
research papers

J. Synchrotron Rad. (2018). 25, 1135–1143 https://doi.org/10.1107/S160057751800601X 1135

Received 20 November 2017

Accepted 18 April 2018

Edited by S. M. Heald, Argonne National

Laboratory, USA

Keywords: multi-speckle X-ray photon correla-

tion spectroscopy; XPCS; MapReduce; parallel

implementation; Advanced Photon Source.

Distributed X-ray photon correlation spectroscopy
data reduction using Hadoop MapReduce

Faisal Khan,a* Suresh Narayanan,a Roger Sersted,b Nicholas Schwarza and

Alec Sandya

aX-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA, and
bAPS Engineering Support, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA.

*Correspondence e-mail: fkhan@anl.gov

Multi-speckle X-ray photon correlation spectroscopy (XPCS) is a powerful

technique for characterizing the dynamic nature of complex materials over a

range of time scales. XPCS has been successfully applied to study a wide range

of systems. Recent developments in higher-frame-rate detectors, while aiding

in the study of faster dynamical processes, creates large amounts of data that

require parallel computational techniques to process in near real-time. Here, an

implementation of the multi-tau and two-time autocorrelation algorithms using

the Hadoop MapReduce framework for distributed computing is presented. The

system scales well with regard to the increase in the data size, and has been

serving the users of beamline 8-ID-I at the Advanced Photon Source for near

real-time autocorrelations for the past five years.

1. Introduction

X-ray photon correlation spectroscopy (XPCS) is a powerful

technique for characterizing the dynamic nature of complex

materials over a wide range of time and length scales. Since

the very first demonstration of feasibility of observation of

speckles by coherent hard X-rays (Sutton et al., 1991), XPCS

has been successfully applied to study a wide range of systems

encompassing both soft and hard matter. The studies so far

have covered diverse systems, such as colloidal suspensions

(Lurio et al., 2000; Sikorski et al., 2011a), gels (Bandyopadhyay

et al., 2004; Madsen et al., 2010), liquid crystals (Sikharulidze et

al., 2002), polymers (Kim et al., 2003; Jiang et al., 2007), liquid

surfaces (Madsen et al., 2004) and hard materials (Fluerasu et

al., 2005; Ruta et al., 2014). A variant of the technique, termed

X-ray speckle visibility spectroscopy, has also been employed

for the measurement of dynamics. In this technique, the X-ray

speckle contrast within a single exposure can be related to

the relaxation time of the intermediate scattering function

(DeCaro et al., 2013; Hruszkewycz et al., 2012; Li et al., 2014)

and thus has the ability to measure dynamical time scales

faster than the repetition rate of area detectors. The optical

analog of XPCS, termed dynamic light scattering, typically

used point detectors to measure temporal correlations. On the

contrary, because of the low coherent signal levels with X-rays,

the XPCS scientific community developed multi-speckle

techniques from the beginning by applying area detectors

(Lumma et al., 2000). Due to sustained developments in area

detector technology from early CCD detectors to fairly

parallel readout CCD detectors (Denes et al., 2009) to fully

parallel pixel array detectors (Renzi et al., 2002; Broennimann

et al., 2006; Pennicard et al., 2013), the data rates have

ISSN 1600-5775

http://crossmark.crossref.org/dialog/?doi=10.1107/S160057751800601X&domain=pdf&date_stamp=2018-06-14

increased by four to five orders of magnitude over the last 15

years with particularly notable increases in the last few years.

A recent development in the detector technology is the

concept of a vertically integrating detector that has been

prototyped and successfully tested for XPCS (Rumaiz et al.,

2016).

2. Background

The recent development of higher-frame-rate detectors allows

the investigation of faster dynamic processes. A consequence

of these detector advancements is the creation of large

amounts of two-dimensional (2-D) data. It is imperative that

the data are processed within the time that it takes to collect

the next data so that the user is able to make a judicious

selection of measurement conditions. In this paper, we define

and refer to this condition as near real-time. Parallel compu-

tational techniques and high-performance computing (HPC)

resources are thereby an absolute requirement to handle this

increase in data volume and rate.

