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The fractional Fourier transform (FrFT) is introduced as a tool for numerical

simulations of X-ray wavefront propagation. By removing the strict sampling

requirements encountered in typical Fourier optics, simulations using the FrFT

can be carried out with much decreased detail, allowing, for example, on-line

simulation during experiments. Moreover, the additive index property of the

FrFT allows the propagation through multiple optical components to be

simulated in a single step, which is particularly useful for compound refractive

lenses (CRLs). It is shown that it is possible to model the attenuation from the

entire CRL using one or two effective apertures without loss of accuracy, greatly

accelerating simulations involving CRLs. To demonstrate the applicability and

accuracy of the FrFT, the imaging resolution of a CRL-based imaging system is

estimated, and the FrFT approach is shown to be significantly more precise than

comparable approaches using geometrical optics. Secondly, it is shown that

extensive FrFT simulations of complex systems involving coherence and/or non-

monochromatic sources can be carried out in minutes. Specifically, the chromatic

aberrations as a function of source bandwidth are estimated, and it is found that

the geometric optics greatly overestimates the aberration for energy bandwidths

of around 1%.

1. Introduction

The introduction of compound refractive lenses (CRLs)

(Snigirev et al., 1996; Vaughan et al., 2011) has extended full-

field X-ray microscopy to X-ray energies above 15 keV

(Lengeler et al., 1999). With a numerical aperture of order

1 mrad, CRL-based objectives are well matched to the high

brilliance of synchrotron beams. A range of methodologies

have been developed: magnified bright-field imaging

(Lengeler et al., 1999), Zernike contrast microscopy (Falch et

al., 2018), high-resolution microscopy for imaging colloidal

aggregates (Bosak et al., 2010) and dark-field microscopy,

where orientation and strains of deeply embedded grains or

domains are mapped in three dimensions (Simons et al., 2015,

2016). At the same time, direct space imaging can be

complemented by diffraction in the back focal plane (Bosak et

al., 2010; Ershov et al., 2013).

As for any microscope, it is important to be able to specify

optical properties with high accuracy. Owing to a favorable

ratio between wavelength and the aperture of the CRL, a

combination of geometrical optics and the Abbe diffraction

limit is believed to be adequate for describing simple imaging

set-ups. As such, ray transfer matrix (RTM) formalisms have

been developed to describe CRLs (Protopopov & Valiev,

1998; Pantell et al., 2003; Poulsen & Poulsen, 2014), leading to
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exact analytical solutions for the numerical aperture, vignet-

ting, chromatic aberration and resolution for the general

thick-lens case (Simons et al., 2017). This work has since been

extended to describe the reciprocal-space resolution for dark-

field microscopy and to identify schemes for sampling six-

dimensional direct space-momentum space (Poulsen et al.,

2017).

Nevertheless, there is a need for a corresponding tool based

on wave propagation: to validate the RTM work, to be used in

more complex set-ups where the effect of diffraction is more

pronounced, and in particular to enable forward propagation

of the beam in cases where phase contrast and/or coherent

scattering are relevant. Numerical simulations are scarce

(Schroer & Lengeler, 2005; Osterhoff et al., 2013), and their

use is typically constrained to one-dimensional (1D) or very

small two-dimensional (2D) areas due to limited computa-

tional resources and time. Analytical approaches are more

computationally efficient, but exist only for certain optical

configurations (Kohn, 2003).

This paper presents the fractional Fourier transform (FrFT)

(Namias, 1980; Almeida, 1994; Ozaktas et al., 2001) as a

general wave-propagation tool to be used with X-ray micro-

scopy. The advantages of using FrFT for cascades of axially

centered lenses are well known in the context of visible-light

optics (Ozaktas et al., 2001; Ozaktas & Mendlovic, 1995). More

recently, its use for simulating free space propagation of

X-rays has been presented by Le Bolloc’h et al. (Le Bolloc’h et

al., 2012; Mas et al., 1999). Performing an FrFT is equivalent to

solving the Fresnel diffraction integral, but the FrFT is asso-

ciated with favorable mathematical properties, such as being

additive in index. This implies that the complete FrFT of a

microscope setup involving numerous lenses and slits can be

described in terms of FrFTs of the individual components.

We begin by summarizing the properties of the FrFT and

providing a robust and fast algorithm for simulating CRL-

based microscopy. Next, we demonstrate the applicability by

addressing two topics of interest to X-ray microscopy, with

parameters from the dedicated microscopy instrument at

beamline ID06 at ESRF. We assess the resolution of an

imaging system with a CRL objective combined with a slit in

the back focal plane, and estimate the chromatic aberrations

when using a large-bandwidth ð�E=E � 1%Þ X-ray beam

(pink beam).

2. The fractional Fourier transform

The FrFT is a generalization of the conventional Fourier

transform. Whereas the conventional FT transforms between

real and momentum space, the fractional Fourier transform

can be interpreted as a continuous rotation in the real-

momentum phase space.

