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A dose integral of time-dependent X-ray absorption under conditions of

variable photon energy and changing sample mass is derived from first principles

starting with the Beer–Lambert (BL) absorption model. For a given photon

energy the BL dose integral D(e, t) reduces to the product of an effective time

integral T(t) and a dose rate R(e). Two approximations of the time-dependent

optical density, i.e. exponential A(t) = c + aexp(�bt) for first-order kinetics and

hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL

dose evaluation. For both models three methods of evaluating the effective time

integral are considered: analytical integration, approximation by a function, and

calculation of the asymptotic behaviour at large times. Data for poly(methyl

methacrylate) and perfluorosulfonic acid polymers measured by scanning

transmission soft X-ray microscopy were used to test the BL dose calculation. It

was found that a previous method to calculate time-dependent dose under-

estimates the dose in mass loss situations, depending on the applied exposure

time. All these methods here show that the BL dose is proportional to the

exposure time D(e, t) ’ K(e) t.

1. Introduction

When a sample is illuminated by X-rays, it takes up the energy

of those X-ray photons that are absorbed by the sample. The

ratio of the absorbed energy, E, to the mass, M, that absorbs

this energy is called the dose: D = E=M. If the absorbed energy

does not affect the sample in any way and is time independent,

then the estimate of the dose is straightforward: one measures

the absorbed energy E, the absorbing mass M (hereafter just

sample mass) and finds their ratio. In soft X-ray absorption

spectromicroscopy (the example used in this paper), the

absorbed energy depends on the X-ray photon energy e. In

addition, if the chemical properties of the sample change when

radiation is applied, then both the absorbed energy E and

the sample mass M are time dependent. When the absorbed

energy depends on time t and photon energy e, and the sample

mass depends on time due to mass loss, the correct dose

calculation is less straightforward.

The above problem is common in a series of important

applications employing X-rays as a tool for obtaining chemi-

cally sensitive structural information for materials. Typical

experiments include characterization of complex materials

such as polymers (Urquhart et al., 1999), organic semi-

ISSN 1600-5775

# 2018 International Union of Crystallography

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577518002655&domain=pdf&date_stamp=2018-03-28


conducting films (Watts et al., 2012; Schuettfort et al., 2012;

Collins & Ade, 2012), electrode components of fuel cells

(Berejnov et al., 2013) and biological species (Hitchcock et al.,

2012) using near-edge X-ray absorption fine-structure spec-

troscopy (NEXAFS) (Ade & Hitchcock, 2008; Stöhr, 1992),

which is the basis for chemical contrast in scanning transmis-

sion soft X-ray microscopy (STXM) (Kaznatcheev et al., 2007;

Kilcoyne et al., 2003). All the above materials are prone to

damage from soft X-ray irradiation. Another type of experi-

ment where dose calculation is important is in quantitative

studies of chemical change caused by soft X-ray irradiation

(Leontowich, 2013; Tzvetkov et al., 2014; van Schooneveld &

DeBeer, 2015; Coffey et al., 2002; Wang, Morin et al., 2009;

Beetz & Jacobsen, 2003; Wang, Botton et al., 2009). Such

studies help understand radiation damage mechanisms, both

from a fundamental perspective (Howells et al., 2009; Leon-

towich et al., 2011, 2016; Hitchcock et al., 2005) and for prac-

tical applications, such as chemical patterning (Wang, Stöver,

Hitchcock & Tyliszczak, 2007; Zhang et al., 1995; Leontowich

et al., 2012, 2013; Wang et al., 2007; Leontowich & Hitchcock,

2011) and X-ray lithography (Leontowich & Hitchcock, 2011;

Leontowich, 2012, 2013). The third type of experiment is

protein crystallography where hard X-ray damage is an

important obstacle for obtaining the structures of protein

crystals (Kmetko et al., 2006; Borek et al., 2010; Paithankar &

Garman, 2010; Sliz et al., 2003). In all these experiments, if the

radiation dose to the sample is significant, then both the

material and the absorbed energy change with time, and the

resulted dose is time dependent, affecting the interpretation of

the results.

Is there a generalized mathematical framework able to

describe the time-dependent dose in such cases? After

reviewing the literature (Stolz & Bernhardt, 1981; Pikaev,

1975; Aglincev, 1957; Seltzer et al., 2011; Attix, 1986; Kase &

Nelson, 1978) we were not able to find a rigorous general

approach for dose calculation when there is significant varia-

tion of the absorbed energy and the sample mass with time.

This paper develops a general approach and applies it to the

case where the irradiation changes of soft X-ray absorption

occur with time and are measured by STXM.

STXM measures transmission images of the sample that are

converted to optical density images characterizing the local

optical density Aðe; tÞ, also called OD. The absorbed energy

Eðe; tÞ and the mass MðtÞ are functions of the optical density

Aðe; tÞ, where all three functions have an instantaneous

meaning. Therefore, the correct dose calculation must be

formulated in terms of an integral of an instantaneous dose.

Despite the lack of a general approach for time-dependent

dose calculations, there have been several attempts (Leonto-

wich et al., 2012; Wang, Morin et al., 2009; Wang, Botton et al.,

2009; Wang, Stöver, Hitchcock & Tyliszczak, 2007) using a

simplified dose calculation. In these cases the absorbed energy

Eðe; tÞ was assumed to be time- and photon-energy-depen-

dent, while the sample mass M was considered to be constant.

Hereafter, for simplicity, we will call the dose calculation

method reported by Wang, Morin et al. (2009), Wang et al.

(2007) and Wang, Stöver, Hitchcock & Tyliszczak (2007) the

‘Wang method’, emphasizing the calculus part only. The Wang

method uses an effective value Eðe; tÞ averaged over the

lapsed time interval (0, t) measured at a given e, rather than

the instantaneous functions Eðe; tÞ and MðtÞ. Use of this

effective Eðe; tÞ and constant M reduces the exact dose

calculation to the ratio Dðe; tÞ = Eðe; tÞ=M. The Wang method

does not involve integration over the variables e and t. Thus, it

provides an effective dose Dðe; tÞ instead of the actual dose.

The relationship between the effective dose Dðe; tÞ and the

exactly calculated dose Dðe; tÞ is currently unclear.

Here we present an integral formulation for evaluation of

the X-ray absorption dose, starting from first principles and

applying the Beer–Lambert (BL) model for X-ray absorption

(also called the Lambert–Beer law). The discussion is focused

mainly on dose calculation with a fixed photon energy (e =

constant), over a continuous time interval ð0; tÞ. We demon-

strate some general properties of the BL dose integral rele-

vant for STXM applications without specifying a particular

functional form of the time dependence of the optical density

AðtÞ at a given photon energy e. First, we show that if the

photon energy is fixed then the BL dose integral factorizes

into a product Dðe; tÞ = RðeÞTðtÞ, where TðtÞ is an effective

time integral and RðeÞ is a dose rate (explicitly defined in x3.1).

In this case the BL dose integral analysis reduces to an

analysis of TðtÞ. Second, we demonstrate that, asymptotically,

TðtÞ is linearly proportional to the elapsed time for sufficiently

large time intervals. Third, we present a general analytical

approximation for TðtÞ and estimate the error (residual)

relative to an exact formulation. In order to derive the exact

TðtÞ integral expression, a particular functional form of the

optical density AðtÞ must be selected.

Following this, AðtÞ data for poly(methyl methacrylate) and

perfluorosulfonic acid measured by STXM dose-damage

experiments are presented and analysed using two approx-

imations: exponential AðtÞ = cþ a expð�btÞ and hyperbolic

AðtÞ = cþ a=ðbþ tÞ related to possible first- and second-order

kinetics, respectively. For each AðtÞ approximation we

consider the exact expression of the TðtÞ integral, its approx-

imation and its asymptotics. The exact analytical solutions are

based on a combination of exponent integrals EiðzÞ =

�
R1
�z½expð�xÞ�=x dx and natural logarithms lnðzÞ. The deri-

vation was performed using computer algebra software

Mathematica 8.0 (Wolfram Research Inc., IL, USA).

