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GAPD, a graphics-processing-unit (GPU)-accelerated atom-based polychro-

matic diffraction simulation code for direct, kinematics-based, simulations of

X-ray/electron diffraction of large-scale atomic systems with mono-/polychro-

matic beams and arbitrary plane detector geometries, is presented. This code

implements GPU parallel computation via both real- and reciprocal-space

decompositions. With GAPD, direct simulations are performed of the reciprocal

lattice node of ultralarge systems (�5 billion atoms) and diffraction patterns of

single-crystal and polycrystalline configurations with mono- and polychromatic

X-ray beams (including synchrotron undulator sources), and validation,

benchmark and application cases are presented.

1. Introduction

X-ray/electron diffraction is widely used to characterize

microstructure at the lattice level. Diffraction simulations are

useful in experimental design and interpretation (Bristowe &

Sass, 1980; Budai et al., 1983; Derlet et al., 2005; Hawreliak

et al., 2006; Brandstetter et al., 2008; Liu et al., 2014; Wang et al.,

2015; E et al., 2015; Huang, 2010; Sun & Fezzaa, 2016). To

correlate diffraction signatures with real structure character-

istics such as defects, impurities, precipitates and finite grain

size, direct atomic-based simulations of diffraction or reci-

procal-space mapping are useful. The capability to simulate

directly diffraction patterns of large atomic structures (billion

atoms and more) with arbitrary configurations is highly

desired. For example, size- and strain-induced diffraction peak

broadenings of nanocrystalline solids under deformation are

always intertwined (Gleiter, 1989, 2000; Revesz et al., 1996;

Ungár, 2001; Budrovic et al., 2004; Barabash & Ice, 2014).

In order to decouple these two effects, knowledge of the

minimum size, above which size-induced broadening can be

neglected, would be helpful but the exact value is still under

debate.

Given the heavy amount of direct calculations from atomic

configurations, the system size is quite limited. To improve

computation speed, a method was proposed to implement fast

Fourier transformation (FFT) with the assumption that elec-

tron density distribution is a sum of Gaussian profiles for each

atomic position (Kimminau et al., 2008). One issue is related to

the FFT sampling grid, in particular regarding choosing the

parameters of Gaussian functions for different configurations.

Besides possible artifacts induced by the Gaussian assump-

tion, FFT in reciprocal space is limited to a triperiodic grid,

inappropriate for simulations of curved surfaces (Ewald

spheres) (Favre-Nicolin et al., 2011). Currently, direct
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diffraction simulations for systems consisting of millions of

atoms are performed by the central processing unit (CPU)

MPI (Message Passing Interface) parallel diffraction package

(Coleman et al., 2013, 2014) integrated in the Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS)

(Plimpton, 1995), or with the stand-alone CPU MPI parallel

code SLADS (Chen et al., 2017) and single-node graphics

processing unit (GPU) CUDA (Compute Unified Device

Architecture) parallel computations (Favre-Nicolin et al.,

2011). For the CPU parallel code, calculations involving 108

atoms and 105 points in reciprocal space are still time-

consuming (Chen et al., 2017).

For high and ultrahigh strain rate dynamic loading experi-

ments, real-time in situ X-ray diffraction represents a highly

promising development at synchrotron radiation (Turneaure

et al., 2009; Luo et al., 2012; Fan et al., 2014; Hudspeth et al.,

2015; Fan et al., 2016) and X-ray free-electron laser (Briggs

et al., 2017) facilities. Unlike traditional quasi-static diffraction

experiments performed with monochromatic X-ray beams

(bandwidth ’ 10�4), higher-bandwidth ‘pink’ beams (band-

width > 10�2) (Hudspeth et al., 2015; Fan et al., 2016; LCLS,

2017) are used for dynamic experiments, allowing more

photons in a short exposure time (fs to ms).

Simulation codes for traditional polychromatic Laue

diffraction have been developed to find the position and peak

intensity of a Laue spot (Huang, 2010) and to correlate the

spot shape with a given slip system (Tamura, 2014). Different

from atom-based diffraction simulations, only the unit-cell

structure is normally considered to represent a whole system

in these codes. As a result, it is difficult to properly describe

diffraction patterns of complex heterogeneous micro-

structures with varying grain sizes, shapes, strain gradients and

phases as in real experiments.