2.1. Definition of the FrFT

The FrFT of order a, F a, of the function f xð Þ is defined as

follows (Ozaktas & Mendlovic, 1995),

F
a f½ � x2ð Þ ¼

R1
�1

Ka x2; x1ð Þ f x1ð Þ dx1

Ka x2; x1ð Þ ¼
exp �i ð�=4Þ sgn sin ’ð Þ � ð’=2Þ½ �

� �
sin ’
�� ��1=2

ð1Þ

� exp
i�

sin ’
x2

2 þ x2
1

� �
cos’� 2x2x1

� �	 

;

where sgn sin ’ð Þ is the sign of sin ’ and

’ ¼ a�=2: ð2Þ

The transformation kernel Ka is defined for 0< aj j< 2. For a =

0 the kernel is simply �ðx1 � x2Þ and at a = � 2 it is �ðx1 þ x2Þ.

When a = 1, the usual Fourier transform is recovered and a =

�1 is the inverse Fourier transform. The kernel is periodic in a

with a period of 4, so any transform order can be mapped onto

the definition interval. Intermediate values of a are inter-

preted as rotations in phase space. One of its most important

properties is the additive nature of the transform order,

F
a1 ðF

a2 ½ f �Þ =F a1þa2 ½ f �, i.e. that carrying out two consecutive

transforms of order a1 and a2 is equal to a single transform of

order a1 þ a2. We will revisit this property later.

2.2. Relation to the Fresnel diffraction integral

The Fresnel diffraction integral (Goodman, 2005) can be

described in terms of the fractional Fourier formulation. Let

p1;2ðx1;2Þ describe the wavefields in two planes perpendicular

to the optical axis, with free space propagation over the

distance d between these planes. With reference to Fig. 1,

consider the free space propagation at a distance d from plane

p1 to p2. Within the paraxial approximation we have (with �
being the wavelength) (Goodman, 2005)

p2 x2ð Þ ¼
exp i2�d=�ð Þ

ði�dÞ1=2

�

Z1
�1

exp
i� x2 � x1ð Þ

2

�d

� �
p1 x1ð Þ dx1: ð3Þ
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Figure 1
The fractional Fourier transform can be seen as a free space propagation
between two planes p1 and p2 by using quadratic phase factors, as
indicated by the two parabolic surfaces q1 and q2. See the main text. In
this case the sign of the two curvatures are R1 < 0 and R2 > 0.



Mapping this onto the FrFTrequires quadratic phase factors at

the initial and final planes. Intuitively, this construction may be

interpreted as propagation between two parabolic surfaces,

q1 and q2, with radius of curvature at the apex of R1 and R2,

respectively (cf. Fig. 1). The parabolic and flat simulation

surfaces relate to each other as follows,

q1 x1ð Þ ¼ p1 x1ð Þ exp �i�x2
1=�R1

� �
; ð4aÞ

p2 x2ð Þ ¼ q2 x2ð Þ exp i�x2
2=�R2

� �
: ð4bÞ

As shown by Ozaktas & Mendlovic (1995), free space

propagation between two surfaces can be calculated by an

FrFT. To describe this propagation we introduce the scaled

variables

u1 � x1=s1; ð5aÞ

u2 � x2=s2; ð5bÞ

g1 � 1þ d=R1ð Þ; ð6aÞ

g2 � 1� d=R2ð Þ: ð6bÞ

By inspection of equations (1) and (3) it appears that the FrFT

describes the propagation if and only if the following three

equations are fulfilled (Ozaktas & Mendlovic, 1995),

g1

s 2
1

�d
¼ cot ’; ð7aÞ

g2

s 2
2

�d
¼ cot ’; ð7bÞ

s1s2

�d
¼

1

sin ’
: ð7cÞ

From these equations we can see that g1g2 = cos2’, from which

it follows that 0 � g1g2 � 1. We can then formulate the

following equation for calculating the propagation of the

electric field,

E2 x2ð Þ ¼ exp
i2�d

�


 �
exp �

i�a

4


 �
s2

s1


 �1=2

� exp
i�x2

2

�R2


 �
F

a exp �
i�x2

1

�R1


 �
E1 x1ð Þ

� �
: ð8Þ

To recap, we now have two parameters describing the source

plane, R1 and s1, two parameters describing the detector plane,

R2 and s2, as well as the transform order a, all of which in

principle can be chosen arbitrarily. This gives a total of five

parameters with only three equations to satisfy. Hence, infi-

nitely many combinations may be used to describe the exact

same propagation. None of these parameters therefore have a

direct physical meaning, except for integer values of a in some

cases (see x3.1). As such the FrFT method is completely

equivalent to normal Fourier optics, and the process of

calculating the free space propagation is identical in both

cases: multiply by a quadratic phase, perform a (fractional)

Fourier transform, and multiply by a second quadratic phase

(Goodman, 2005). By setting the transform parameter a = 1

and the object scaling s1 = 1, and solving equation (7) one will

reach the normal Fourier optics parameters.