The results of all six calculations of the effective time

integral TðtÞ are compared with those calculated using the

Wang method. Depending on how the sample mass is treated,

we separately consider the Wang method for constant mass

(the original method) and for a time-dependent mass (our

extension of the Wang method). The results show that the

original Wang method underestimates the dose while all other

methods produce curves that are closely aligned to each other.

This cluster of Dðe; tÞ curves for the time interval ð0; tÞ can be

approximated as Dðe; tÞ ’ KðeÞ t, where KðeÞ is a function of

the photon energy and some other parameters, but indepen-

dent of time. This finding allows AðtÞ to be converted into

AðDÞ by stretching the time axis by the factor K for both

optical density models considered.
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2. First-principles dose calculation

Assume that a sample, homogeneous in all three dimensions, is

exposed to soft X-ray photons all with energy e and absorbs a

dose Dðe; tÞ at time t. What is the increment of dose �D over

a time increment �t? Following the dose definition introduced

above, we find an expression for the change of absorbed

energy �EðtÞ that the sample of time-dependent mass MðtÞ

received in the time interval ðt; t þ �tÞ. Their ratio is the dose

change �DðtÞ which should be integrated to obtain a formula

for the dose absorbed over any lapsed time ð0; tÞ. The incre-

ment of the absorbed energy is an integral over the time

increment �EðtÞ =
R tþ�t

t E
�

ðxÞ dx, where E
�

ðtÞ is an absorbed

energy rate (the number of absorbed photons of energy e per

unit of time) and x is an integration variable. The photon

energy e is fixed and omitted for clarity. Assuming the time

increment �t is infinitely small, the above integral can be

computed in linear approximation �EðtÞ = E
�

ðtÞ �t. The sample

mass is a function of time only (we will clarify this statement

below) and it changes from MðtÞ to Mðt þ �tÞ. We introduce

a sample mass mðtÞ for this time interval and approximate

the mass by the average ½MðtÞ þMðt þ �tÞ�=2. Expanding

Mðt þ �tÞ in Taylor series and retaining only the first-order

term, we find mðtÞ = MðtÞð1þ �Þ, where � = ½M 0ðtÞ=2MðtÞ� �t�
1. Here, and in subsequent equations, 0 = d/dt denotes the

derivative with respect to t. Collecting all parts together and

retaining the lowest order in �t, the expression for the dose

increment is

�Dðe; tÞ ¼ E
�

ðe; tÞ �t=MðtÞ: ð1Þ

The dose at any moment t can be found by computing the

following integral,

Dðe; tÞ ¼

Zt

0

E
�

ðe; xÞ

MðxÞ
dx: ð2Þ

The above formula states that, for the dose calculated at

moment t, the time evolution of both the energy absorption

rate and the sample mass must be already known at least to the

moment t. From a practical point of view we can measure the

functions E
�

ðe; tÞ and MðtÞ by standard sampling. Note that

equation (2) is the special case of a fixed photon energy

corresponding to irradiation by a monochromatic X-ray beam

and continuous time exposure spanning the interval ð0; tÞ.

3. Dose formulation for the BL model of X-ray
absorption

3.1. BL dose integral

In STXM (Ade & Hitchcock, 2008; Kilcoyne et al., 2003) a

beam of soft X-ray photons of energy e hits the sample with a

rate i0 (number of photons per second). Because the STXM

beam is monochromated, under exposure the photon energy

e is fixed, while time is a continuous variable. Thus, in the

general expression for energy- and time-dependent optical

density Aðe; tÞ, the photon energy can be omitted keeping only

the time-dependent part AðtÞ, a function of a single variable t.

The detector, which is positioned right behind the sample

along the beam axis, collects a transmitted rate i of photons of

the same energy. Since the detector is not ideal, it measures

k times less photons than hit the sample, and thus the true

photon rates are i0 /k and i /k, respectively, where k is a photon-

energy-dependent detector efficiency coefficient [0 < k(e) < 1].

We also assume that the sample is homogeneous within the

size of the X-ray beam (typically 30–50 nm). The real STXM

makes an image by raster scanning the sample (or, less

commonly, the zone plate imaging optics) with a pixel size of

10–100 nm. If the sample changes its chemical properties, then

the rate of transmitted photons becomes time dependent, iðtÞ.

A rapid in-vacuum beam shutter is used such that the sample

is only exposed during the actual measurement from 0 to t.

The incident, i0, and transmitted, i(t), detector photon rates

are related through the BL absorption model (BL model, for

short), iðtÞ = i0 exp½�AðtÞ�, where AðtÞ is the optical density,

and all functions are given for the fixed photon energy e. The

BL model is a solution of a differential equation describing the

attenuation of the X-ray intensity i by an infinitesimal layer of

material dh : di = �i(h)�dh, where, in the framework of the

BL model, the decay of intensity di is proportional to i and � is

a constant coefficient related to the particular absorption of

the sample material. Thus, for the case of a sample thickness

which is dependent on time h(t), we have AðtÞ = hðtÞ�.

The rate of energy absorption E
�

ðe; tÞ from the absorbed

photons is i0 � iðtÞ multiplied by the photon energy e. The

mass MðtÞ of the material in the beam cross section is a

product of the cross-sectional area of the beam s, the material

density � and the sample thickness h(t): MðtÞ = hðtÞ�s, where

mass is a function of time only. The thickness of the sample can

be expressed in terms of the optical density AðtÞ and �, where

� is the standard absorption coefficient (or linear absorption

coefficient), which is a function of the photon energy �ðeÞ. The

method of obtaining �ðeÞ, having a dimension of inverse

length [when the dimension used is 1 nm, � is also known as

an OD1 coefficient (Hitchcock et al., 2012)], is presented

elsewhere (Ade & Hitchcock, 2008). Substituting the expres-

sions for the rate of absorbed energy and change in sample

mass into the dose equation (2) we arrive at the BL dose

integral for an exposure time t (the upper limit of the integral),

where constants and all parameters depending only on the

photon energy e are extracted from the time-dependent

integrand (Appendix A),

Dðe; tÞ ¼
ei0�ðeÞ

kðeÞ�s

Zt

0

1� exp½�AðxÞ�

AðxÞ
dx: ð3Þ

Knowledge of the evolution of optical density AðtÞ with

exposure time is essential for computing the BL dose integral

equation (3) and is usually obtained from STXM experiments.

A dimensional analysis shows that the constant RðeÞ =

½ei0�ðeÞ�=½kðeÞ�s� is a dose rate, which is a function of the

photon energy. RðeÞ is the dose absorbed in 1 s by a 1 nm-thick

layer of a pure material at its standard gravimetric density

whose optical density is equal to the standard absorption

coefficient (OD1) at photon energy e.
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The ratio Dðe; tÞ=RðeÞ is an integral TðtÞ that has the

dimension of time. We call it an effective time integral,

TðtÞ ¼

Zt

0

1� exp½�AðxÞ�

AðxÞ
dx: ð4Þ

Here the numerator 1� exp½�AðxÞ� is the fraction of the

incident photons that are absorbed in a moment x (x is a time

integration variable, not a coordinate) and the denominator

is the optical density AðxÞ of the thickness of the material

absorbing these photons. We denote the dimensionless inte-

grand f1� exp½�AðxÞ�g=AðxÞ in equation (4) as the function

F½AðxÞ�. Then the dose reads

Dðe; tÞ ¼ RðeÞTðtÞ; ð5Þ

TðtÞ ¼

Zt

0

F½AðxÞ� dx; FðxÞ ¼ ½1� expð�xÞ�=x: ð6Þ

Therefore, in this case the calculation of the BL dose integral

is reduced to a calculation of the effective time integral TðtÞ

from equation (4) or equation (6). The constant RðeÞ is

calculated for the conditions of the STXM experiment and is

time independent.