Atom-based diffraction calculations for polychromatic

beams require considerable computing resources compared

with those for monochromatic beams since more wavelengths

need to be considered. For a calculation of 108 atoms and 105

q-points, and a spectrum with 100 wavelengths, the computa-

tion time is 100 times that of monochromatic cases, which is

largely unacceptable for a CPU cluster. On the other hand, the

implementation of GPU may lead to tens to hundreds of times

of acceleration from purely CPU-based calculations.

In this work, we present GAPD (http://www.pims.ac.cn/

Resources.html), a GPU-accelerated atom-based polychro-

matic diffraction simulation code for direct, kinematics-based,

simulations of X-ray/electron diffraction of large-scale atomic

systems with mono-/polychromatic beams and arbitrary plane

detector geometries. This code implements GPU parallel

computation via both real- and reciprocal-space decomposi-

tions, and runs on a multi-node GPU cluster. With GAPD, we

perform direct simulations of the reciprocal lattice node of

ultra-large systems (�5 billion atoms), obtain diffraction

patterns of single-crystal and polycrystalline configurations

with mono- and polychromatic X-ray beams, and present

validation, benchmark and application cases.

2. Methodology

2.1. Reciprocal-space representation

Lattice points in reciprocal space as well as the diffraction

geometry are shown in Fig. 1(a) for face-centered-cubic single-

crystal Cu (blue); only a small portion is displayed for clarity.

Here O is the origin of the reciprocal space, and A is the center

of the Ewald sphere with a radius of ��1, with � being the

wavelength of the incident beam. k0 = AO is the incident wave

vector, and k = AB is the diffracted wave vector, and the angle

between k0 and k is 2�. B is a reciprocal lattice point that

intersects the Ewald sphere, satisfying Bragg’s law (Warren,

1969; Hammond, 2009),

2dhkl sin � ¼ n�; ð1Þ

where dhkl is the crystal interplanar spacing. q = OB is the

reciprocal lattice vector or scattering vector, defined as

q ¼
ðs� s0Þ

�
¼ k� k0; ð2Þ
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Figure 1
Diffraction and detection geometries used by GAPD in (a) reciprocal space and (b) real space.



where s and s0 are unit vectors representing the scattered and

incident beam directions, respectively. In addition,

q ¼ jqj ¼
2 sin �

�
: ð3Þ

An iso-2� circle on the Ewald sphere, centered at C, defines

the azimuthal angles (�). For lattice point B, BC ? AO; � = 0

(CD) is defined by the user. Here the direction of CD is

referred to as the transverse direction in GAPD.

GAPD provides two modes for reciprocal-space construc-

tion. For the reciprocal space (RS) mode, one specifies the

range and spacing of reciprocal lattice vectors along three

reciprocal space axes, qx, qy and qz. In the Ewald sphere (ES)

mode, one specifies the direction of the incident beam, the

transverse direction and the range and spacing of 2� and �, so

only the reciprocal space points on an Ewald sphere are

sampled.

2.2. Calculation of scattering intensity

The diffraction intensity I of N atoms at scattering vector q

is the product of structure factor FðqÞ with its complex

conjugate, F �ðqÞ (Warren, 1969),

IðqÞ ¼
F �ðqÞFðqÞ

N
; ð4Þ

with

FðqÞ ¼
PN
j¼ 1

fj exp 2�iq � rj

� �
: ð5Þ

Here, rj is the position of the jth atom in real space. fj is the

atomic scattering factor to describe the scattering amplitude

contributed by atom j at a scattering angle 2�, and is para-

meterized as

fj

sin �

�

� �
¼
X4

i

ai exp �bi

sin2 �

�2

� �
þ c ð6Þ

for X-ray scattering and

fj

sin �

�

� �
¼
X5

i

ai exp �bi

sin2 �

�2

� �
ð7Þ

for electron scattering. Parameters a, b and c have been

tabulated for the majority of elements (Fox et al., 1989; Peng

et al., 1996). Here the kinematical approximation is used,

which assumes full coherent scattering (Vartanyants &

Robinson, 2001). Different X-ray sources have different

coherence properties. For example, an X-ray free-electron

laser has significantly higher coherence than synchrotron

radiation (Geloni et al., 2010; Vartanyants et al., 2011;

Vartanyants & Singer, 2016), and there exists a coherence

effect on diffraction (Vartanyants & Robinson, 2001). This

effect will be included in a future version.

The Lorentz-polarization factor (Warren, 1969) for X-ray

diffraction,

Lpð�Þ ¼
1þ cos2 2�

cos � sin2 �
; ð8Þ

can be considered as an optional parameter in GAPD. Then

the X-ray diffraction intensity IxðqÞ follows as

IxðqÞ ¼ Lpð�Þ
FðqÞF �ðqÞ

N
: ð9Þ

Developed in the C++ language, the parallelization of GAPD

is achieved by combining CUDA with MPI for its imple-

mentation on GPU high-performance computing clusters.