2.3. Implementation for direct space propagation

In the following, we shall resolve the ambiguity by defining

the source plane parameters R1 and s1. In this case, the image

plane parameters and the transform order are given by

tan ’ ¼
�d

g1s 2
1

; ð9aÞ

s 2
2 ¼ g2

1s 2
1 þ

�dð Þ
2

s 2
1

; ð9bÞ

1�
d

R2

¼ g2 ¼
g1s4

1

g2
1s4

1 þ �dð Þ2
: ð9cÞ

The choice of scale parameter s1 affects the sampling in both

real and momentum space. The numerical implementation

used in this work is from Ozaktas et al. (1996), and assumes

that the scaled real space and scaled momentum space are

equally long, i.e. real-momentum phase space is square. This

makes the computation of the FrFT easier, but restricts the

value of s1 to be [see Ozaktas et al. (1996) for details]

s1 ¼
�x1ffiffiffiffi

N
p : ð10Þ

where �x1 is the field of view of the simulation and N is the

number of pixels. Using the scaled variables has the benefit

that the detector space will automatically be scaled by a factor

s2=s1, removing any aliasing as the detector plane will be large

enough to accommodate all scattered intensity. Having a fixed

scaling parameter for the numerical simulations only leaves R1

as a free parameter.

From equation (4a) it is seen that the quadratic phase term

is inversely proportional to the wavelength. For the short

wavelength of X-rays the phase will change rapidly, even for

small objects, which requires 105–106 samples per dimension

for tens to hundreds of micrometer-sized objects (Schroer &

Lengeler, 2005; Osterhoff et al., 2013). Here we show that the

FrFTapproach allows the sampling requirements to be relaxed

such that numerical simulations of large objects in 2D become

feasible with economical computer hardware. This is achieved

by choosing R1 = 1 for an incoming plane wave, which

eliminates the quadratic phase. Thus, all sampling require-

ments are removed, except that the object must be sampled

properly (which is only a concern if the object has a rapidly

changing phase). If instead the X-ray source is converging or

diverging, for example by placing the object before or after the

focal point of a condenser lens, we can choose R1 to be either

negative or positive to match the curvature of the source

wavefront. This again removes the quadratic phase factor in

the object plane.

With s1 = �x1=
ffiffiffiffi
N
p

and choosing R1 = 1, the transform

order is

tan ’ ¼ tan
�

2
a

� �
¼
�d

s 2
1

: ð11Þ
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At large propagation distances, a is approaching a value of 1,

corresponding to a usual Fourier transform as we go into the

Fraunhofer diffraction regime. A note of caution here is that

the transform order is implicitly a function of the number of

pixels in the source plane through s1, and a comparison of the

a parameter along the propagation path is only valid if R1 and

s1 are not changed.

This approach does not seek to remove the phase curvature

in the detection plane, and R2 may very well be finite for a

given propagation. Therefore, one should consider the

sampling in the detection plane only if the phase is required

(the intensity is not affected by the phase).

3. Application to microscopy based on CRLs

For a simple free space propagation, the FrFT approach

provides two major benefits: first, by removing the strict

sampling constraints of standard Fourier optics, and, second,

by avoiding aliasing through the automatic scaling of s1 and s2.

Furthermore, when analyzing systems containing numerous

lenses, we can capitalize on the additive nature of the trans-

form order to speed up calculations drastically.

3.1. Lenses and the FrFT

In the approach below, we first of all take advantage of the

fact that with classical refractive optics the numerical aperture

(NA) is limited to approximately NA = 2:35
ffiffiffiffiffi
2�
p

, where � is the

refractive index decrement (Als-Nielsen & McMorrow, 2011).

With � of the order of 10�6, the NA is of the order of 3 mrad,

i.e. the paraxial approximation is fulfilled. Next, we shall

assume that the lens shape is parabolic, and will treat each lens

as an infinite and perfect thin lens, therefore implying that its

effect on the wave propagation is only a shift in the phase

(Goodman, 2005). Analysis using geometrical optics shows

that for the X-ray energies under consideration here the focal

length, f, of a single refractive lens element (lenslet) is much

larger than its thickness, T (Simons et al., 2017). The resulting

complex transmission function, tlens, depends on the distance

to the optical axis as follows [Goodman (2005); equations (5)–

(10)],

tlens xð Þ ¼ exp �
i�x2

�f


 �
; ð12Þ

where f is the focal length of the lens. The validity of the latter

approximation may be experiment-specific, and we shall

evaluate it for a particular setting below.

Fig. 2 depicts a typical setup with propagation from a flat

object plane to a lens, phase shift within the lens, and propa-

gation to a flat detector plane. The relevant FrFT parameters

are indicated.

The wavefront in the detector plane can be described as

follows using the FrFT,

Ed xdð Þ ¼ exp
i2�d2

�


 �
exp �

i�a2

4


 �
sþ2
s�2


 �1=2

exp
i�x2

d

�Rþ2


 �

�F
a2

(
exp �

i�x2
l

�R�2


 �
exp �

i�x2
l

�f


 �
exp

i2�dl

�


 �

� exp �
i�al

4


 �
sþ1
s�1


 �1=2

exp
i�x2

l

�Rþ2


 �

�F
a1 exp �

i�x2
0

�R�1


 �
E0 x0ð Þ

� �)
: ð13Þ

For the first propagation we set R�1 and s�1 , and so Rþ1 will be

given. For the second propagation, we specify R�2 such that the

exponential terms vanish,

�
i�xl

2

�R�2
�

i�x2
l

�f
þ

i�x2
l

�Rþ1
¼ 0 ()

