features of the ellipse

harvesting strategy are then explained introducing suitable

convergence and ranking criteria (x3). We remove false

detections (x4) and recover missed detections by finding

‘families’ of detected ellipses (x5). Finally, a comparison

between the suggested method and existing ring detection

schemes is discussed (x6). Details of detectors and beamlines

used to collect data for use in this paper are presented in

Appendix A.

2. Computer-vision aided ring extraction

As mentioned in the Introduction, Debye–Scherrer ring fitting

is the core of XRPD data calibration. We propose a computer-

vision-aided algorithm to automatically extract Debye–

Scherrer rings in XRPD images. The detection of these rings

allows the calibration of the experiment (Ashiotis et al., 2015).

The calibration process is based on obtaining individual

elliptic rings. Manual marking of the rings can be slow as well

as error prone. Our algorithm can be used to automate this

process.

As shown in Fig. 1, segments of Debye–Scherrer rings

can appear in a wide variety of ways from almost circular to

elliptical, parabolic and even almost linear. The modular

structure of certain detectors (e.g. Pilatus detectors from

Dectris) may produce rings which do not appear to be

contiguous. This makes the automatic detection of such rings

or ring portions a challenging task.

Considerable research exists on the ellipse fitting problem

when points representing an ellipse are provided a priori

(Gander et al., 1996; Fitzgibbon et al., 1999; Kanatani &

Sugaya, 2008). However, the problem of grouping points that

represent elliptical regions has received less attention (Qiao &

Ong, 2007; Chia et al., 2011; Wong et al., 2012; Pǎtrǎucean et

al., 2012).

If there are multiple ellipses in one image, it is not easy to

automatically identify which set of points belong to which

ellipse. This could be done by viewing the image and marking

points manually but it is tedious and very time-consuming to

identify the boundary points of one ellipse from a list of all

points in the image. As demonstrated in Fig. 2, if we can

identify the points lying on one ellipse, ellipse fitting is trivial.

On the other hand, if we know the parameters of an ellipse,

then obtaining the points that lie on the ellipse is trivial.

However, in the absence of both (points as well as ellipse),

ellipse detection is a challenging task and can be treated as a

latent variable problem.

We approach this problem in an incremental fashion,

similar in spirit to the incremental nature of the expectation
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Figure 1
Some examples of Debye–Scherrer ring images. Segments of Debye–
Scherrer rings can appear in a wide variety of ways from almost circular to
elliptical, parabolic and even almost linear.



maximization (EM) algorithm (Dempster et al., 1977) used for

solving latent variable problems. Accordingly, we name our

algorithm Incremental Ellipse Detection (IED).

We start with an initial region (set of points) and fit an

ellipse to it. Then we select additional points that lie close to

both the region and the corresponding fitting ellipse and add

these to the region. A new fitting ellipse is then adjusted to this

expanded region and the process is repeated until no more

points can be added to the region. Other regions in the image

can similarly be processed in sequence to obtain all elliptical

region estimates, i.e. the Debye–Scherrer rings.

We now describe the process in detail. After initial pre-

processing (x2.1), we merge sets of points to identify potential

elliptical regions (x2.2). Then we detect ellipses using the IED

algorithm (x2.3). Pseudo-code of the algorithm is presented

in Appendix B.

2.1. Gap filling

Debye–Scherrer rings can comprise unconnected sets of

pixels. There can be gaps along the rings. We pre-process the

data to fill such gaps. This gap-filling step enables our algo-

rithm to find connected elliptic arcs more accurately.

Let I denote an image containing Debye–Scherrer rings.