To the best of our knowledge, while the XPCS beamlines

at different synchrotron radiation facilities have developed

their own data analysis software packages using high-level

languages such as MATLAB or Python, the only HPC

implementation based on a lower-level programming language

that has been reported in the literature has been from the

Advanced Photon Source (APS) (Sikorski et al., 2011b;

Tieman et al., 2011). Some of the limitations of this previous

implementation are that it did not support the computation of

sparse data without transforming to a dense format, and it did

not scale with the number of frames in a time series.

The single most important parameter that characterizes the

dynamic response of a system is the dynamic structure factor

Sðq; tÞ or the normalized intermediate structure factor (ISF)

g1ðq; tÞ which is related to the experimentally measured and

computed intensity–intensity autocorrelation function, g2ðq; tÞ

(Berne & Pecora, 2000). A typical XPCS dataset is acquired as

a time series of 2-D frames from an area detector operating at

a fixed frame spacing as shown schematically in Fig. 1. The

analysis of XPCS data is based on computing individual pixel

correlations in the time domain, and then averaging such

correlations over a group of pixels that constitute a user-

specified equivalent wavevector q. The wavevector is inversely

related to the length scale in the sample being measured. It

can be readily seen that the input time series data in its atomic

representation adheres to the form (time, pixel, intensity). This

representation naturally fits into the paradigm of MapReduce,

which is a well established computing platform that has been

proven to be scalable for ‘big data’ distributed over hundreds

or thousands of servers. We have thereby developed an

implementation based on Hadoop MapReduce using two

modest distributed computing systems that perform in near

real-time for both small and large datasets.

The dynamics in the sample as a function of scattering

wavevector q (inverse length scale) are quantified using

the normalized intensity autocorrelation function g2(q, dt)

defined as

g2ðq; dtÞ ¼
hhIx;yðtÞ Ix;yðt þ dtÞitix;y

hhIx;yðtÞitix;y hhIx;yðt þ dtÞitix;y
; ð1Þ

where dt is the delay time, and Ix;yðtÞ and Ix;yðt þ dtÞ are the

scattering intensities at pixel (x; y) collected at times t and

t þ dt, respectively. The analysis of the g2 function allows one

to determine the q-dependence of the characteristic time scale

for the dynamics within the probed sample.

There are two types of analysis that are typically carried out

dictated by the nature of the dynamics in the system which

govern the functional form of dt referred to as the delay or the

lag time. For a system exhibiting dynamics about equilibrium,

dt can be described solely as a function of the difference in the

time samples and is independent of any time origin. Thereby

g2 can be described by a one-dimensional (1-D) correlation

function as a function of dt at a given q. The most common

algorithm that is used for this purpose is called the ‘multi-tau’

algorithm (Schatzel, 1990; Cipelletti & Weitz, 1999). It has

been shown using extensive error analysis that g2 can be

computed for logarithmic steps in dt instead of computing

linearly spaced results at every possible value of dt. This

results in significantly reduced computing resources without

any smearing of the correlation function. A salient feature of

this algorithm for the construction of g2 with logarithmic dt

is the use of sampling time intervals that are increased in

proportion to the delay time. This increase in sampling time

causes a proportional increase in the signal per sampling

interval and thus quickly reduces the photon noise contribu-

tions for large delay times dt and also aids in establishing a

well defined baseline to g2 (Schatzel, 1990).

For systems exhibiting dynamics that are not in equilibrium,

such as time-evolving systems where there is an origin of time,

dt alone does not faithfully represent the dynamical behavior.