1

R�2
¼

1

Rþ1
�

1

f
: ð14Þ

As a part of the thin lens approximation we use the paraxial

approximation, meaning that sþ2 = s�1 . With values for R�2 and

s�2 defined from these two relations, the remaining parameters

are given. The propagation now takes the following form

(using the additive transform order property and R�1 =1),

Ed xdð Þ ¼ exp
i2� d1 þ d2ð Þ

�

� �
exp �

i� a1 þ a2ð Þ

4

� �
sþ2
s�1


 �1=2

� exp
i�x2

d

�Rþ2


 �
F

a2 F
a1 E0 x0ð Þ
� �� �

¼ exp
i2� d1 þ d2ð Þ

�

� �
exp �

i� a1 þ a2ð Þ

4

� �
sþ2
s�1


 �1=2

� exp
i�x2

d

�Rþ2


 �
F

a1þa2 E0 x0ð Þ
� �

: ð15Þ

This means that we can perform the entire wavefront propa-

gation using a single transformation. Furthermore, this holds

for arbitrary positions of the object and detector planes, i.e. the

detector can be placed at any point, not only in focal planes or

in imaging planes.

This FrFT approach does not take any absorption into

account, so the lenses have an infinitely large pupil. Therefore,

to take absorption into account the simulation has to be
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Figure 2
Schematic showing an optical system with a single thin lens. The
parameters associated with the FrFT have been defined. See the main
text.



stopped at each plane where absorption occurs. We will discuss

this in terms of CRLs in x3.2.

The concept of cascading the FrFTs can be straightfor-

wardly extended to a system with any number of lenses (which

can have varying distances and varying focal lengths, and

negative focal lengths as well). In such a case the FrFT para-

meters (R�i , s�i , ai, Rþi and sþi ) may be calculated iteratively,

based on initial choices of R�1 and s�1 ,

g�i � 1þ
di

R�i
; ð16aÞ

cot ’i ¼
g�i s�ið Þ

2

�di

; ð16bÞ

sþi ¼
�di

s�i

1

sin ’i

; ð16cÞ

gþi ¼
�di

sþi
� �2 cot ’i; ð16dÞ

Rþi ¼
di

1� gþi
; ð16eÞ

s�iþ1 ¼ sþi ; ð16f Þ

R�iþ1 ¼
fiR
þ
i

fi � Rþi
: ð16gÞ

Equation (8) assumes positive s
þ=�
i , which is not guaranteed

from these equations. Changing the sign of s is equivalent to

inverting the image, so a negative sþi may have its sign chan-

ging by adding 2 to the corresponding ai, which also performs

an inversion. So mathematically 8 sþi < 0: (sþi = �sþi ^ ai =

ai þ 2).

Fig. 3 shows a numerical example of the curvature of the

intermediate planes involved in a CRL simulation using FrFT.

For this example, we used a small number of lenses with a

short focal length to make the figure easier to interpret. We

used N = 7 lenses each with a focal length of f = 2.12 m, giving

an effective focal length of the CRL of fN = 26.5 cm. The blue

and red surfaces correspond to R�i and Rþi , respectively. In

this example, the object and detector have been placed such

that an M = 2 times magnified image is depicted on the

detector. The object field-of-view in this example is �x =

100 mm, and the size of the surfaces are proportional to sþi =s�i ,

the width of the simulated area (automatically adjusted so that

all diffracted intensity stays within the field-of-view). As we

have used an imaging geometry with a magnification of 2, the

detector plane field-of-view is twice as large as the object

plane field-of-view. Also note there is a quadratic phase in the

image plane, which has no impact on the measured intensity

but has to be taken into account for further propagations after

the image plane.

For a given optical setup, the transform order a can be

calculated at any plane, where a is an odd or even integer

corresponding to that plane being a Fourier or imaging plane,

respectively. This is true for any choice of scaling parameters

and sampling, as long as R�1 = 1. In the example in Fig. 3,P
ai = 2, and the detector therefore records an inverted image

of the object. The magnification is given by the ratio

sþdetector=s�object = 2.

3.2. Effective pupil function for a CRL

While the FrFT provides an elegant way of propagating the

wavefront through a cascade of non-absorbing lenses, the

question remains of how to handle the attenuation. Can we

find an effective pupil function to apply at a single plane, or is

it necessary to treat the absorption at each physical lens? In

the latter case, the simulation requires propagation of the

electric field from lens to lens, followed by a manual reduction

of the amplitude (the square-root of the intensity). This raises

two issues for practical simulations: the numerical stability of

the propagation method and a significant increase in execution

time.

In the following, we shall investigate (a) the numerical

stability of the slow approach (one lens at a time), (b) the

possibility of defining an effective aperture that represents the

wavefield propagation coming from a point in the sample

plane and on the optical axis (simulation of point spread

function) and (c) the possibility of defining another effective

aperture that represents the vignetting.