Since the range of pixel intensities in such images can vary

significantly, we force the intensities to lie between 0 and 255

via an affine rescaling as

Iðx; yÞ ¼
Iðx; yÞ �minðIÞ

maxðIÞ �minðIÞ
� 255: ð1Þ

Then we smooth the image I convolving with a rotationally

symmetric Gaussian low-pass filter of size 2� 2 with standard

deviation � = 1. After that, spatial derivatives in vertical and

horizontal directions are computed using equations (2) and (3)

[as done by von Gioi et al. (2012)] to obtain the gradient vector

rI = Ix at every pixel. The pixel locations corresponding to

equations (2) and (3),

Ixðx; yÞ ¼
Iðxþ 1; yÞ � Iðx; yÞ½ � þ Iðxþ 1; yþ 1Þ � ðIðx; yþ 1Þ½ �

2
;

ð2Þ

Iyðx; yÞ ¼
Iðx; yþ 1Þ � Iðx; yÞ½ � þ Iðxþ 1; yþ 1Þ � ðIðxþ 1; yÞ½ �

2
;

ð3Þ

are illustrated in Fig. 3.The magnitude and orientation of the

gradient vector rI can be computed as

mðx; yÞ ¼
�
Ixðx; yÞ

�2
þ Iyðx; yÞ
� �2

n o1=2

; ð4Þ

�ðx; yÞ ¼ tan�1
Iyðx; yÞ

Ixðx; yÞ

� �
; ð5Þ

respectively. Then we select pixels whose gradient magnitudes

are greater than or equal to the 90th percentile of all gradient

magnitudes in the image. This yields a binary image that

represents ring pixels.

The connectivity among pixels along the rings can be

improved through a simple morphological operation of dila-

tion. We dilate our thresholded binary image by using a

structuring element of size 3� 3 containing all ‘1’s. While

dilation can fill gaps between pixels, it can also lead to un-

necessarily thicker rings. Therefore, dilation is followed by a

thinning procedure to neutralize the thickening effect of

dilation while retaining its gap-filling effect. Details of

morphological dilation and thinning are given by Gonzalez

& Woods (2001).

Gap filling enhances the image quality and makes the image

more suitable for harvesting connected regions in the region-

growing procedure (x2.2). Fig. 4 demonstrates that subsequent

region growing produces much better results when gaps are

processed by this dilation and thinning sequence. Without gap

filling the grown regions are still relatively unconnected and

not very elliptical. After gap filling, the regions become better

connected, contiguous and more elliptical. Better initial

ellipses can be fitted to such regions. This leads to more

accurate and faster ellipse detection.

2.2. Region growing

The task here is to identify elliptical candidate regions in

an image. The procedure of collecting points in the form of

regions is called region growing. We group neighbouring pixels
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Figure 3
For the pixel Iðx; yÞ, we use its neighbouring pixels to compute the
derivatives in the x and y directions.

Figure 2
The chicken-and-egg nature of the ellipse detection problem. Upon
identifying some points on the boundary of a candidate ellipse (green
crosses), an ellipse can be fitted through these points. Conversely,
knowing the parameters of an ellipse, all points on the boundary can be
identified (yellow diamonds).



on the basis of similar gradient orientations as discussed by

Pǎtrǎucean et al. (2012). We explain the method here for

completeness.

The logical status of each pixel is initially set to false.

Starting from a seed pixel with the largest gradient magnitude,

neighbour harvesting is performed by collecting neighbouring

pixels which have almost the same orientation. Similarity in

orientation is scored up to an angular threshold �, and each

time this occurs the status of selected neighbours toggles into

true. In the present work, since we are in quest of elliptic

regions, we set � = 45�. Each selected neighbour is, in turn,

further polled to find its neighbour candidates. This search

stops when no more neighbours exist whose gradient orien-

tation difference with the region’s overall orientation is less

than or equal to �. The selected pixels are labelled as one

region.

Among the remaining pixels with false status, the pixel with

largest gradient magnitude is chosen as the next seed pixel and

the process is repeated. This continues until there are no more

pixels with status false. It can be seen from Fig. 4 that regions

grown in this way are better suited for fitting ellipses. This is

especially true when region growing follows a gap-filling step.