The origin of time is specific to the system such as the onset of

quenching during phase ordering (Fluerasu et al., 2005), and

applied shear (Madsen et al., 2010; Rogers et al., 2014) to

mention but a few. For describing the dynamical processes in

such systems, the notion of a higher-order correlation function

research papers

1136 Faisal Khan et al. � XPCS data reduction using Hadoop MapReduce J. Synchrotron Rad. (2018). 25, 1135–1143

Figure 1
Conceptual representation of the time series nature of X-ray data
captured by the area detector. Each frame consists of a fixed number of
pixels and is separated by a fixed time. The correlation is computed for
each pixel in the time domain and then averaged over a group of
nominally equivalent pixels.

such as the ‘two-time correlation function’ was defined

(Sutton et al., 2003). The two-time correlation function

Cðq; t1; t2Þ is defined as

C q; t1; t2ð Þ ¼
hI q; t1ð Þ I q; t2ð Þix;y

hI q; t1ð Þix;y hI q; t2ð Þix;y
; ð2Þ

where Iðq; t1Þ and Iðq; t2Þ are the intensities scattered at the

momentum transfer q at time t1 and t2, respectively. The two-

time correlation function provides a 2-D map of the dynamical

phase space for all possible permutations and combinations of

the times t1 and t2. The dynamical response of the system can

be readily seen from such a map and further quantification of

the correlations along different contours can be drawn, and is

thus generally applicable to systems that are in non-equili-

brium as well as in equilibrium. It can be readily seen that the

computation of two-time correlations are far more compute

intensive with a significantly increased memory footprint. It

should be mentioned here for the sake of completion that the

time delays are linearly spaced and the increase in sampling

time for larger delays that was an integral part of the multi-tau

algorithm is not applicable here and thereby requires a higher

photon signal in each frame in the time series.

Fig. 2 shows the different aspects of the computation results

from a typical analysis using multi-tau and two-time algo-

rithms. The results are described in detail in the caption.

3. Parallel framework

A typical design pattern used in parallel programs is that of

‘fork’ and ‘join’, as shown in Fig. 3. In the fork phase, we

spawn different instances of a program that run in parallel and

work on different chunks of a problem, and then later the join

phase combines individual outputs to form the final result.

Our problem fits this design pattern; however, we are faced

with handling a large volume of input and output data. The

MapReduce (Dean & Ghemawat, 2008) framework solves this

problem, as explained next, by extending the fork–join para-

digm to a cluster of distributed-memory computers. Addi-

research papers

J. Synchrotron Rad. (2018). 25, 1135–1143 Faisal Khan et al. � XPCS data reduction using Hadoop MapReduce 1137

Figure 2
Results of static and dynamic analysis from a colloidal suspension of 70 nm latex spheres dispersed in glycerol at a volume fraction of 1% measured with
a Medixpix3-based LAMBDA detector are shown. The circular object is the 3 mm-diameter beam stop used to block the main beam from hitting the
detector, and the horizontal and vertical bands are the dead regions between the modules in the detector array. (a) Time-averaged 2-D scattering pattern.
(b) A pseudo color plot showing the digitized wavevector maps where each color corresponds to a mean wavevector value such that the range 0.02–
0.2 nm�1 is divided into 140 linearly spaced wavevector bins. (c) Integrated scattering intensity over the user-specified area of interest plotted as a
function of time which is typically used to assess for beam-induced damage to the sample. (d) Radially averaged small-angle X-ray scattering pattern as a
function of wavevector. (e) Correlation functions (circles) along with simple exponential fits (solid lines) at wavevector values of 0.02, 0.03, 0.04 and
0.05 nm�1 in decreasing order of delay time. (f) Two-time correlation function computed at a wavevector value of 0.03 nm �1.

Figure 3
A typical pattern found in the parallel implementation of many
algorithms is the fork–join design pattern. The Hadoop MapReduce
framework extends this idea to an HPC (high performance computing)
cluster.

tionally, it offers a standard way of dealing with large volumes

of data making it suitable for handling the complexity of our

problem. In this section, we briefly explain the main features

of MapReduce and the open source implementation of this

framework, Hadoop.