Equation (3) estimates the dose collected per pixel when

STXM is imaging at a fixed photon energy. This formula can

be applied for mapping the dose as well as for calculating

the average dose for an image or for a series of images used

in spectromicroscopy. Image series are also called stacks

(Jacobsen et al., 2000). Below we use this expression to eval-

uate dose in 9-pad dose studies (Leontowich, 2012; Wang,

2008).

3.2. BL dose integral asymptotics for large time

Experiments carried out for different elapsed times (Coffey

et al., 2002; Beetz & Jacobsen, 2003; Leontowich et al., 2012;

Wang, Botton et al., 2009) show that AðtÞ evolves from an

initial value A0 to a constant value A1 at large time exposure,

as shown in Fig. 1. We want to find a functional form of Dðe; tÞ

for large exposure time, which is the asymptote of the BL dose

integral as t!1. We split the interval of the AðtÞ argument

into two segments: 0 < t < t� where AðtÞ changes signifi-

cantly, and t > t� where AðtÞ ’A1. The behaviour of the dose

at large times can be written as (Appendix B)

Dðe; tÞ ’ RðeÞ ½Eðt�Þ þ Bt�; ð7Þ

where Eðt�Þ = Cðt�Þ � Bt� is a composite constant dependent

on t� determined by a particular optical density evolution AðtÞ,

and RðeÞ is a term independent of time. From a practical

perspective the time t� sets a scaling of the dose Dðe; t�Þ, and

can be related to the so-called critical dose defined as the dose

for AðtÞ to decay from A0 to Aðt�Þ. Here we introduce two

constants,

B ¼
1� exp �A1ð Þ

A1
; ð8Þ

and

Cðt�Þ ¼

Zt�

0

1� exp½�AðxÞ�

AðxÞ
dx: ð9Þ

For the specific case when the value A1 � 1 is small but still

positive we obtain B ’ 1. The constant RðeÞ is a combination

of experimental parameters (e, i0 and s) dependent on the

beam properties while �, � and A1 are related to the prop-

erties of the material. The coefficient � is specific to the

particular material in its initial chemical state assuming that

this material is chemically stable upon X-ray exposure (Henke

et al., 1993; Ade & Hitchcock, 2008). The coefficient A1
represents the limiting value of the optical density AðtÞ at long

time exposure in cases where the sample stops changing with

exposure (it may reach 0 in some cases).

3.3. Analytical approximation for the BL dose integral

An exact integration of the BL dose integral is possible for

some selected optical density functional dependencies AðtÞ,

but in general this task can be performed only numerically.

Here we derive an approximate general method, the BL dose

integral analytic expression. We require that this approxima-

tion has an appropriately small difference from the exact

result (i.e. a small residual) for a practically significant time

interval.

Equation (5) reduces the problem of calculation of the BL

dose integral equation (3) to calculation of the effective time

integral TðtÞ given by equation (4). First, a function aðtÞ [which

is the running average of the optical density AðtÞ] is introduced

via the relation

AðtÞ ¼ aðtÞ þ a 0ðtÞt ¼ ½taðtÞ�0 or aðtÞ ¼ ð1=tÞ

Zt

0

AðxÞ dx:

ð10Þ

Then the approximation for TðtÞ becomes
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Figure 1
Decay of optical density A(t) with elapsed time for the STXM dose-
damage data presented in Fig. 2. Each point is the optical density
averaged over the inner constant OD area, of each pad. The value at t = 0
is measured from an area not previously exposed. The solid curve is a
linear approximation between every two points. The dashed line (a)
denotes the A(t) variation over 1 s of exposure (blue triangles in Fig. 3).



TðtÞ ¼

Zt

0

F½AðxÞ� dx ’ tF½aðtÞ� ¼
1� exp½�aðtÞ�

aðtÞ
t; ð11Þ

providing an estimate of the effective time integral with a

residual error OðtÞ which is considered in Appendix C. The

result reads

OðtÞ ¼ Tðt�Þ � Taðt
�
Þ

¼

Zt�

0

1� exp½�AðxÞ�

AðxÞ
dx�

1� exp½�aðt�Þ�

aðt�Þ
t�: ð12Þ

Note that an expression for aðtÞ similar to equation (10) was

used by Wang et al. (Wang, Morin et al., 2009) [formula (4)

therein] as an exponential approximation of the optical

density AðtÞ. The residual of our approximation tF½aðtÞ� is

defined for the interval 0 < t < t�. The last equation shows

that OðtÞ is a constant and its value depends on t� and on a

particular functional dependence of the optical density AðtÞ,

which can be found from an approximation of STXM data like

those presented in Fig. 1.

4. Approximate models of optical density for STXM
applications

4.1. STXM dose – damage study

One type of dose dependent study with STXM involves the

generation of a pattern with controlled variation of the soft

X-ray exposure (Leontowich et al., 2012; Wang, Botton et al.,

2009; Wang, Morin et al., 2009). An example of this, one

involving a 3 � 3 (9-pad) pattern generated in a perfluoro-

sulfonic acid (PFSA) thin film, is presented in Fig. 2(a). The

exposure time for each pad is incremented in order to obtain

nine well defined doses, which are intentionally varied in a

non-linear time pattern reflecting non-linearity of AðtÞ. After

generating the 9-pad pattern, the whole region of 9-pads is

imaged at one or more photon energies with an exposure time

short compared with the pattern generation doses, in order to

visualize the non-damaged and damaged parts of the material

and quantify AðtÞ. The 9-pad transmission images are

converted to optical density images Aðx; y; eÞ =

ln½i0ðeÞ=iðx; y; eÞ�, where the functions Aðx; y; eÞ and iðx; y; eÞ

are values at each (x,y) pixel, while i0ðeÞ is the same for all

pixels and measured off the sample, but including the under-

lying substrate if that exists under the sample material.

The radiation damage displayed in Fig. 2(a) is significant

and leads to a clear decay of optical density (darker areas). At

the photon energy used, the optical density of the pads

progressively decreases as the exposure time increases. (NB:

there are photon energies in the C 1s edge at which the OD of

damaged PFSA increases with dose.) The set of nine optical

density values constitutes the experimental measurement of

AðtÞ (Fig. 1). Fig. 2(b) shows the typical spectra measured for

non-damaged and damaged samples of the PFSA membrane,

and their ratio.

4.2. Approximations of the experimental optical density from
STXM data

An expression for the evolution of optical density with

exposure time AðtÞ is required for dose calculation. The

STXM 9-pad experiment, Fig. 2(a), provides AðtÞ data for a

given photon energy (Fig. 1). What function is suitable for

approximating the AðtÞ data in Fig. 1? From a dose calculation

perspective AðtÞ is just a tool for its calculation and any kind

of functionality is allowed as long as it follows the data with

reasonably small mean square error.