2.3. Incremental ellipse detection (IED)

Once regions corresponding to elliptical segments are

found, we can merge multiple constituent regions to capture

valid ellipses. However, which regions to merge is not known

a priori. Given correct regions, ellipse fitting is easy and,

conversely, given a correct ellipse, finding its constituent

regions is also easy. However, in our case, neither the ellipse

nor the constituent regions are known. Therefore, we detect

ellipses by incrementally improving upon elliptical regions and

fitted ellipses. We name this algorithm Incremental Ellipse

Detection (IED). A flowchart for the IED algorithm is

presented in Fig. 5 and pseudocode is presented in

Appendix B.
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Figure 5
Flowchart for the incremental ellipse detection (IED) algorithm.

Figure 4
Gap filling improves region growing. Region growing produces much
better results when gaps along Debye–Scherrer rings are filled by a
dilation and thinning sequence. Without gap filling the grown regions are
still relatively unconnected and not very elliptical. After gap filling the
regions become better connected, contiguous and more elliptical.



A working example of the IED algorithm can be seen in

Fig. 6. We start with the largest region (shown in blue) and fit

an ellipse (in green) to it. Then, we find other new regions

(red) that lie close to the current region (blue) as well as the

fitted ellipse (green) and add them to the current region. In

the second iteration, a new ellipse is fitted to this enlarged

region and the process is repeated until convergence (sixth

iteration in the example of Fig. 6). Then we pick the next

largest unprocessed region and perform the incremental fitting

process. This is repeated until no more unprocessed regions

remain.

Fig. 7 shows results on various types of challenging patterns

and demonstrates that our algorithm is able to detect signifi-

cant rings despite beamstop shadows, diffuse scattering,

graininess, blobs and non-orthogonality of detectors.

3. Ellipse evaluation

In the present context, ellipse evalua-

tion means finding the fitness of a fitted

ellipse with respect to a region. Instead

of just visual analysis, we have devised

an evaluation method to check numeri-

cally the quality of fitted ellipses. The

following sections describe the measures

for ellipse evaluation and the criteria

based on these measures.

3.1. Ellipse evaluation measures

In order to accept or reject an ellipse

and then rank all accepted ellipses,

we use the following two evaluation

measures. Both measures depend upon

the set of points R on which ellipse E is

fit and the set of points lying on the

boundary of ellipse E. These boundary

points can be generated via the para-

metric representation of the ellipse.

3.1.1. Percentage of claimed angles.
In order to estimate the fitness score of

an ellipse, the angular coverage of an

ellipse E by the region R is measured.

More coverage means greater fitness.

We divide angular extent of the ellipse

into 360 discrete angles.

With reference to Fig. 8, let x be a 2D

point belonging to region R. Let l be

the line segment connecting x with the

centre of an ellipse E. The intersection

of l with the boundary of ellipse E is

denoted by x̂x� where � is the corre-

sponding angle in a parametric repre-

sentation of the ellipse. Now we can

state that region point x claims angle �
of ellipse E. For all points in region R,

let AðRÞ be the set of corresponding

claimed angles with respect to ellipse E.

Finally, we define an indicator function

vðxÞ ¼
1; if x is viewable in the image;
0; otherwise:

�
ð6Þ

Note that for ellipses fit to elongated elliptical or parabolic

Debye–Scherrer rings (see last row of Fig. 7), most points on

fitted ellipse boundaries will not be viewable within the image.

Now we can define an evaluation measure based on the

percentage of angles claimed in ellipse E by points in region

R as

CðR;EÞ ¼

P
�2AðRÞ

v x̂x�ð Þ

P360

�¼ 1

v x̂x�ð Þ

� 100; ð7Þ
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Figure 6
Incremental ellipse detection (IED). Each row shows successive iterations. The first column shows
the current region (in blue). The second column shows the ellipse fitted to this region (in green) and
the third column shows neighbouring regions (in red) close to the current region and also close to
the fitted ellipse. The neighbouring regions are merged into the current region for the next iteration.
The process continues until convergence.



where the numerator counts the total number of unique

viewable angles of ellipse E that are claimed by the points in

region R. The denominator is the total number of viewable

points on ellipse E.