We consider Na atoms and Nq scattering vectors in reciprocal

space. Parallelization is realized in both real space (in terms of

atoms) and reciprocal space (in terms of q points).

Firstly, atoms are distributed over M MPI CPU threads,

each of which contains Np atoms, i.e.

Na ¼
PM
p¼1

Np: ð10Þ

For each CPU thread, Nq structure factor calculations need to

be performed. For each q,

FlðqÞ ¼
X�l
p¼1

Np

j¼ �l�1
p¼1

Np

� �
þ1

fj exp 2�iq � rj

� �
: ð11Þ

Here, the CPU thread ranked l deals with the atoms labeled

from ð�l�1
p¼1NpÞ þ 1 to ð�l

p¼1NpÞ.

Then, the calculations of FlðqÞ for the Nq scattering vectors

are distributed over Nq CUDA GPU threads. The results are

copied to CPU from GPU when a calculation is finished, and

then saved into an array of dimension Nq. When all the

threads finish their own calculations, the MPI master thread

sums individual FlðqÞ in the array as

FðqÞ ¼
PM
l¼ 1

FlðqÞ: ð12Þ

2.3. Projection from reciprocal space to 2D detector

For the sake of simulating diffraction patterns in synchro-

tron experiments, GAPD calculates the projection of diffrac-

tion wave vectors to a two-dimensional (2D) detector in an

arbitrary position. The geometry in real space is shown in

Fig. 1(b); xyz denotes the sample coordinate system or

laboratory coordinate system (these two systems coincide),

while dxdy denotes the detector plane. The coordinates of the

scattered beam on the detector are expressed as

ðxproj; yprojÞ ¼ ð px þM � d̂xdx; py þM � d̂ydyÞ; ð13Þ

where Pð px; pyÞ is the point of normal incidence on the

detector. d̂xdx and d̂ydy are unit vectors of the detector axes. M is

the projecting vector of the scattered beam in the sample

coordinate system, and

M ¼
jLj2

L � s
s� L; ð14Þ

where L is parallel to the normal incident direction and

jLj is the sample-to-detector distance. The unit vector of the

scattered beam s can be obtained from q, s0 and � with

computer programs

606 E, Wang, Chen, Zhang and Luo � GAPD: a GPU-accelerated diffraction code J. Synchrotron Rad. (2018). 25, 604–611



equation (2). In GAPD, dx is assumed to be always parallel to

the xy-plane, and thus d̂xdx and d̂ydy can be derived from L as

d̂xdx ¼ ðLy;�Lx; 0Þ L2
y þ L2

x

� ��1=2
;

d̂ydy ¼
d̂xdx� L

jd̂xdx� Lj
:

ð15Þ

In this way, user-defined input includes (i) the coordinates of

the point of normal incidence on the detector, (ii) the normal

incident direction, (iii) the sample-to-detector distance, (iv)

the beam incident direction, and (v) the wavelength of the

probe beam. The first four items are defined in the sample

system. Then, each q point constructed in reciprocal space can

be projected onto an arbitrarily positioned 2D detector. In

GAPD, the beam incident direction and normal incident

direction can be input as vectors in the sample coordinate

system, or the angles with the xy-plane (�1 and �2) and their

orthogonal projections with the y-axis (�1 and �2).

For a polychromatic beam, the intensity at a specific posi-

tion on a 2D detector, Ið2�; �Þ, is the weighted integration

over the incident beam wavelength range, [�0; �1],

Ið2�; �Þ ¼
R�1

�0

Ið2�; �; �Þwð�Þ d�: ð16Þ

Here wð�Þ is the weight factor, e.g. the flux fraction of the

incident beam. Each set of (2�; �; �) corresponds to a scat-

tering vector q.

3. Validation and benchmark

GAPD is validated with electron/X-ray diffraction simulations

of single-crystal Cu with various geometries. The detector is

set to be perpendicular to the incident beams. The crystal

coordinate system coincides with the sample coordinate

system. We examine the following cases for the sake of vali-

dation: an electron beam (200 keV) with zone axes ½001� and

½�1111�, 18.86 keV X-rays with zone axis ½100�, and 8.91 keV

X-rays with zone axis ½111�. Their corresponding 2D diffrac-

tion patterns are shown in Fig. 2, and are identical to standard

indexed diffraction patterns and analytical predictions

(Williams & Carter, 1996).