For these numerical tests, we will use a MatLab imple-

mentation (Ozaktas et al., 1996; Bultheel & Martı́ez Sulbaran,

2004) on a workstation PC and use double-precision complex

numbers (128-bit floating point). The experimental para-

meters are imported from an existing experimental setup at

ID06 at ESRF. The CRL objective lens consists of N = 69

identical Be lenses, each with a curvature of R = 50 mm and

a center-to-center distance of T = 1.6 mm. Using a photon

energy of E = 17 keV the refractive index decrement is 2� =

2:36� 10�6 and the linear attenuation coefficient is �att =

40.7 m�1, giving an individual lens focal length of f = 21.2 m, a

combined focal length of fN = 0.270 m and a numerical aper-

ture of NA = 3:61� 10�3 (Simons et al., 2017). The CRL

objective lens and detector positions have been chosen to

form a real image with a magnification of M = 10, corre-
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Figure 3
Illustration of the curved surfaces appearing in an FrFT simulation of
CRLs, in this case for a CRL with seven lenslets and a setting with a
magnification of M = 2. The blue line to the left is the sample plane and
the red curve to the right represents the image plane. The blue and red
surfaces correspond to R�i and Rþi , respectively. The sizes of the planes
are 1000 times larger than the simulated area to show the curvatures more
clearly, and they are proportional to sþi =s�i to show the extent of the
diffracted intensity. The focal points of the CRL are indicated as well.



sponding to an object to entry-of-lens distance d1 = 0.302 m

and an exit-of-lens to detector distance d2 = 3.54 m [equations

(18) and (19) of Simons et al. (2017)]. Using equation (16) and

performing the FrFT propagation we find the image plane to

be 0.46 mm closer to the CRL. For the physical propagation

this small difference is insignificant, but the origin of the

difference is unknown. The underlying assumptions for the

RTM formalism and the FrFT propagation are the same, and

the error seems be too large for numerical errors. For the

simulations we shall assume that the lenses are infinitely large,

not taking the physical aperture into account.

3.2.1. Numerical stability. In terms of stability, we find the

maximum intensity errors after 69 individual propagations

compared with a single propagation to be 0.1%–0.3%. The

accuracy is not good at a few pixels distance from the edges;

however, this is irrelevant in practice as some space should

always be left blank at the edges (i.e. a support). The phase

deviation is less than 1% in the areas with significant intensity,

but is unreliable in the dark regions (where the phase is ill-

defined anyway). See comparison in Fig. 4.

3.2.2. Effective pupil function in the case of negligible
vignetting. In the following, we consider propagating the

scattering from a 1 nm object on the optical axis, a size that is

much smaller than the point spread function (PSF). Fig. 4(a)

shows the resulting image intensity on a detector in the image

plane, i.e. the PSF, in relation to the object plane coordinates.

The figures show the results of two simulation runs, one using

the physical attenuation at each lens (lens-by-lens simulation,

70 propagation steps) and the other using an effective pupil

at the last lens in the CRL stack (two propagation steps).

The RMS width of the Gaussian pupil function is calculated

analytically using the RTM formalism,

yN ¼ d1�a cos N � ð1=2Þ½ � ’CRL

� �
þ f’CRL �a sin N � ð1=2Þ½ � ’CRL

� �
; ð17Þ

where �a is the RMS acceptance angle of the CRL, given by

Simons et al. (2017), and ’CRL = ðT=f Þ1=2 [see the supporting

information (SI) for the derivation]. As the pupil function is

Gaussian, the PSF is Gaussian as well. Fig. 4(b) shows the

absolute and relative intensity error of the effective aperture

compared with the lens-by-lens simulation. The differences

are negligible. Similarly, Figs. 4(c) and 4(d) show the phase and

phase error of these two simulations, again showing negligible

differences. The sampling is not important in calculating the

PSF as long as the pixel size is smaller than the PSF. As shown

in Fig. S1 in the SI, the intensity is indeed independent of

sampling. This is also true for larger and more complex objects

(see Fig. S2 in the SI). We can also model the intensity and
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Figure 4
The point spread function simulated with physical attenuation at each lens (lens-by-lens simulation), compared with using an effective aperture placed at
the last lens in the CRL stack. The figure shows the intensity (a), intensity error (b), phase (c) and phase error (d). We see a small phase difference
between the two procedures, which is equivalent to the focusing point being moved about 150 nm away from the sample, and is likely due to numerical
errors accumulating in the stepwise simulation. Simulation details: 2D wavefront, 1000 � 1000 pixels, 1 nm pixel size; see also ‘Example_Figure_4.m’ of
Pedersen (2017). The plots are cross sections perpendicular to the optical axis.



phase in the vicinity of the image plane (see the intensity and

phase maps in Fig. S3).

3.2.3. Effective pupil function in the case of vignetting.

To include the effect of vignetting as well, we propose to

supplement the effective aperture (positioned in the plane of

the last lens) found above with a Gaussian attenuation in the

object plane. We do not have a known expression for the width

of this attenuation profile a priori, but it can be derived

numerically from the rotational symmetry of the CRL within

fractions of seconds (see the SI for details).