However, Fig. 1 demonstrates that AðtÞ is a function of the

dose itself, as for longer exposure we have a larger dose and

lower optical density. AðtÞ is linked directly to the changed

chemical bonding of the radiation damaged material; the

evolution of optical density in AðtÞ reflects chemical processes

taking place in the irradiated material. Thus, from this

perspective, the function AðtÞ cannot be selected arbitrarily

but should have some specific form related to the kinetics of

the radiation damage processes. Currently, there is a wide-

spread assumption (Wang, Morin et al., 2009; Wang, Botton et

al., 2009; Beetz & Jacobsen, 2003; Wang, Stöver, Hitchcock &

Tyliszczak, 2007; Zhang et al., 1995; Leontowich et al., 2012)
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Figure 2
(a) Optical density image of an STXM 9-pad pattern for damage of a
�100 nm-thick microtomed section of PFSA. The transmission signal was
measured at 694 eV (second peak in the F 1s spectrum) with 1 ms dwell
time. The i signal, measured for areas on the PFSA sample but outside the
9-pads, is 1.8 (1)� 104 counts, and the i0 intensity, measured off the PFSA
section, is 5.7 (2) � 104 counts. The grey scale is the optical density
(absorbance, A). The scale bar is 1 mm. (b) F 1s absorbance [optical
density, A(e)] spectrum of a PFSA sample [different than the one
patterned in (a)], measured with STXM under no damage (red, 1) and
large exposure (blue, 2) conditions. The ratio of the undamaged to
damaged spectra is plotted (green, 3) (right-hand intensity scale).



that the AðtÞ decay (Fig. 1, Fig. 3) is an exponential function

AðtÞ = cþ a expð�btÞ (model 1) related to radiation-induced

chemical reactions and/or physical processes which follow

first-order kinetics (Zhang et al., 1995). In addition to model 1,

we introduce here a hyperbolic decay of optical density

AðtÞ = cþ a=ðbþ tÞ (model 2) corresponding to second-order

kinetics. STXM data analysis and dose evaluation are

performed for both models in order to demonstrate the flex-

ibility of our method for a variety of dose-damage experi-

ments, including those where the order of kinetics is different

from one.

The analysis of STXM data we present here is common in

physics. We test whether the proposed heuristic functionality

produces unbiased residuals. The method involves trans-

forming the coordinates such that multiple datasets collapse

to a single straight line, making the residuals visually evident.

This approach still does not indicate whether the chosen

functionality is the best for all data, but it significantly narrows

down the types of approximation functions which may

represent the correct scaling underlying the available data

sets.

To illustrate both cases of optical density evolution we

consider five STXM 9-pad data sets, three of which were

obtained for PFSA membrane, i.e. PFSA (Nafion2), and two

for poly(methylmethacrylate), i.e. PMMA thin films. These

materials have significantly different spectroscopic changes

upon soft X-ray irradiation. In addition, different film fabri-

cation processes, film thickness, patterning photon energy and

damage imaging photon energy were used for each set. The

raw AðtÞ data for these data sets are presented in Fig. 3.

First we introduce two approximate functions, y =

cþ a expð�bxÞ (model 1) and y = cþ a=ðbþ xÞ (model 2),

where x denotes the time coordinate. Then we transform the

x; y coordinates into new X;Y coordinates in order to collapse

the original data: Y = ðy� cÞ=a, X = xb, giving Y = expð�XÞ

for model 1; and Y = ðy� cÞ=a, X = bþ x, giving Y = 1=X for

model 2. These coordinate transformations allow us to convert

the data presented in Fig. 3, where the AðtÞ law is obscured due

to data complexity, and plot them in coordinates where the

AðtÞ functionality becomes apparent. The practical approach

is the following: each set of data is a least-squares fit to a

particular model and the coefficients a, b and c are found.

Then, for given y = AðtÞ and x = t, the new coordinate values

X and Y are calculated. The results are presented in Fig. 4.
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Figure 3
(a) Optical density A(t), measured using STXM 9-pad dose experiments,
plotted with respect to the exposure time. Microtome film of NRE211
membrane (PFSA): green squares (1), C 1s patterning and imaging at
292.6 eV; blue triangles (2), F 1s patterning and imaging at 694 eV. Spin-
coated DuPont-D521 ionomer (PFSA): red circles (3), patterning and
imaging at 320 eV. Spin-coated PMMA film #1: black open diamonds (4),
patterning at 300 eV, imaging at 288.45 eV. (Sample prepared and data
measured by A. F. G. Leontowich.) Spin-coated PMMA film #2: black
filled diamonds (5), C 1s, patterning at 320 eV imaging at 288.45 eV. All
imaging is performed with 1 ms dwell, all patterning exposure times are
incremented non-linearly. (b) Expansion of the dashed box in (a).

Figure 4
STXM 9-pad dose data in Fig. 3 plotted using rescaled X and Y
coordinates for (a) model 1 (exponential) and (b) model 2 (hyperbolic).
Both plots are presented using bi-natural logarithm scaling. Note that the
Y coordinate for model 1 is transformed by applying �ln(Y) to make a
linear function.



The dashed lines in Figs. 4(a) and 4(b) represent the heur-

istic AðtÞ dependence we are testing against the real STXM

data. Note that both dashed curves have a 45	 inclination,

since all plots are in bi-natural logarithmic scaling. Table 1

presents the relative mean square error along the y = AðtÞ axis

for both models, where the absolute mean square error is

scaled by the difference Max½AðtÞ� �Min½AðtÞ� for each data

set presented in Fig. 3.

The relative error for both models is 1–3%, which is

considered very good from an experimental perspective. The

exponential model 1 (first-order kinetics) produces a larger

relative error (residual) for most of the data sets except #1. In

addition, the residuals of model 1 have a clear bias in Fig. 4(a)

along the fit, while the residuals of model 2 are distributed

evenly along the fit, Fig. 4(b). We also studied a bi-exponential

model and found that it does not remove the above bias

for residuals. The analysis of Table 1 suggests that model 2

(second-order kinetics) seems to have a better agreement with

STXM data than model 1, but the difference is not sufficient

to reliably determine the order of the kinetic reaction. This

quite important and rather unexpected conclusion is discussed

in x7.

5. Calculating the BL dose integral for both A(t) models

The selection of a particular AðtÞ model defines the effective

time integral TðtÞ. The general solution of the TðtÞ integral for

a given time interval (0, t) can be explicitly found either by

exact integration or by using the approximate function given

in equation (11). If the general solution of TðtÞ is known, then

the BL dose integral Dðe; tÞ is the product of the RðeÞ constant

and TðtÞ according to equation (5). Each particular model

AðtÞ = cþ a expð�btÞ or AðtÞ = cþ a=ðbþ tÞ must be fit

against STXM data to generate the values of empirical

constants a, b and c that allow evaluation of the general

expression, equation (5), and thus obtain the dose Dðe; tÞ for

a given photon energy e and exposure time t. In this part we

present the TðtÞ integral, its exact analytical solutions, and

functional approximations regarding both models of the

exposure-dependent change in optical density.

For analytical integration the argument of the integrand

function F½AðtÞ� is replaced by FðyÞ where y is a new inte-

gration variable. If we introduce a new function y = AðxÞ, then

the integration variable is expressed as x = gðyÞ and its

differential is dx = g 0ðyÞ dy. Substituting these expressions into

the TðtÞ integral gives

TðtÞ ¼

Zt

0

1� exp½�AðxÞ�

AðxÞ
dx ! Tðy1; y2Þ

¼

Zy2

y1

1� expð�yÞ

y
g 0ðyÞ dy; ð13Þ

where Tðy1; y2Þ is a new definition of the effective time inte-

gral, y1 = Aðx ¼ 0Þ and y2 = Aðx ¼ tÞ are new integration

limits. The function g 0ðyÞ depends on the optical density

model AðtÞ. For calculation of TðtÞ via its approximation by

equation (11), the function aðtÞ must be found explicitly using

equation (10).