With the implementation of GPU acceleration, reciprocal-

space mapping and 2D diffraction simulations of atomic

systems with several billion atoms become realistic. We use

GTX 980 GPUs, and each cluster node contains three GPUs.

To evaluate the computing performance of GAPD, several

tests with varying number of atoms (Na), number of q points

(Nq) and number of GPU cluster nodes (Nnodes) are performed

(Fig. 3).

As shown in Fig. 3(a), the computing time increases linearly

as Na increases at fixed Nnodes (9) and Nq (1:3� 105). For

instance, the computation time is about 5 h for a system of

5.4 billion atoms, which corresponds to a cube-shaped Cu

single crystal with edge length of 400 nm. The computing

efficiency increases with increasing Nq [Fig. 3(b)]; the lower

efficiency at small Nq is likely to be due to insufficient use of

GPU cores. The reciprocal and linear relations in Figs. 3(c)

and 3(d), respectively, indicate satifactory parallelization

efficiency of GAPD.

4. Application cases

The main features of GAPD, including reciprocal-space

visualization, simulation of 2D diffraction patterns on an

arbitrarily positioned detector, and considering polychromatic

beams, are illustrated with the following three cases: the

crystal size effect on reciprocal lattice nodes, the poly-

chromaticity effect on single-crystal diffraction, and the

polychromaticity effect on polycrystalline diffraction.

4.1. Crystal size effect on node-broadening in reciprocal
space

It is well known that diffraction spot broadening becomes

significant for small crystals. But an open question is how small

is small? The lower bound above which crystal size-induced

broadening can be neglected is still controversial, ranging

from 100 nm (Warren, 1969) to 500 nm (Ungár, 2001). A direct

simulation of such broadening with GAPD is instrumental for

this matter.

A diffraction pattern measured in experiments is essentially

a sampling of the Fourier or reciprocal-space representation of

a specimen. Therefore, the node broadening in reciprocal

space can be used to examine the size effect, without consid-

eration of diffraction geometry and X-ray wavelength. A 3D

node in reciprocal space is more appropriate to reflect the size
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Figure 2
2D diffraction patterns calculated for Cu single crystals with X-rays or
electrons along different zone axes: (a) 200 keV electrons, z = ½001�,
(b) 200 keV electrons, z = ½�1111�, (c) 18.86 keV X-rays, z = ½100� and
(d) 8.91 keV X-rays, z = ½111�.



effect than a 2D diffraction pattern, since the latter only

samples a slice of the former.

Cube-shaped, defect-free, Cu single crystals with an edge

length ranging from 4 nm to 400 nm are constructed, and

examined in reciprocal space. The region around the (1�113)

reciprocal lattice node of a 4 nm crystal is shown in Fig. 4(a),

along with the relrods due to the small crystal size. In Fig. 4(b),

the perimeter of the node is of a cube shape with round

corners, which is more evident in the contour plot of the center

cross-section of the node [Fig. 4(c)]. When an Ewald sphere

intersects the node, the resulting intersection (a curved

surface) depends on the diffraction geometry and X-ray

wavelength, and may vary considerably. Consequently, one

may obtain diffraction spots of different sizes and shapes, and

thus different diffraction broadening for the same reflection

plane, so diffraction patterns are less appropriate for such

analysis.

For each crystal size, we obtain three reciprocal lattice

nodes, (1�111), (1�113) and (002). For each node, we obtain the

intensity profile along the qx-direction on the central qxqy-

plane which cuts through the node center. The qx profiles are

fitted with a pseudo-Voigt function,

y ¼ y0 þ A

(
mu

2

�

!

4ðx� xcÞ
2
þ !2

þ 1�muð Þ

ffiffiffiffiffiffiffiffiffiffi
4 ln 2
p ffiffiffi
�
p

!
exp �

4 ln 2

!2
x� xcð Þ

2

� �)
: ð17Þ

Here x and y refer to 2� and the scattering intensity, respec-

tively; y0 is offset, mu is a profile shape factor, xc is the peak

center, A is the peak area and ! is the full width at half-

maximum (FWHM).