To test this proposal, we made simulations for a uniform

incoming plane wave extending the entire 1 mm field-of-view

of the object plane. Here we compare the propagation when

using lens-by-lens attenuation (70 propagations) and the

aforementioned combination of the effective aperture at the

exit of the CRL (fixed, given by geometrical optics) and a

Gaussian attenuation in the object plane (variable width) (two

propagations). Fig. 5 shows the vignetting function (relative to

the object plane) obtained with the two simulations for the

optimal width of the aperture in the sample plane of 185 mm.

The intensity and intensity error can be seen in Figs. 5(a) and

5(b), respectively, and the phase and phase error are shown in

Figs. 5(c) and 5(d), respectively. The difference is seen in all

cases to be negligible.

As an example of the effect of vignetting, we propagate a

2D image from the object plane to a 10� magnified imaging

plane, using both the effective vignetting and pupil as well as

lens-by-lens simulations. The results are given in Fig. 6, and as

expected from the results above the images with effective

attenuation are indistinguishable from the much slower lens-

by-lens simulation. Note the object size difference between

Figs. 5(a) and 5(d), and also notice that the images are

inverted and magnified ten times (as expected).

4. Examples of use

We anticipate that the FrFT can be a powerful tool for opti-

mizing entire microscopy beamlines comprising CRLs as pre-

condensers, main condensers and objectives. For reasons of

simplicity, below we present two examples of use, involving

only an objective. The examples address issues of current

research and refer to the ID06 setup presented in x3.2.

4.1. Aperture in the back focal plane: effect on spatial
resolution

In an imaging setup, by using a CRL objective one can

access both the real space imaging plane and the Fourier

transform in the back focal plane (BFP). This provides a

number of benefits: as an example, filtering the signal with an

aperture in the BFP allows imaging of regions with different

strain separately. However, introducing a small aperture in the
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Figure 5
Comparison of the vignetting function when using lens-by-lens attenuation and using a combination of two effective apertures, one in the sample plane
and one at the exit plane of the CRL. The intensity relative to the object plane is shown in (a) and the corresponding error in (b). The phase and phase
error are shown in (c) and (d), respectively. Simulation details: 2D wavefront, 1000 � 1000 pixels, 1 mm pixel size; see also ‘Example_Figure_5.m’ of
Pedersen (2017). The plots are cross sections perpendicular to the optical axis.



Fourier plane will reduce the obtainable real space resolution.

As the CRL objective also limits the resolution, the question

becomes: what is the effective PSF of this combined system?

To answer the question, we simulated the intensity from a

single point through the imaging setup described above, with

the only addition of a square aperture in the center of the BFP

with variable side length D. In these simulations, we obtain a

nearly Gaussian PSF, and the resolutions reported in this

section are the RMS widths of the Gaussian PSFs. Further-

more, we compare these simulated resolutions with what

we would expect from geometrical optics. The resolutions

reported here are relative to the object plane, i.e. the magni-

fication has been taken into account.

Within geometrical optics the resolution from the CRL

alone can be derived from the PSF [equation (31) of Simons et

al. (2017)1],

�CRL ¼
�

4��a

: ð18Þ

The resolution for a slit in the BFP alone is (see derivation in

SI)

�slit ¼
0:3645� f N

D cosðN’CRLÞ
: ð19Þ

From geometric optics, we would expect the effective resolu-

tion simply to be a geometric sum of the two contributions,

�tot ¼ �2
CRL þ �

2
slit

� �1=2
: ð20Þ

Fig. 7 shows these analytical resolutions and the fitted reso-

lution of the FrFT simulations as a function of the aperture

size. As expected, the analytical and simulated resolutions

agree very well when the resolution is dominated by either of

the two components. Nevertheless, in the intermediate region

the simulated resolution deviates from the geometrical optics

result with �FrFT <�tot. The error on the fit of the simulated

PSF is of the order of the thickness of the line. The PSF shape

inherently relies on diffractive effects, and we therefore trust

the FrFT wavefront calculations. This example highlights the

fact that the wavefront simulations are more accurate than a

simple geometrical optics approach, even for rather basic

experimental setups.
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Figure 6
Example of vignetting. A small (a) and a large (d) test object is propagated to the imaging plane with a magnification of 10. Attenuation has been
implemented lens by lens [(b) and (e), 70 propagations] and with an effective vignetting and pupil function [(c) and ( f ), two propagations]. Simulation
details: 2D wavefront, 1200 � 1500 pixels, 5 nm [(a), (b) and (c)] and 400 nm [(d), (e) and ( f )] pixel size; see also ‘Example_Figure_6abc.m’ and
‘Example_Figure_6def.m’ of Pedersen (2017).

1 The expression given by Simons et al. (2017) should be multiplied by a factor
1=

ffiffiffi
2
p

.



4.2. Chromatic aberration for pink-beam operation

Owing to the relatively high speed at which optical propa-

gations can be simulated using the FrFT, it becomes feasible to

perform extensive wavefront calculations of partially coherent

beams. The following example focuses on partial longitudinal

coherence due to an energy spread of the source. Determining

chromatic aberrations due to the incoming beam energy

spread is of great interest, in view of plans to operate with so-

called pink beams with bandwidth of up to 1% (Falch et al.,

2016).