5.1. Model 1: A(t) = c + aexp(�bt)

5.1.1. Exact integration for T(t). For model 1 we have y =

cþ a expð�btÞ, t = g1ðyÞ = ln½a=ðy� cÞ�ð1=bÞ, g 01ðyÞ =

�1=½bðy� cÞ� and the effective time integral after substitution

reads

Tðy1; y2Þ ¼ �

Zy2

y1

1� expð�yÞ

y

1

bðy� cÞ
dy ¼ T1 y2ð Þ � T1 y1ð Þ:

ð14Þ

The indefinite integral T1ðyÞ is quite cumbersome (Appendix

D1). For compactness we introduce a new function �
ðq; pÞ,

where �
ðq; pÞ = expð�pÞEið p� qÞ � ln½
ð p� qÞ�. The

expression for T1ðyÞ then reads

T1ðyÞ ¼
��ðy; cÞ ���ðy; 0Þ

bc
; ð15Þ

and the exact solution of the effective time integral for model

1 is

TðtÞ ¼ T1½cþ a expð�btÞ� � T1ðcþ aÞ: ð16Þ

To calculate the effective time integral and then the dose,

a time interval (0, t) has to be set and AðtÞ obtained. The

experimental data are fit to produce the a, b and c coefficients,

which allow calculation of y1 = cþ a and y2 = cþ a expð�btÞ.

Then evaluation of all �� components for given a, b, c, y1 and

y2 produces TðtÞ (Appendix D1). Finally, by computing RðeÞ

for the given photon energy, we calculate the dose Dðe; tÞ.

5.1.2. Approximation of T(t). Substituting the optical

density AðtÞ for model 1 into equation (10) and integrating

we have an expression for a product aðtÞ t =

ct � a½1� expð�btÞ�=b. Note that aðtÞ and a are the approx-

imation function and the fitting parameter of AðtÞ, respec-

tively, and should not be mixed up. Dividing the above

expression by t does not make aðtÞ divergent at small times.

Indeed, by applying L’Hospital’s rule we can find a limit of

aðtÞ for small t : að0Þ = cþ a. Therefore, the final formula for

aðtÞ reads

aðtÞ ¼ c� a 1� expð�btÞ½ �=ðtbÞ: ð17Þ

To calculate the approximated value of the BL dose integral,

equation (17) must be substituted into equation (11) to find
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Table 1
Relative mean square error (�2) along the y = AðtÞ axis for each of the
approximation cases.

Each column corresponds to the number of the data sets presented in Fig. 3.

STXM data #1 � 10�3 #2 � 10�3 #3 �10�3 #4 � 10�3 #5 � 10�3

Model 1, �2
1 0.8 3.1 2.7 0.13 0.65

Model 2, �2
2 1.1 0.6 1.4 0.16 0.31

�2
1 � �

2
2 �0.3 2.5 1.3 �0.03 0.34



TðtÞ. Then TðtÞ is substituted into equation (5) and, for the

given RðeÞ, the dose Dðe; tÞ can be computed.

5.2. Model 2: A(t) = c + a/(b + t)

5.2.1. Exact integration for T(t). The substitution functions

for model 2 are y = cþ a=ðbþ tÞ, t = g2ðyÞ = a=ðy� cÞ � b and

g 02ðyÞ = �a=ðc� yÞ2. The effective time integral for this case

after substitution is

Tðy1; y2Þ ¼ �

Zy2

y1

1� expð�yÞ

y

a

ðc� yÞ
2 dy

¼ T2 y2ð Þ � T2 y1ð Þ; ð18Þ

where

T2ðyÞ ¼ �
a½1� expð�yÞ�

cðc� yÞ
�

a

c2

h
c expð�cÞEiðc� yÞ

þ�þðy; cÞ ��þðy; 0Þ
i
: ð19Þ

The exact solution of the effective time integral for model 2

reads

TðtÞ ¼ T2½cþ a=ðbþ tÞ� � T2ðcþ a=bÞ: ð20Þ

The calculation of the dose for model 2 is similar to that for

model 1. The only difference is that the STXM data must be fit

with the hyperbolic model 2, which produces different values

of a, b and c. The expanded version of equation (20) is given

in Appendix D2.

5.2.2. Approximation of T(t). The expression aðtÞ for model

2 is similar to that for model 1. The integration of equation

(10) gives aðtÞ t = ct þ a lnðbþ tÞ � a lnðbÞ. The limit of aðtÞ for

small t for model 2 is að0Þ = a=bþ c, and the final formula for

aðtÞ for model 2 is

aðtÞ ¼ cþ ða=tÞ lnð1þ t=bÞ: ð21Þ

To calculate the approximate value of the BL dose integral,

equation (21) must be substituted into equation (11) and the

result substituted into equation (5), which, for a given RðeÞ,

gives the dose value Dðe; tÞ.

6. BL dose evaluation for different A(t) models and
integral calculation methods

This section compares dose computation Dðe; tÞ by several

methods: the exact integral solution, the functional approx-

imation, the asymptotic expression, the Wang method (Wang,

Morin et al., 2009; Wang et al., 2007; Wang, Stöver, Hitchcock

& Tyliszczak, 2007; Wang, Botton et al., 2009; Zhang et al.,

1995; Beetz & Jacobsen, 2003; Leontowich et al., 2012) and an

extension of the Wang method that we introduce. Because

RðeÞ is the same for all of these methods, the dose computation

is reduced to an evaluation of the effective time integral TðtÞ,

equation (4). For calculating TðtÞ the optical density approx-

imation AðtÞ should be chosen and fitting coefficients a, b and c

obtained by fitting the experimental data. Since we consider

two models of the AðtÞ approximation, i.e. exponential and

hyperbolic, we have two sets of approximation coefficients.

This gives ten different dose computations in total for the

given AðtÞ data set. Among all the data sets presented in Figs. 3

and 4 we select the one measured for PFSA: blue triangles (2),

the patterning and imaging for which were performed at

694.0 eV, the second peak in the F 1s spectrum (Susac et al.,

2011). This data set is well suited for demonstration because it

has a long time interval and a large decay of AðtÞ. The

conclusions of this section can be applied to all data sets in

Figs. 3 and 4. Table 2 presents the approximation coefficients

obtained by least-squares fitting these data with models 1 and

2. The time variable for all of these TðtÞ calculations is always

given in seconds.

6.1. Comparison of exact integration versus functional
approximation

Figs. 5 and 6 present the exact and approximate TðtÞ solu-

tions for model 1 and model 2, respectively. The exact solution

is the black solid curve calculated from equation (16) for

Fig. 5(a) and from equation (20) for Fig. 6(a). The functional

approximation solution is a red dashed curve calculated by

substitution into equation (11) of equation (17) for Fig. 5(a),

and of equation (21) for Fig. 6(a). The residue �T(t) (the

difference between the exact solution and the approximate

one) is presented in Figs. 5(b) and 6(b) for both models,

respectively. The relative difference �T(t) (the residue divided

by the exact solution) is presented in Figs. 5(c) and 6(c). The

residuals presented in Figs. 5(b) and 6(b) increase with time

more slowly than the nearly linear increase of TðtÞ presented

in Figs. 5(a) and 6(a). Because of this, the relative difference in

Figs. 5(c) and 6(c) reaches a maximum of �0.9% (0.7%) and

then decays with respect to the exposure time for model 1 and

2, respectively. The low value of the relative difference <1%

for both AðtÞ models indicates that equation (11) is a good

general form of the functional approximation.

6.2. Exact integration: comparison of model 1 and model 2

The STXM data presented in Fig. 3 can be collapsed into

single curves (Fig. 4) when the scaling of AðtÞ is chosen

properly. Model 2 (hyperbolic) provides a somewhat better

representation than model 1 (exponential). How does this

difference affect the TðtÞ exact integral solution? The answer

is presented in Fig. 7. Both models, a solid black curve for

model 1 and a red dashed curve for model 2, produce TðtÞ

functions that match quite well for the entire time interval

(0,10) s. Fig. 7(b) represents the comparison over a more

extended time interval, (0,100) s. It plots the difference of the

exact TðtÞ solution for model 2 minus that for model 1. Within
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Table 2
Approximation coefficients for least-square fitting both models against
the PFSA data obtained by STXM dose experiments at 694 eV (second
peak in the F 1s spectrum).

a b c

Model 1 A(t) = c + a exp(�bt) 0.725 1.553 0.437
Model 2 A(t) = c + a/(b + t) 0.354 0.429 0.368



the time interval (0,10) s there is a relative difference of�4%.