The FWHM of an intensity profile can be used to char-

acterize node broadening or diffraction peak broadening. The

fitted FWHMs are presented in Fig. 5 as a function of crystal

size, which can be described with a reciprocal function. The

FWHM versus crystal size curves are nearly identical for the

three reciprocal-space nodes. The FWHM decreases rapidly

with increasing crystal size and approaches zero asymptoti-

cally. For a moderately high reciprocal resolution in experi-

ments, �q=q ’ 10�3 (Lienert et al., 2017). The corresponding

�q values are 4:8� 10�4, 5:5� 10�4 and 9:1� 10�4 Å�1 for

(1�111), (002) and (1�113), respectively. For FWHM values below

the resolution �q, the peak broadening is deemed negligible.

Then, the minimum crystal size beyond which peak broad-

ening can be neglected ranges from 110 to 208 nm for the

three reciprocal lattice nodes investigated. For most metals,

q of diffraction index 	5 ranges from 0.2 to 1.65 Å�1. Then

minimum crystal sizes can be deduced from the reciprocal

relation between FWHM and crystal size, ranging from 60 nm

to 500 nm.

4.2. Diffraction of small single crystals with polychromatic
X-rays

To evaluate the effect of polychromaticity on the diffraction

of small single crystals, we simulate diffraction patterns of Cu

single crystals with four different sizes: 4 nm, 14 nm, 36 nm
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Figure 3
Computing performance of GAPD: computation time/speed as a function of number of atoms, number of q points and computing nodes as noted.
Computation speed: NaNq per second.



and 100 nm. X-rays are incident perpendicularly on the (112)

plane. We choose the first harmonic of undulator U18G13

(period = 18 mm, gap = 13 mm) at the Advanced Photon

Source (APS) 32-ID beamline (Fan et al., 2016) as the poly-

chromatic X-ray source [Fig. 6(a)]; its spectral flux peaks at

24.65 keV or �c = 0.5029 Å. As a reference, we also simulate

the diffraction for monochromatic X-rays with a wavelength of

�B = 0.5366 Å satisfying Bragg’s law in the same geometry.

�B is indicated by the red dot in Fig. 6(a). The simulated

diffraction patterns are plotted as the �–2� plot in Fig. 6(b),

and diffraction curves in Fig. 6(c), for diffraction spot (13�11).

For the 4 nm single crystal, diffraction spot (13�11) is circular

on the �–2� plot in the case of the monochromatic X-rays

[Fig. 6(b)]. However, the corresponding diffraction spot for

the polychromatic source is elliptical, elongated along the 2�

computer programs
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Figure 4
(a) 3D visualization of reciprocal lattice node (1�113) enclosed in the red
cube, along with the relrods due to the small crystal size (4 nm). (b)
Enlarged view of the (1�113) node in (a). (c) Cross-sectional contour plot of
a slice through the node center along the qxqy-plane.

Figure 5
FWHM of intensity profiles of reciprocal lattice nodes versus crystal size
for three reciprocal-space nodes.

Figure 6
(a) X-ray spectrum of the first harmonic of the U18 undulator with a gap
of 13 mm at the APS beamline 32-ID (APS U18G13). (b) The �–2� plots
of diffraction spot ð13�11Þ from 4 nm single-crystal Cu for monochromatic
X-rays (�B = 0.5366 Å), and (c) for polychromatic X-rays with APS
U18G13. (d) Diffraction profiles along 2� through the center of the ð13�11Þ
diffraction spot of single Cu obtained with the polychromatic source, for
various crystal sizes. The black arrow denotes the Bragg peak position.



direction [Fig. 6(c)], and its center shifts by 0.6
 toward lower

angle.

The intensity versus 2� profiles through the center of

diffraction spot (13�11) formed with the polychromatic source

are presented in Fig. 6(d) for various crystal sizes. There is an

increasing broadening and peak shift toward lower 2� with

decreasing grain size. Essentially, the broadening in the 2�
direction is induced by the crystal size effect discussed in x4.1,

while multiple wavelengths do augment the broadening.

For a monochromatic beam, the Ewald sphere can only

sample a small portion of a reciprocal lattice node, while the

node intersects with multiple Ewald spheres for a polychro-

matic beam. A broader bandwidth indicates a larger portion to

be sampled by Ewald spheres of different radii, and, thus,

more pronounced broadening. As shown above, the size of a

reciprocal lattice node increases with decreasing crystal size.

The size and intensity of a diffraction spot is the combined

result of crystal size (node dimensions) and multiple wave-

lengths (polychromaticity; multiple Ewald spheres).

The Ewald sphere corresponding to the Bragg wavelength

intersects the center of a reciprocal lattice node with the

highest intensity for small crystals. Since the intensity at a pixel

on the detector is an integration of contributions from

different localities of a node weighted by the flux amplitudes

of corresponding wavelengths, non-Bragg wavelengths with

higher fluxes may still lead to the highest diffraction intensity,

and thus a peak shift.