3.1. MapReduce

MapReduce is a programming framework for processing

large amounts of data using clusters of compute nodes. It was

originally developed by Google for analyzing trillions of

webpages for their search engine. The computation in

MapReduce is divided into three phases: map, shuffle and

reduce. The map phase splits the input data into smaller

chunks called blocks. These blocks are processed in parallel by

individual map processes. The output from each map process

is a set of intermediate key-value pairs. Later, the shuffle

phase groups these key-value pairs based on the value of each

key such that all the values associated with a given key are

available at a single reduce node. The reduce phase receives

all the values associated with a single key as input from the

shuffle process and produces the final output. Typically there is

one map process per data block and one reduce process per

key for maximum parallelism. The map and reduce functions

are usually the only user-provided code; the rest of the heavy

lifting of splitting the input into blocks, passing it to the maps

and then sorting and combining the intermediate output and

sending it to the appropriate reducer function is handled by

the framework itself.

To illustrate the working of MapReduce, consider the

example shown in Fig. 4 that counts the occurrences of words

in a document using MapReduce. For simplicity, we assume a

single document containing a list of color names. The maps

start by scanning parts of the input and produce an inter-

mediate set of key-value pairs. The color name will become

the key and the counts of the occurrence of that word within a

block will be its value. During the shuffle phase the inter-

mediate counts of the word occurrences are passed to the

reducers. Each reducer is given counts for a single word. For

example, our first reducer is passed the key w along with the

list of counts from all the map operations. Each reducer then

combines the counts of individual maps to form the final

counts.

3.2. Apache Hadoop

The MapReduce style of programming was further popu-

larized by the free and open source implementation by

the Apache Hadoop project (Apache, 2008). It provides a

MapReduce framework that leverages a distributed file system

(DFS) to make it easier to analyze large volumes of data. The

DFS splits the files into blocks, referred to as splits in this text,

of equal size and stores them across multiple machines in a

cluster. The user submits their MapReduce code, called a job,

following the semantics of the Application Programming

Interface (API) provided by Hadoop. Upon invocation,

Hadoop will launch the appropriate number of map and

reduce processes depending on the capacity of the cluster, the

size of the job and any other scheduling constraints. The

number of mappers is usually equal to the number of data

splits available for the given input file. The number of reducers

is generally specified by the users and is typically set to the

number of processing cores available for the job.

In addition to the basic filesystem and MapReduce

capabilities, Hadoop offers many other desirable features

including fault tolerance in the face of disk and machine

failures, data and code co-locality that reduce latencies by

moving the processing closer to the data, and the ability to

run on commodity computer hardware, among many other

features. The framework is written in the Java programming

language and is available with different configuration and add-

ons called distributions.

4. MapReduce for XPCS

In this section, we present our parallel implementation that

utilizes the MapReduce paradigm to process XPCS data. The

input to the system is image data collected by an area detector.

The data coming from the detector are stored as a binary file

where each frame is stored sequentially along with a per frame

header containing the metadata information about that image.

To make the discussion of the algorithm more concise we use

the following notation to represent the input to the system.

The input is represented as a series of N images where the

superscripts indicate the frame number at a given time:

[Ið1Þ; Ið2Þ; . . . ; IðN�1Þ; IðNÞ]. An image I is a two-dimensional

matrix of X rows and Y columns, where X and Y are the

dimensions of the detector. The intensity of a single pixel at

research papers

1138 Faisal Khan et al. � XPCS data reduction using Hadoop MapReduce J. Synchrotron Rad. (2018). 25, 1135–1143

Figure 4
A simple word count example to explain processing under the
MapReduce framework. (a) The input is a series of words in a single
document. (b) Each map scans part of the input. (c) An intermediate
count of words is emitted by each map as a key-value pair. The word itself
is the key and the count of its occurrence is the value. (d) Shuffle
combines the intermediate key-values and passes them to reduce, where
each reduce function obtains a distinct key along with all the intermediate
values associated with that key. (e) Reduce computes the final count.

position x, y within a frame i is represented as I ðiÞx;y. Fig. 5 shows

a schematic view of our data.