Fig. 9 shows CðR;EÞ values for the ðR;EÞ pairs as the region

is incrementally grown. It can be seen that the CðR;EÞ value is

small when the region is not fully elliptical and large when the

region covers an entire ellipse.

3.1.2. Average points-to-ellipse distance. The second

measure that we use to assess the goodness of fit between

region R and ellipse E is the average

distance of points in R from the

boundary of ellipse E. This can be

computed as

DðR;EÞ ¼
1

jRj

X
x2R

dðxÞ; ð8Þ

where dðxÞ is the Euclidean distance

illustrated in Fig. 8. Fig. 10 displays the

values for DðR;EÞ for three different

ðR;EÞ pairs. It can be seen that the

value is large for poor ellipse fits and

small for good ellipse fits.

3.2. Ellipse evaluation criteria

We use measures of CðR;EÞ and

DðR;EÞ as described in x3.1 to evaluate

the ellipses at certain stages of the IED

algorithm. The following subsections

describe the use of these measures.

3.3. Convergence criteria

Our ellipse growing algorithm is

incremental and iteratively keeps on

merging regions to generate an ellipse

until

(i) either the claimed angle percen-

tage CðR;EÞ is greater than a threshold

value �C ,

(ii) or no more candidate points for

region R are found.

This helps in faster execution by

stopping the ellipse-growing process as

soon as an acceptable level of fitness is achieved.

3.4. Acceptance/rejection criteria

After convergence, it is decided whether an ellipse is valid

or not. This is done by validating ellipses in the following three

ways. A grown ellipse is accepted if

(i) the claimed angle percentage CðR;EÞ is greater than or

equal to a threshold �Cmin, and

(ii) the average distanceDðR;EÞ between region and ellipse

is less than a threshold �D, and

(iii) the length ratio between the major axis and the minor

axis is less than a threshold �R.

The last condition prevents detection of extremely elon-

gated ellipse configurations.

3.5. Ranking of ellipses

Once all valid ellipses are found, it is useful to rank them so

that subsequent processing can be done at a high confidence

level. The ranking is done by sorting all valid ellipses in

ascending order based on their distance values DðR;EÞ. The

ellipse with the lowest average DðR;EÞ value is ranked best.

Fig. 11 shows ranking of ellipses in our results. The numbers
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Figure 7
Different challenges in detection of Debye–Scherrer rings are handled by the proposed IED
algorithm. Significant rings are detected despite beamstop shadows, diffuse scattering, graininess,
blobs and non-orthogonality of detectors.

Figure 8
Geometry for a point x lying close to an ellipse. We deem point x to claim
angle � on the ellipse and x̂x� is the point on the ellipse boundary
corresponding to angle �.



written next to the ellipses indicate the ranks of the respective

ellipses. For all calculations in this paper, the threshold values

were set as �C = 90%, �Cmin = 50%, �D = 10 and �ratio = 2. Notice

that both �C and �Cmin are thresholds on the same measure

CðR;EÞ. Threshold �C is used to decide if an ellipse being

incrementally grown has already become good enough. If so

the IED algorithm stops improving that ellipse further in

order to save time. The other threshold �Cmin is applied once

an ellipse has reached its final form. This final form could be

good or bad. Therefore, all ellipses are thresholded to filter

out badly fitted ellipses.

It can be observed from all results shown so far that, while

good ellipses are detected by our algorithm, there exist some

false detections and also some missed

detections. Both problems are

addressed in the next two sections. It

should be noted, however, that these

improvements are for orthogonal

detectors only and do not apply to

Debye–Scherrer ring images obtained

from tilted detectors.

4. Removal of false detections

As can be seen in the last row of Fig. 11,

there are many ellipses detected. Some

ellipses are true and some are false

detections. These false detections occur

because of noise in the image and/or

very little gap between two ellipses. In

this section, we will describe how to

remove these false detections. This is

done in two phases:

(i) classification of images, i.e.

whether an image comes from an

orthogonal or a tilted detector.