4.3. Diffraction of nanocrystalline solids with polychromatic
X-rays

A nanocrystalline Cu structure consisting of 250 randomly

oriented grains with a mean grain size of 8 nm is examined.

Figs. 7(a)–7(d) present 2D diffraction patterns obtained with

monochromatic X-rays (wavelength �c = 0.5029 Å, 0%

bandwidth), polychromatic X-rays with a Gaussian-shaped

spectrum (centered at �c, 4% bandwidth), the APS U18G13

undulator source with single harmonic shown in Fig. 6(a)

(spectral flux peak at �c, �8% bandwidth) and the APS

U33G25 undulator source with multiple harmonics, respec-

tively. The X-ray spectrum for APS U33G25 is shown in

Fig. 7(e). With increasing bandwidth, the diffraction spots on

Debye–Scherrer rings become stretched along the 2� direc-

tion. The broadening can be simply explained by Bragg’s law

[equation (1)]. For a polycrystalline solid with random grain

orientations and sufficient number of grains, the incident angle

of X-rays relative to the same group of crystal planes, �, can be

arbitrary. Thus, for fixed dhkl, the number of � angles that

satisfy Bragg’s law increases with increasing number of

wavelengths or bandwidth.

We integrate azimuthally the 2D diffraction patterns, and

obtain 1D diffraction curves in Fig. 7( f), each normalized by

its maximum intensity. Both diffraction curves from the

Gaussian and APS U18G13 spectra are broadened along the

2� direction, and the peak shapes are similar to their corre-

sponding X-ray spectra. However, the {111} and {200} peaks

shift by 0.14–0.26
 toward higher 2� for the APS U18G13

spectrum, while no peak shift is seen for the Gaussian spec-

trum. The difference is caused by the asymmetry or symmetry

of their respective spectra.

The finite grain size leads to diffraction peak broadening in

the 2� direction for each wavelength in a polychromatic beam,

since the broadened nodes in reciprocal-space representation

of the nanocrystalline Cu allow their intersection with Ewald

spheres of different radii. As a result, summing those broad-

ened peaks (for each wavelength) over the asymmetric APS

U18G13 spectrum does not necessarily lead to the maximum

intensity at �c, where the spectral flux peaks.

For multiple harmonics [APS U33G25; the green curve in

Fig. 7( f)], both the {111} reflection from the second harmonic

and the {220} reflection from the third harmonic contribute to

the diffraction peak. The ‘plateau’ following the peak is due to

the {200} reflection from the second harmonic and {311} from

the third harmonic. Thus, the overlap of diffraction intensities

from different crystal planes and different harmonics renders

it difficult to analyze diffraction peaks with conventional

methods. At present, simulating diffraction patterns with

forward simulation codes such as GAPD in comparison with
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Figure 7
2D diffraction patterns of a 250 grain polycrystalline system for (a)
0.5029 Å monochromatic X-rays, (b) polychromatic X-rays with a
Gaussian-shaped spectrum, (c) the first harmonic of APS undulator
source U18G13, and (d) the first three harmonics of APS undulator
source U33G25. (e) X-ray spectrum of APS U33G25. ( f ) Corresponding
diffraction curves.



experiments is useful for interpreting multiple-harmonic

diffraction data of poly/nanocrystalline solids.

5. Conclusions

We present a GPU-accelerated parallel simulation code,

GAPD, for simulating electron/X-ray diffraction with mono-/

polychromatic beams directly from atomic configurations.

Diffraction simulation on super-large systems (�5 billion

atoms) is demonstrated, and the system size can be scaled up

by a factor of 10–100 on more powerful clusters. GAPD is

utilized to explore the crystal size effect on node-broadening

in reciprocal space, and the influence of polychromaticity on

peak-broadening of single-crystal and polycrystalline nano-

materials.

In particular, (i) for a moderately high reciprocal resolution

(�q=q ’ 10�3), peak-/node-broadening can be neglected for

crystal size above 500 nm. Precise minimum crystal sizes

depend on (hkl) and q-resolution.

(ii) For small single crystals, polychromatic beams with

asymmetric spectra induce peak shift and broadening in the

2�-direction, which diminish with increasing crystal size.

(iii) For polycrystalline solids, a diffraction peak is

broadened by a polychromatic beam, and its shape follows

that of the beam spectrum. Asymmetric spectra induce both

peak broadening and shift.
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