Thus, the choice of the AðtÞ approximation model affects the

exact dose calculation by less than 4% for the actual exposure

times used.

6.3. Functional approximation: comparison of model 1 and
model 2

Calculation of the TðtÞ integral by the functional approx-

imation method for both models gives very similar plots with

respect to those presented in Fig. 7 (exact integration); the

difference is not distinguishable by eye. Thus, to highlight the

small deviation in Fig. 7, Fig. 8 plots �TðtÞ (Fig. 8a) and �TðtÞ
(Fig. 8b) for the functional approximation solutions (red

curves) with respect to the exact TðtÞ integral solutions (black

curves). Fig. 8 supports our conclusion that the chosen func-

tional approximation [equations (10) and (11)] is remarkably

good for estimating TðtÞ and thus the BL dose integral.

6.4. Asymptotic dose calculation for model 1 and model 2

The full form of the asymptotic BL dose is given by equa-

tion (7). Assuming that the BL dose DðtÞ for the experimental

time intervals can be reduced to the last term of equation (7),

then

DðtÞ ’ RðeÞBðA1Þ t; ð22Þ

where, according to equation (8), the constant BðA1Þ depends

on A1 determined by the function approximating AðtÞ for the

particular STXM data with respect to the selected model.

Equation (22) is very simple: all coefficients are easy to

evaluate, and thus it can be used as a coarse estimate of the BL

dose integral. Fig. 9 illustrates how close the dose estimated by

equation (22) is to the exact analytical dose calculated for the

two approximate models of AðtÞ. As usual, instead of equation

(22), we consider the part of the effective time integral TðtÞ ’

BðA1Þ t. Fig. 9(c) demonstrates that the quality of the dose

estimated by its asymptotics provides reasonable values [�TðtÞ
< 10%] for exposure times of more than 2 s for model 1 and of

more than 4 s for model 2.

6.5. T(t) integral calculation: comparison with the Wang
method

The Wang dose calculation (Wang, Morin et al., 2009; Wang

et al., 2007; Wang, Stöver, Hitchcock & Tyliszczak, 2007; Wang,

Botton et al., 2009; Leontowich et al., 2012) reduces the dose

calculation to a simple ratio DðtÞ = EðtÞ=M, where DðtÞ, EðtÞ

and M are the effective dose, absorbed energy and the
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Figure 5
Optical density A(t) for model 1 (exponential). (a) T(t) integral
calculations; the black solid curve (1) is the exact calculation by equation
(16), and the red dashed curve (2) shows the approximation of equation
(11). (b) Residue �T(t). (c) Relative error �T(t)/T(t).

Figure 6
Optical density A(t) for model 2 (hyperbolic). (a) T(t) integral
calculations; the black solid curve (1) is the exact calculation by equation
(20), and the red dashed curve (2) shows the approximation by equation
(11). (b) Residue �T(t). (c) Relative error �T(t)/T(t).



constant sample mass, respectively. This approach can be

further extended to DðtÞ = EðtÞ=MðtÞ, where the sample mass is

no longer assumed to be constant but is treated as an effective

function, similar to the dose and absorbed energy. This we call

the extended Wang method. In this section we compare the

difference between the original Wang method, our extended

Wang method and all the methods introduced above in this

article. We discuss both AðtÞ models; however, the formulae

are presented for the exponential AðtÞ (model 1) since the

Wang method historically used this model. The PFSA STXM

data set [Fig. 3(a), blue triangles (2)] is used for the method

comparison. First, we derive the formulae for calculating the

dose using the original and extended Wang method. Then, we

convert them into the form of the TðtÞ function used above for

the dose analysis.

Applying the BL law to the expression for the effective

energy absorbed over the time interval (0, t) gives

EðtÞ ¼ ei0 1� exp �AðtÞ
� �� �

t=kðeÞ; ð23Þ

where AðtÞ is an effective optical density linked to the moment

t. Wang et al. calculate AðtÞ as an average with respect to the

exposure time,

AðtÞ ¼ t�1

Zt

0

AðxÞ dx; ð24Þ

where AðtÞ is the optical density obtained from STXM data

(Figs. 3a and 3b). This definition coincides with the function

aðtÞ introduced in x3.3. Applying the exponential approxima-

tion AðtÞ = cþ a expð�btÞ, the integral can be evaluated from

equation (24) analytically to obtain the effective optical

density,

AðtÞ ¼ cþ a ½1� expð�btÞ�=ðbtÞ: ð25Þ

Similarly, applying the hyperbolic model AðtÞ = cþ a=ðbþ tÞ,

the time average integral AðtÞ equation (24) has the following

solution,

AðtÞ ¼ cþ a lnð1þ t=bÞ=t: ð26Þ

Fig. 10 presents the effective AðtÞ (dashed curves) and

instantaneous AðtÞ (solid curves) approximations for both

models 1 (black) and 2 (red). It is apparent that the effective

method overestimates the optical density at all t.

In general, the sample mass is a function of optical density

MðtÞ = �s�ðeÞ�1AðtÞ. Therefore, the original Wang method

takes A(t = 0) and calculates the sample mass at t = 0, which

gives

M ¼ �s�ðeÞ�1
ðcþ aÞ; ð27Þ

for the exponential AðtÞ model. Our extended interpretation

gives a more general formula for the sample mass,

MðtÞ ¼ �s�ðeÞ�1
AðtÞ: ð28Þ

research papers

842 Viatcheslav Berejnov et al. � First-principles X-ray absorption dose calculation J. Synchrotron Rad. (2018). 25, 833–847

Figure 8
Differences of T(t) estimates. (a) Absolute. (b) Relative. In (a) the black
solid curve is the absolute difference of model 2 minus model 1 applied
for the exact calculation of T(t); the red solid line is the absolute
difference of model 2 minus model 1 applied for the T(t) approximation.
Plots in (b) correspond to plots presented in (a) divided by T(t) calculated
for model 2 for the exact and approximated cases, respectively.

Figure 7
T(t) for two models of A(t). (a) The solid black line (1) is for model 1
(exponential), and the red dashed line (2) is for model 2 (hyperbolic).
(b) Difference between model 2 and model 1 approximations. (c) Relative
difference of model 1 with respect to model 2, ratio of (b) to (a) red
dashed curve. All inserts have the same axis scaling as the parent panel.



Substituting EðtÞ and sample masses, the expressions for the

dose become

DoðtÞ ¼
ei0 �ðeÞ

kðeÞ�s

1� exp �AðtÞ
� �

ðcþ aÞ
t ð29Þ

for the original Wang method [exponential AðtÞ] and

DeðtÞ ¼
ei0 �ðeÞ

kðeÞ�s

1� exp �AðtÞ
� �

AðtÞ
t ð30Þ

for the extended Wang method. Introducing RðeÞ we obtain

two new TðtÞ functions,

ToðtÞ ¼
1� exp �AðtÞ

� �
ðcþ aÞ

t ð31Þ

for the original [exponential AðtÞ] Wang method and

TeðtÞ ¼
1� exp �AðtÞ

� �
AðtÞ

t ð32Þ

for the extended Wang method. Figs. 11 and 12 compare the

TðtÞ functions calculated for both Wang methods with the TðtÞ

functions developed for the exact integration, the functional

approximation and the asymptotic solutions. Note that it is

possible to obtain the formulae for dose and TðtÞ function for

the hyperbolic AðtÞ model as well. These equations are very

similar to those given above except that the equations for

DoðtÞ, equation (29), and ToðtÞ, equation (31), for the hyper-

bolic AðtÞ model require the replacement of a by a/b in the

denominator. Both hyperbolic and exponential models give

similar values for ToðtÞ and TeðtÞ (Fig. 11).