(ii) identification and removal of false

ellipses in images from orthogonal

detectors.

4.1. Classification of images

The false ellipse detections in the last

row of (Fig. 11) belong to a frame issued

by an orthogonal detector only. We can

easily classify whether a pattern comes

from an orthogonal detector or a tilted

one by reviewing the parameters of

the detected ellipses. One can see that

Debye–Scherrer rings for orthogonal

detectors are generally scaled versions

of each other. Therefore, their major-to-

minor axis length ratios are very similar.

This allows us to mark any detected

ellipse with a significantly different ratio

as a false detection.

Specifically, the major-to-minor axis

length ratio is recorded for all detected ellipses. Then we

compute a histogram of these ratios as shown in Fig. 12. The

centre of the histogram bin with maximum count is considered

as the mode of these ratios. By thresholding this mode value,

we are able to decide whether a given image results from an

orthogonal or a tilted detector. The outliers are found and

removed in images from orthogonal detectors only.

4.2. Identification and removal of false detections

A key observation here is that, for orthogonal detectors,

Debye–Scherrer rings are more or less concentric and false

detections can be spread over the span of the detector. Thus,
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Figure 9
Claimed angle percentage CðR;EÞ as R and E are incrementally grown. As the region becomes more
elliptical, the percentage of claimed angles increases.

Figure 10
Average distance to ellipse DðR;EÞ values for three different ðR;EÞ pairs. It can be seen that the
value is large for poor ellipse fits and small for good ellipse fits and is therefore a measure of
closeness between the region and the fitted ellipse.



we want to find a representative centre cc which will represent

the centre of the correct ellipses. By finding the deviation of

each ellipse centre from cc, we can classify whether an ellipse

is an outlier or not. Finding this representative centre cannot

be done using the mean value because the mean is always

sensitive to outliers and false ellipses’ centres are quite far off

from cc.

One might be tempted to use the median which is robust to

outliers. However, such robustness is only when there are

relatively few outliers. When the number of outliers approa-

ches or exceeds the number of inliers, then even the median

does not remain robust.

The mode is a good choice because, as stated earlier, the

centres of outliers are dispersed and the centres of correct

ellipses are close to each other. We use a two-dimensional

histogram for finding the mode of the ellipse centres as shown

in Fig. 13. This mode centre, cc, works as a representative

centre for all correct ellipses.

After finding cc, we calculate the Euclidean distance of all

ellipses’ centres from it. By thresholding the Euclidean

distance, our algorithm automatically decides whether an

ellipse is an outlier or a correct one. Fig. 14 displays images

before and after removal of false detections. After removal,

the remaining ellipses are ranked according to equation (8).

5. Refinement via elliptical family constraint

From the results shown so far, not all Debye–Scherrer rings

are detected by our algorithm. Sometimes valid Debye–
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Figure 11
Top left: two ellipses detected in the presence of blobs and gaps along
contours. Top right: valid ellipses detected for partial Debye–Scherrer
rings. Bottom: detections in the presence of blobs, gaps, beamstop shadow
and densely located Debye–Scherrer rings. Poorly fitted and false
detections receive a lower rank based on equation (8).

Figure 12
Histograms of major-to-minor axis length ratio for orthogonal and tilted
detectors. Most Debye–Scherrer rings in orthogonal detectors are close to
circular and therefore the mode of their axis-length ratios is close to 1.
Tilted detectors have a larger ratio since the rings produced are more
elliptical. This difference can be used to classify the type of the detector.

Figure 13
Two-dimensional histogram of ellipse centres for an orthogonal detector.
The mode of this histogram can be used as a representative centre
location.