We have split the processing into two separate MapReduce

jobs. The first job computes the auto-correlations for each

pixel and stores the result in a binary file. The normalization

of these per-pixel correlation values according to the user-

specified length scale is performed by running an additional

MapReduce job. In the section below, we explain the two

MapReduce jobs. It should be mentioned here that, while the

second MapReduce job could have been combined with the

first, we implemented in two levels with no deterioration in the

performance.

4.1. Auto-correlations

Map. A set of map processes begin the analysis by proces-

sing individual data splits. The total number of maps is

proportional to the total number of data splits which is equal

to the block size. We use a block size of 128 MB. The frame-

work tries to evenly allocate the data among the mappers.

Each map processes its portion of the data split S containing

some number of frames. The output of this phase is in the form

of intermediate key-value pairs of the form [x; y! I ðiÞx;y]. Here,

x and y are the positions of the pixels and the value part of this

key, I ðiÞx;y is the pixel intensity for that pixel along with its

position in the frame sequence. It is important to note that at

the map stage we are not computing any correlation. At this

stage data are merely being re-organized, in parallel, for the

reduce stage to compute per-pixel correlation using all frames

in the data.

Reduce. Before launching the reduce processes, the frame-

work combines all intermediate keys with a given value at a

single compute node. In our case, all the intensity values for a

given pixel position will be gathered and provided to a single

reducer. In other words, a single reduce process is given a

sequence of pixel intensities [Ið1...NÞ
x;y] for a common pixel

position x; y across all data frames. The reduce process then

correlates the pixel intensities between different frames to

compute the auto-correlation. There are two variations when

deciding how the correlations should be done. These are

‘multi-tau’ or ‘two-time’ and are described next.

Multi-tau. In multi-tau, the correlation is computed such

that the primary variable for controlling the time step is dt and

it is typically set in logarithmic intervals as explained earlier.

We compute the unnormalized correlations called G2 as a

product of pixel values at frame i and frame iþ dt as shown in

equation (3),

G2

�
1 � x; y � ðX � YÞ; 1 � dt � N

�
¼
XN�dt

i¼ 1

I ðiÞx;y I ðiþdtÞ
x;y : ð3Þ

Here, ðX � YÞ refers to the total number of pixels in the

detector. One noteworthy point here is that equation (3) only

shows a single iteration of the algorithm for any pixel. In

multi-tau, the averaging of intensities is done at multiple

levels. The number of levels depends on the number of frames

and the number of time delays, dt, in each level, which typi-

cally has a default value of 8. Other than the first level, each

level begins by first averaging out the pixel intensities in time

from the previous level. In our implementation, we track

correlations at each level using dt as part of the output key-

value pair. All the computation for a single pixel, irrespective

of the number of levels, is done by a single reduce process.

This makes our implementation agnostic to the nature of the

algorithm such as multi-tau or two-time.

Fig. 6 summarizes the steps for computing auto-correlation

using the multi-tau algorithm.

Two-time. The two-time algorithm offers a slight variation

to the multi-tau algorithm and is aimed towards characterizing

the dynamics in non-equilibrium systems as explained earlier.

Here, instead of the averaging of the frames that takes place in

multi-tau in the higher levels resulting in dt being logarith-

mically spaced, correlation is carried out between every pair of

frames in time. This results in a 2-D map of correlations,

termed the two-time correlation matrix, with the time delay

being linearly spaced. In comparison, the multi-tau algorithm

results in a 1-D map of the correlations with the time delay

being logarithmically spaced. Thereby, two-time calculations

produce a large amount of output data. Equation (4) shows

the actual calculation,

G2

�
1 � x; y � ðX � YÞ; 1 � dt � N

�
¼

XN

i;j¼ 1; j 6¼ i

I ðiÞx;y I ðjÞx;y: ð4Þ

The parallelization of two-time analysis follows roughly the

same procedure as multi-tau. The data are split into blocks of

small numbers of frames at the map stage. These sets of frames

are processed (re-organized) in parallel and fed to the reduce

processes. The reduce processes computes the co-relation

for each pixel. However, instead of using a step function it

computes a dot product of a one-dimensional pixel over the

time array with itself.