Fig. 11(a) shows that the original Wang method under-

estimates the TðtÞ function, i.e. the dose value compared

with our extended version of the Wang method. Fig. 11(b)

plots the difference between the original and extended Wang

methods for various AðtÞ approximation models. Both AðtÞ

models in Fig. 11(b) are in good agreement, indicating that the

difference between the original (‘o’ red curves) and extended

(‘e’ black curves) Wang methods is not due to the AðtÞ

approximation models but to different denominators in the

original equation (31) and extended equation (32). The rela-

tive difference between the original and extended Wang

methods presented in Fig. 11(c) reaches �60% for long

exposure.

Fig. 12(a) compares the effective time integral TðtÞ for all

methods, using model 1 (exponential) for optical density AðtÞ

and one selected STXM data set (#2 in Fig. 3). In addition to

the equations and methods developed for estimating instan-

taneous dose, this is one of the key results of this article.

Although this figure is presented for model 1 it will be nearly

the same for model 2. There are two important messages

in Fig. 12(a). First, if the changes of the sample mass with

radiation damage are taken into account using the extended

Wang method, curve (4), the dose can be estimated relatively

accurately compared with the exact calculation, curve (1).

Second, Fig. 12(a) shows that the dose can be treated quite

accurately as Dðe; tÞ ’ KðeÞ t for large times. Therefore, if D

is expressed in terms of a rescaled time, the dependence of

optical density on the absorbed dose AðDÞ for large times is

similar to AðtÞ.
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Figure 10
Comparison of instantaneous A(t) and effective AðtÞ (averaged) optical
densities calculated for the Wang method. Black (1, 3) is model 1
(exponential) and red (2, 4) is model 2 (hyperbolic). Solid curves (1, 2)
are the instantaneous A(t) – an approximation of the direct STXM data;
dashed curves (3, 4) are the effective AðtÞ (averaged) over the time
interval t.

Figure 9
T(t) integral as a function of exposure time using the main term of the
asymptotic expression for the two models of A(t). (a) Exact integration
for T(t): model 1 (1, black solid) and model 2 (2, green solid); the
asymptotic solution: model 1 (1a, red large dashed) and model 2 (2a, blue
small dashed). (b) Absolute T(t) differences of asymptotic and exact
solutions for model 1 (black, 1) and model 2 (red, 2), respectively.
(c) Relative T(t) difference: the difference presented in (b) divided by the
exact solution for model 1 (black, 1) and model 2 (red, 2), respectively.



Fig. 12(b) shows the results of calculating the effective time

integral TðtÞ for all STXM data sets presented in Figs. 3 and 4.

Only the exact and the original Wang methods for calculating

TðtÞ were used. Note that having multiple TðtÞ curves on one

plot does not allow their Dðe; tÞ to be compared since they all

have different RðeÞ constants. However, we can compare two

methods of TðtÞ calculation for each data set: the solid line

with the dashed line of similar color (curve number, ‘o’ means

original Wang method). The bi-natural logarithm scaled plot,

Fig. 12(c), shows how much the original Wang method

underestimates TðtÞ. For short exposures, where not much

material is damaged, the underestimation is relatively small.

However, for longer exposures the change of mass due to

radiation damage is significant and needs to be taken into

account. If the exposure time is large, then both methods

reach their own asymptotes and the underestimation ratio

becomes constant for all data.

7. Conclusion

We have developed a method for calculating the absorbed

dose of X-ray radiation in the case of fixed photon energy

(monochromatic beam) and continuous exposure. This is a

first rigorous attempt of calculating the absorbed dose for

transmitted radiation when the sample undergoes mass loss

under X-ray exposure. The derived large time asymptotics

and its functional approximations in general form significantly

simplify the dose estimation. The exact dose calculation is also

performed as an analytical evaluation of the dose integral. In

this case the model of optical density evolution with time must

be known (measured). Two models of time-dependent optical

densities were considered: exponential – related to first-order

kinetics; and hyperbolic – related to second-order kinetics of

the chemical reactions causing the optical density time decay.

The analytical expressions for dose evaluation are presented

for both models in order to match a variety of experimental

conditions.

The method of dose calculation is tested on the dose

experiments conducted with two materials: PFSA (Nafion2)

and poly(methylmethacrylate) (PMMA), for which the STXM

dose study involving 9-pad measurements was applied. Both
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Figure 11
Comparison of T(t) for original (index ‘o’) and extended (index ‘e’) Wang
methods. (a) For two A(t) approximation models: exponential (1, black
dashed) and hyperbolic (2, black solid). (b) Difference between the
extended and original methods. (c) Relative difference when (b) is
divided by the extended T(t) Wang method. In both (b) and (c) the
exponential A(t) model is (1, black) and the hyperbolic A(t) model is
(2, red).

Figure 12
Comparison of the effective time integral T(t) for all methods applied for
A(t) model 1 (exponential). (a) Exact T(t) integration (1, black solid);
T(t) approximation (2, black dashed); asymptote of T(t) (3, blue solid);
extended Wang method with non-constant sample mass (4, red solid);
original Wang method with constant sample mass (5, red dashed). (b) T(t)
calculated for all data presented in Fig. 3 applying model 1 for A(t). Curve
numbers are the same as the symbol numbers in Fig. 3: single numbers
(solid curves) are the exact T(t) calculations whereas the numbers with an
index ‘o’ (dashed curves) are from the original Wang method. (c) Ratio of
the exact T(t) to the Wang original T(t); the curve indexing follows the
rule: red curve, (1) is a ratio of the curves 1 and 1o presented in (b), and
so on.



optical density time evolution models, i.e. exponential and

hyperbolic, were used to calculate the dose for the long time

asymptote, exact analytical expression, and its functional

approximation (six attempts in total). All six calculations give

very similar dose evolution profiles.

These dose calculation methods were compared with the

Wang method which ignores mass loss. It was found that the

latter significantly underestimates the dose. To fix this problem

we developed an extended Wang method and showed that it

coincides with our general approximation method and can

estimate doses with an accuracy similar to all other methods.

Analysis of available 9-pad STXM data for PFSA and

PMMA materials shows that both optical density approx-

imation models can fit the measured AðtÞ functionalities.

Although this does not affect the dose calculation, it does

qualitatively affect the assumption of the particular kinetics of

X-ray damage. This is quite important and was not noticed or

discussed before. We stress that currently the evidence for

a specific type of kinetics is mostly heuristic rather than

rigorous. Indeed, if the experimental data can fit model 1,

then the reaction kinetics behind the observed AðtÞ decay

is assumed to be of first order. Ambiguity appears when the

same AðtÞ data can fit another function – the hyperbolic decay

AðtÞ = cþ a=ðbþ tÞ model 2, corresponding to second-order

reaction kinetics. If both models can fit the same AðtÞ data with

similar accuracy then one must conclude that the given AðtÞ

shape is not sensitive to the kinetic order and other inde-

pendent considerations are required to resolve this issue. It

appears that the presented accuracy of 9-pad STXM data

cannot support a claim on the order of kinetics of the photo-

chemical reactions happening during X-ray irradiation. Such a

claim requires either an increase of STXM accuracy or some

other independent methods from which the kinetic order can

be determined with more accuracy. Why the absorbed dose is

affected very little by the order of kinetics is unclear and must

be understood in the light of photo-chemistry.