Scherrer rings are rejected since the

detected corresponding ellipses fail to

pass all thresholds. This is a trade-off

between correct and missing detections

and cannot be avoided. Although cali-

bration is possible from only a few rings,

it is beneficial to detect as many rings as

possible. For this purpose we note that

Debye–Scherrer rings can be seen as

families of ellipses. For orthogonal

detectors, a family can be obtained from

equally scaled versions of the major and

minor ellipse axes such that their ratio

is preserved. Consider an ellipse e1 =

½e�xx; e�yy; e�; ea; eb�
T with centre ðe�xx; e�yyÞ,

angle e�, half-major axis length ea and

half-minor axis length eb. Its family

members can be generated as ek =

½e�xx; e�yy; e�; kea; keb�
T for k 2 Rþ. This

ensures that all members share the same

centre, angle and shape (i.e. ratio of axis

lengths ea=eb). Note that this definition of a family is not

suitable for non-orthogonal detectors. Therefore, we focus

in this section on Debye–Scherrer rings obtained through

orthogonal detectors only.

For every detected ellipse e, the proposed refinement

involves generating boundary points Ek corresponding to

ellipses ek for different1 k 2 Rþ. For each such ellipse, we find

the set Rk of Debye–Scherrer ring pixels that intersect the

boundary Ek. Finally, the validity of set Rk as a Debye–

Scherrer ring can be determined by thresholding the ratio

jRkj=jEkj.

A large interval in scales k may cause our algorithm to miss

some available ellipses because of the unavailability of inter-

sections. This problem can be alleviated by using a smaller

interval between scales but this leads to redundant detections.

Therefore, it is important to post-process the results. For this,

we compare the geometric representations of ellipses. Speci-

fically, two ellipses e1 and e2 are considered distinct if

the absolute difference je1i � e2ij for any component

i 2 f�xx; �yy; �; a; bg is greater than the corresponding threshold �i.

If all five absolute differences are within their thresholds, then

only one ellipse out of e1 and e2 is retained.

Fig. 15 displays refinement steps on orthogonal detector

patterns using the family constraint. It can be noticed that the

refinement procedure recovers almost all Debye–Scherrer

rings that could have been recovered manually. Since the

constraint is valid for orthogonal detectors only, refinement

results for non-orthogonal detectors are obviously not so good

and this is demonstrated in Fig. 16.

6. Comparisons

6.1. Comparison with the method by Rajiv et al.

The work of Rajiv et al. (2007) extracts Debye–Scherrer

rings for orthogonal detectors only under rather restrictive

assumptions using a modified Hough transform. Since a 5D

Hough transform for ellipse detection is computationally

demanding, the authors suggest to decompose the Hough

transform in order to work in 1D only. This is achieved by

making the following restrictive assumptions:
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Figure 14
Left: result of IED algorithm with false detections. Right: false detections eliminated by removing outliers with respect to ellipse centres. The remaining
ellipses are ranked again according to equation (8).

Figure 15
Refinement via family constraint for the four different Debye–Scherrer ring images. The top row
shows results of the IED algorithm, the middle-row shows results of refinement via family constraint
and the bottom row shows the merged results.

1 k ’ 1 is avoided to prevent duplicate detections.



(i) All Debye–Scherrer rings share the same centre.

(ii) The centre of the Debye–Scherrer rings has to be within

the image.

(iii) The centre of the ellipse has to be close to the centre of

the image.

In addition, their algorithm also depends on carefully

chosen radii for Debye–Scherrer rings and this selection of

radii is not automatic.

In contrast, our algorithm does not make any of these

restrictive assumptions and does not use prior information of

the sample or diffraction setup. Our algorithm is able to detect

partial Debye–Scherrer rings with centres located outside the

image which is often the case when non-orthogonal detectors

are used. Fig. 17 compares the result of our algorithm on two

of the images used by this method (Rajiv et al., 2007). Our

algorithm was able to detect all the Debye–Scherrer rings

available in the image.

6.2. Comparison with the method by Cervellino et al.

Cervellino et al. (2006) describe a method to identify

ellipses with Debye–Scherrer rings imposing the following two

constraints:

(i) Images should be taken from an (almost) orthogonal

detector.

(ii) The sample-to-detector distance should be known.