The procedure of calculating propagation with partial

longitudinal coherence is detailed by Voelz (2011; ch. 9.1). In

short, the idea is to calculate the fully coherent image intensity

at different adequately spaced wavelengths, and then to

calculate a weighted sum of these images according to the

energy distribution in the source. In this section, we will

assume the energy distribution in the source to be Gaussian

with an RMS width between �E=E = 10�4 (typical value for a

crystal monochromator) and �E=E = 10�2 (typical width for a

pink beam). We will assume a central energy of E0 = 17 keV.

As we will be testing many different energy distributions, we

perform a large amount of fully coherent simulations within

[following Voelz (2011)] an energy spread of E0 � 3�E=E.

The step size was set at 1 eV; inspection showed that further

subdivision leads to no changes in the final image. This gives

a total of 1021 energy steps, which for a 1000 by 1000 pixel

image can be calculated in a few minutes on a modern

workstation PC. In this simulation we used an effective

aperture to speed up the simulation time.

The test object for this simulation is a horizontal line, which

allows us to extract the PSF with a vertical profile through the

optical axis and compare it with geometric optics results. The

setup is the same as mentioned above, with the distances

optimized for a magnification of ten with an energy of E0 =

17 keV. For these simulations, the geometrical distances are

kept constant, whereas the material parameters, and thus the

focal length and absorption, are updated for each photon

energy step (Henke et al., 1993). All the PSFs are corrected for

the magnification, and refer to the position in the object plane.

The fully coherent simulation step at E0 = 17 keV gives the

same Gaussian PSF as seen for the CRL alone in x4.1 (see

Fig. 8). The other photon energies also give a Gaussian beam

shape, although much larger, as they are not in perfect

focus. When adding the fully coherent simulated intensities

according to the bandwidth, the resulting PSF shapes become

progressively non-Gaussian for larger bandwidths, as seen

in Fig. 8. The chromatic aberrations from a crystal mono-

chromator (�E=E = 10�4) are negligible, but for the larger

bandwidths the main peak broadens and develops significant

intensity outside the main peak.

A full overview of the PSF as a function of energy band-

width is seen in Fig. 9, in which vertical slices are PSFs

corresponding to the bandwidth on the x-axis. Fig. 9(a)

shows the simulated PSFs and Fig. 9(b) shows the PSFs

from geometrical optics. The geometrical optics PSF from the

chromatic aberration alone is calculated from equation (38)

of Simons et al. (2017), and then convoluted with the CRL

resolution PSF to give an effective PSF. The energy distribu-

tions used to weight the sums of the fully coherent simulations

are not normalized, and so the increase in PSF intensity

reflects the increase in flux. The black lines show the 25%

(full width at quarter-maximum), 50% (full width at half-

maximum) and 75% (full width at three-quarters-maximum)

of the relative intensity of each PSF, thus giving a sense of the

resolution. A striking difference is seen between the FrFT

simulation and geometrical optics: according to the geometric

optics the resolution should simply keep deteriorating with
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Figure 7
Resolution of an imaging system with a combined CRL objective and
a square aperture in the back focal plane. Shown are results from
geometrical optics, �tot, and from FrFT simulations, �FrFT, as a function of
aperture size. In the intermediate region where the two components
contribute equally to the resolution, geometrical optics fails at predicting
the resolution. Simulation details: 2D wavefront, 1000 � 1000 pixels,
10 nm pixel size, PSF widths extracted from Gaussian fitting to vertical
line profiles through the optical axis; see also ‘Example_Figure_7.m’ of
Pedersen (2017).

Figure 8
The PSF for selected energy bandwidths. The crystal monochromator
with �E=E ¼ 10�4 has negligible broadening over the ideal Gaussian
PSF, whereas the broader bandwidths have broader peaks and become
increasingly non-Gaussian. Simulation details: 1D wavefront, 1000 pixels,
10 nm pixel size; see also ‘Example_Figure_8_9_1D.m’ of Pedersen
(2017).



increasing bandwidth, whereas the FrFT simulations show that

the resolution only decays rapidly up to about �E=E = 10�3,

after which the resolution only changes slightly.

Why are the two cases so different? The FrFT approach

includes diffractive phenomena, which causes the PSF to

defocus for the non-optimized wavelengths, in effect reducing

the influence of the wavelengths far from the central wave-

length, as the intensity will be substantially smeared out.

This example highlights the benefits of wavefront propagation

methods, which include diffractive phenomena in propagation.

The PSF discussed here relates only to the on-axis resolution,

and further simulations are required for more detailed off-axis

resolutions.

5. Discussion

As mentioned earlier, we assume each individual lens to be a

thin lens. According to Goodman (2005) the typical thin-lens

approximation for optical lenses involves two approximations:

that the lens surface is described by a paraboloid and that the

rays are parallel to the optical axis inside the lens, i.e. the

paraxial approximation. These approximations hold well in

the case of CRLs, since the true lens profile is parabolic and

the angular deviations within the lens stack are typically very

small. In addition, the focal length of the individual lenses is

much longer than the lens thickness.