It is worth mentioning possible generalizations of the

presented dose calculation. The optical density in general is a

function of two variables Aðe; tÞ. In the current manuscript

only the time-dependent part AðtÞ for the fixed e was

considered corresponding to continuous absorption of

monochromatic X-rays. This is the case of STXM experiments

(and other experiments which use a monochromatic X-ray

beam) for which the sample mass loss due to X-ray irradiation

is documented, measured and analysed. The case where time t

is fixed and the applied X-ray beam is continuously distributed

in the photon energy interval (e1, e2) corresponds to a quite

different set of experiments. The first-principles approach

presented here allows extension of these results to a more

general expression for dose calculation, including integration

over the photon energy interval.

Another possible generalization takes into account

chemical changes in the sample materials due to breaking

the existing bonds or establishing new chemical bonds. To

accommodate this type of optical density change we need to

allow � (the standard absorption coefficient) to be a function

of time, �ðtÞ. In this case the above approach requires another

extension. The current definition of � is valid for any elapsed

time t when � does not change significantly: �ðt0 þ �tÞ =

�0 þ �
0ðtÞ �t, where we neglect the linear term. At the same

time, we allow for significant changes in optical density attri-

buting it to mass loss. Data for �ðtÞ evolution as a function of

dose are available. Extension of this methodology to treat

those cases will be of interest and is being explored.

APPENDIX A
Derivation of BL dose integral

The rate of the absorbed photons ½i0 � iðtÞ�=k multiplied by

the photon energy e gives the rate of energy absorption

E
�

ðe; tÞ = e½i0 � iðtÞ�=k. Taking into account the BL model iðtÞ =

i0 exp½�AðtÞ� the rate of energy absorption is E
�

ðe; tÞ =

efi0 � i0 exp½�AðtÞ�g=k = ei0f1� exp½�AðtÞ�g=k.

The mass MðtÞ of the material is a product of the cross-

sectional area of the beam s, the material density � and the

sample thickness h(t): MðtÞ = hðtÞ�s. The thickness of the

sample can be expressed in terms of the optical density AðtÞ

and the standard absorption coefficient �, hðtÞ = AðtÞ=�. Thus,

an expression for the mass reads MðtÞ = AðtÞ�s=�.

Substituting E
�

ðe; tÞ and MðtÞ in the integral of equation (2)

we have

Dðe; tÞ ¼

Zt

0

ei0 �

k�s

1� exp �AðxÞ½ �

AðxÞ
dx: ð33Þ

Here i0, � and k are the functions of the photon energy e

independent of time and therefore they can be moved from

the integral leading to equation (3),

Dðe; tÞ ¼
ei0 �ðeÞ

kðeÞ �s

Zt

0

1� exp �AðxÞ½ �

AðxÞ
dx: ð34Þ

APPENDIX B
Asymptotics of the dose integral

The interval of the AðtÞ argument can be split into two

segments: 0 < t < t� where AðtÞ changes significantly, and

t > t� where AðtÞ ’ A1. The dose is also split into two terms,

Dðe; tÞ = RðeÞTðtÞ, where TðtÞ = Tðt�Þ þ Tðt > t�Þ, with respect

to the time segments. Using TðtÞ from equation (4) in both

terms, and substituting AðtÞ ’A1 in the second term, we have,

respectively,

Tðt�Þ ¼

Zt�

0

1� exp½�AðxÞ�

AðxÞ
dx;

Tðt > t�Þ ¼

Zt

t�

1� exp �A1ð Þ

A1
dx ¼ B t � t�ð Þ;

ð35Þ

where we introduce a constant B = ½1� expð�A1Þ�=A1. The

integral of the first term can be evaluated either via the
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analytical integration or the approximation; the result of both

cases produces some constant Cðt�Þ depending on t�.

APPENDIX C
Approximation of the dose integral

First we show that, for a typical behavior of optical density

AðtÞ (monotonic change and approach to some asymptotic

constant value) for the approximation suggested in x3.3, the

residual does not grow with exposure time. Note that in the

asymptotic range where changes in AðtÞ can be neglected,

AðtÞ = aðtÞ þ a 0ðtÞ t = const, which is possible only when a 0ðtÞ =

0 and aðtÞ = const with a 0ðtÞ t approaching zero. Expanding

equation (11) by adding a residual term OðtÞ which we are

going to estimate gives

TðtÞ ¼

Zt

0

1� exp½�AðxÞ�

AðxÞ

� �
dx ¼

1� exp½�aðtÞ�

aðtÞ
t þOðtÞ

¼ TaðtÞ þOðtÞ: ð36Þ

Finding the derivative of the residue O 0ðtÞ =

ðf1� exp½�AðtÞ�g=AðtÞÞ � T 0aðtÞ, substituting AðtÞ = aðtÞ +

a 0ðtÞ t into the first term and expanding in a series in a 0ðtÞ,

retaining the first non-vanishing order gives

O 0ðtÞ ’ H½aðtÞ� ta 0ðtÞ½ �
2
; ð37Þ

where

HðxÞ ¼ 1� 1þ xþ x2=2
� 	

expð�xÞ
� �

=x3; ð38Þ

where H(x) is a positive, finite and decreasing function. Thus

at large exposure times the residue derivative tends to zero, so

that the residue itself does not grow.

The value of the residue at large times is then estimated.

Similarly to the asymptotic analysis performed in Appendix B,

we split the time interval into two parts, 0 < t < t� and t > t�,

and consider the computation in each segment. Thus we have

TaðtÞ = Taðt
�Þ þ Taðt > t�Þ, where the choice of t� is defined

by the condition jAðt�Þ � AðtÞj = ", where "� 1 is a small

parameter, and t�ð"Þ depends on this small parameter. Thus we

obtain

Taðt
�Þ ’

1� exp �aðt�Þ½ �

a t�ð Þ
t�

and

Taðt > t�Þ ’
1� exp �A�ð Þ

A�
t � t�ð Þ;

where we denote Aðt�Þ = A�. For t > t� the difference between

the values A� and A1 is of the order of small " and can be

neglected, so that Tðt > t�Þ = Taðt > t�Þ. Thus we find that the

residue OðtÞ = TðtÞ � TaðtÞ = Tðt�Þ � Taðt
�Þ = Oðt�Þ is deter-

mined solely by the initial time interval 0 < t < t�. This value

is computed explicitly to obtain

Oðt�Þ ¼ Tðt�Þ � Taðt
�Þ

¼

Zt�

0

1� exp½�AðxÞ�

AðxÞ
dx�

1� exp �aðt�Þ½ �

aðt�Þ
t�: ð39Þ

Note that the residual of our approximation tF½aðtÞ� is defined

by the interval 0 < t < t� only; thus OðtÞ is a constant and its

value depends on t� and the particular functionality of the

optical density AðtÞ, which is found from fitting STXM data

like those presented in Fig. 1. Having an approximation for

AðtÞ, we can find aðt�Þ explicitly and then estimate the value of

the residual numerically.

APPENDIX D
Full expressions for exactly integrated T(t)

D1. Model 1

TðtÞ ¼
� expð�cÞEið�aÞ þ Eið�c� aÞ þ lnðaÞ � lnðcþ aÞ

bc

þ
expð�cÞEiðc� yÞ � Eið�yÞ þ lnðyÞ � lnð�cþ yÞ

bc
;

ð40Þ

where y = cþ a expð�btÞ must be substituted.

D2. Model 2

TðtÞ ¼ �
b½1� expð�a=b� cÞ�

c
�

a½1� expð�yÞ�

cðc� yÞ

þ
a

c2

h
expð�cÞEi �

a

b


 �
þ c expð�cÞEi �

a

b


 �

� Ei �
a

b
� c


 �
� ln �

a

b


 �
þ ln �

a

b
� c


 �i

�
a

c2

h
expð�cÞEiðc� yÞ þ c expð�cÞEiðc� yÞ

� Eið�yÞ � lnðc� yÞ þ lnð�yÞ
i
; ð41Þ

where y = cþ a=ðbþ tÞ must be substituted.
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