The Debye–Scherrer rings resulting from such detectors are

nearly circular and most of the rings are completely visible in

the images they show. In contrast, the algorithm we propose

can work for orthogonal as well as for tilted detectors and does

not require any parameter specific to the sample or detector.

Fig. 18 compares results of method by Cervellino et al.

(2006) with the result of our proposed method on two Debye–

Scherrer ring images. Our algorithm was able to detect all the

Debye–Scherrer rings available in the image.

6.3. Comparison with the methods by Hart et al.

A method for calibration using manually extracted Debye–

Scherrer rings and minimal a priori knowledge of the cali-

bration setup is presented by Hart et al. (2013). Since the

extraction of the rings is carried out manually, the method

is not directly comparable with our automatic method. In
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Figure 17
Comparison with Rajiv et al. (2007). Our algorithm recognizes a number
of ellipses higher than their method. As we could work only on the images
extracted from the PDF file of Rajiv et al.’s paper, we had to slightly adapt
our pre-processing to it.

Figure 18
Comparison with the method by Cervellino et al. Our algorithm was able to detect all the Debye–Scherrer rings available in the image.

Figure 16
Refinement via orthogonal family constraint is not very useful for non-
orthogonal detectors which yield highly eccentric Debye–Scherrer rings.



a separate work, Hart & Drakopoulos

(2013) provide a procedure for fitting

an ellipse to complete as well as spotty

rings. This method is based upon an

approximate ellipse centre, identifica-

tion of peak locations along each radial

direction of the ring and the weighted

least-squares algebraic fit of an ellipse.

They define circular annuli (a ring-

shaped region bounded by two concen-

tric circles) such that each diffraction

ring lies completely within its own

annulus. This definition of annuli

is based on the approximate peak loca-

tions. While finding approximate peak

locations, false positives may exist in the

case of spotty rings. In this case, the

authors let the reader decide whether

the best fit of an ellipse is representative

of the underlying data or not.

In the case of tilted detectors, it is recommended to use

elliptic annuli instead of circular ones. The selection of elliptic

annuli again depends on approximate instrument calibration

parameters. An underlying assumption is that this mechanism

will work on orthogonal and slightly tilted Debye–Scherrer

rings only. In contrast, our method does not make any

assumption and also works for a wider range of tilted Debye–

Scherrer rings.

7. Conclusion

We have proposed a new ellipse extraction method which

is specialized in the automatic detection of Debye–Scherrer

rings in 2D XRPD patterns. This method provides a

mechanism to detect complete as well as partial Debye–

Scherrer rings in a given image. The first part of our algorithm,

called Incremental Ellipse Detection (IED), starts by

grouping connected contours to find small elliptic arcs. Then

it gradually generates full ellipses by grouping unconnected

elliptic arcs in an incremental way. In the second step, these

initial results are refined by removing false positives and

recovering missed detections by finding families of detected

ellipses. These refinements are applicable to orthogonal

detectors in which Debye–Scherrer rings appear in elliptical

shapes. For non-orthogonal detectors, the rings can appear in

parabolic or even hyperbolic shapes. Refinement of results for

these cases requires further insights and is left as future work.

We also provide measures for evaluating the goodness of fit

between points representing Debye–Scherrer rings and the

ellipses fitted to them. Every fitted ellipse is evaluated based

on the angular coverage of the fitted portion and on the

average distance of the points to the fitted ellipse. This allows

the experimenter to rank and choose from the detected

ellipses based on a numerical criterion. The proposed method

for automatic detection of Debye–Scherrer rings can drama-

tically accelerate the calibration process for batches of

diffraction images. MATLAB code for the proposed algorithm

can be downloaded from https://github.com/saadiasm/dsr/

archive/master.zip.

APPENDIX A
Table of sources

Details of detectors and beamlines used to collect data for use

in this paper are presented here in Table 1.

APPENDIX B
Incremental ellipse detection (IED) algorithm

Pseudo-code of the algorithm discussed in x2 is shown here

in Fig. 19.
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Figure 19
The incremental ellipse detection (IED) algorithm.
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