As demonstrated, the FrFT approach has a great benefit

over conventional Fourier optics by removing the quadratic

phase term in the object plane, which for X-rays requires a

very high sampling rate. Furthermore, it speeds up CRL

calculations, as all the free space propagations up to the CRL

exit plane can be combined into a single transform. The

absorption of the CRL can be handled by an effective

vignetting function (applied in the object plane) as well as an

effective pupil function (applied at the end of the CRL). The

effective vignetting and pupil functions have been demon-

strated here mostly in imaging geometries, but the approach is

valid in general cases as well [see, for example, ‘Example_7

_1D_CRL_Condenser.m’ of Pedersen (2017), in which the

object–lens distance is 0]. The effective vignetting and pupil

functions have been calculated assuming infinitely large

lenses, but we anticipate that it is possible to include finite

apertures in the same way with an effective pupil and

vignetting function by using a combination of Gaussian and

box functions.

The simulations presented here have been based on perfect

lenses. The effect of imperfect lenses can also be modeled if

the effects can be expressed in terms of a complex transmis-

sion function (attenuation and phase shift), relative to the

ideal lens. If the imperfections of the lenses can be modeled

cumulatively, as discussed by, for example, Seiboth et al.

(2017), the complex transmission function may be applied at

the CRL exit plane along with the effective pupil function.

Alternatively, one can apply transmission functions at each

lens, but then having to perform N + 1 propagation steps.

The FrFT approach is a powerful simulation tool in

experiments involving coherent effects. One example is

ptychography, where the probe intensity, shape and phase may

be simulated. If the sample interaction can be modeled, the

diffraction can be simulated as well, so one can perform the

entire experiment in simulations. One can, for example, test

the effect of different noise levels and probe displacement on

the reconstruction quality. Another example is phase contrast

microscopy, in which the diverging beam may be taken into

account by setting R�1 so that the phase curvature matches

that of the incoming beam. Again, the quadratic phase factor

is canceled out, so large 2D areas may be simulated on modest

computer hardware. A last example involving CRLs is

Zernike phase contrast, in which one can experiment with
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Figure 9
The point spread function as a function of energy bandwidth resulting from (a) FrFT simulations and (b) closed expressions from geometrical optics. For
each bandwidth, the intensity is shown as a function of position in the image plane. The color represents the intensity on an absolute scale. Hence, the
increase in the intensity at the central position with larger bandwidth reflects an increase in incoming photon flux. The black lines are the 25%, 50% and
75% relative intensity lines. Simulation details: 1D wavefront, 1000 pixels, 10 nm pixel size; see also ‘Example_Figure_8_9_1D.m’ of Pedersen (2017).



putting the phase shifter in different locations, either inside

the CRL lens stack or in the back focal plane.

Finally, FrFT provides a seamless and computationally fast

way to tie together diffraction patterns from various values a,

representing, for example, a Fourier plane (far-field Fraun-

hofer limit or back focal plane in an imaging system), direct

space (imaging plane) or any other rotation in direct-Fourier

space. The FrFT approach is useful in any wavefront simula-

tion situation, as long as the optical components can be

modeled by a complex transmission function. Other types of

lenses, such as zone plates and multi-layer Laue lenses,

effectively add a quadratic phase, and can therefore be

modeled as a simple lens in the FrFT framework. More

complex examples are flat mirrors, focusing KB mirror systems

and crystal optics. Even free space propagation may benefit

from the FrFT approach if the field of view is large.

6. Conclusion

In this paper we have adapted the general FrFT wavefront

propagation method to easy-to-use Matlab code for wavefront

propagation of X-rays. We have leveraged the extra degrees

of freedom associated with the FrFT propagation method,

as compared with traditional Fourier optics, to remove the

quadratic phase factor in the object plane. This removes the

strict sampling requirements typically encountered for X-rays

due to the short wavelength, and opens up for large field-of-

view simulations in both 1D and 2D.

The FrFT method intrinsically describes fully coherent

propagation, but can also be used for partial transverse and

longitudinal coherence. Partial coherence is implemented by

averaging repeated coherent intensity simulations, and here

the removal of the sampling requirements is very helpful,

as the otherwise time-consuming simulation can be greatly

speeded up and be performed on modest computer hardware.

The FrFT propagation technique is very general, and can

describe the propagation through highly complex optical

setups. The only requirement is that the effect of the optical

element can be described by a complex transmission function.

Lenses can be treated implicitly in the FrFT propagation, and

a single transform can be used to propagate through any

number of lenses, given that they have an infinite pupil. To

incorporate any type of aperture, either the pupil function of a

lens or a standalone aperture, the attenuation is applied at the

plane of the optical element. Here, we have shown that in the

case of CRLs the attenuation in each lens can be described by

an effective pupil function applied at the end of the CRL and

an effective vignetting function applied at the object plane. In

this way, propagation simulation through a CRL is no more

computationally intense than a single lens.

As numerical examples, we, first, calculate the PSF of an

imaging system with a CRL objective lens and a variable-sized

square aperture in the back focal plane, and, second, the PSF

of an imaging system with a CRL objective lens using pink-

beam illumination with variable bandwidth. In both cases the

FrFT wavefront propagation provides a more accurate result

compared with analytical expressions derived from geome-

trical optics.
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