research papers

J. Synchrotron Rad. (2018). 25, 1135–1143 Faisal Khan et al. � XPCS data reduction using Hadoop MapReduce 1139

Figure 5
I ðiÞ is used to represent a single image in a sequence of frames. The
notation I

ðiÞ
x¼ j;y¼ k is used to refer to a specific pixel with x index j and

y index k and frame number number i. The notation of x = X, y = Y refers
to the last pixel in the image (lower right corner).

4.2. Normalization

The per pixel auto-correlations are then normalized based

on the wavevector maps specified by the user. The wavevector

maps are composed of bins such that each bin comprises a

group of pixels based on the experimental geometry that are

nominally equivalent and can therefore be normalized toge-

ther. The normalization is carried out by running an additional

MapReduce job that runs as soon as the pixel correlations are

computed. The ‘map’ phase of that job reads the output from

the previous job that consists of G2 values for each pixel for

different time delays, dt. The emitted intermediate data from

this map consists of the bin number of the pixel position and

dt. The value for the intermediate key is the G2 correlation for

the pixel at the given dt. These keys are then combined based

on the bin number such that all the pixels that are in the same

bin (wavevector) are available at a single reduce node.

The reduce operation then averages them to compute

normalized g2.

5. Performance

In this section, we present the performance of the MapReduce

implementation using experimental datasets from the 8-ID-I

beamline at the APS.

5.1. Setup

Performance results are collected on a cluster of ten

compute nodes with an additional node acting as head node.

Both the compute and head nodes have two AMD Opteron

6220 processors with 12 cores each and 64 GB of memory. The

cluster runs the Cloudera version CDH-5 (Cloudera, 2014)

of the Hadoop file system and MapReduce. We measured

the time it takes from submission to completion of our

MapReduce jobs on the cluster. As there are no scheduling

conflicts or multiple users competing for the cluster, a job

typically starts immediately after submission.

We present the time it takes to complete MapReduce jobs

for different sizes and numbers of frames. We also compare

this time with the time it takes to collect these data with

the LAMBDA detector operating at a frame rate of

2000 frames s�1 (Pennicard et al., 2011). This comparison is of

particular interest as it sheds light on future efforts to bring

the analysis time to within some small factor of the acquisition

time to pave the way for real-time analysis.

We measured the time it takes to complete the analysis

using both the multi-tau and two-time algorithms. Each frame

consists of roughly one million pixels. About 20% of the pixels

contain data while the remaining pixels are below the single-

photon threshold and are removed by the areaDetector soft-

ware (areaDetector, 2008) before writing the data to files. The

data are stored as a sparse array with only those pixels stored

that have a value above a threshold. Each pixel occupies

6 bytes: 4 bytes for the linear index of the pixel in the frame

and 2 bytes for the intensity of the pixel.

5.2. Results

The plot in Fig. 7 shows the time it takes to complete the

analysis using the multi-tau algorithm with a varying number

of frames. We are able to process the majority of our data

(ranging from 1 K to 8 K frames) in under 1 min. There is

overhead in the MapReduce framework for setting up

processes for maps, shufflers and reducers. This overhead

dominates the overall time for a job when the number of

frames are small. The time it takes to process up to 6000

frames is very similar for this reason. On the other hand, as we

start increasing the frames, and thus the file size, the analysis

time also starts to increase. This is due to the fact that most of

the intermediate data produced for sorting and shuffling of

key-value pairs is not going to fit in the memory and the

MapReduce framework will have to start writing partial results

to the disk. The extra reads and writes to and from the disk

start to dominate the analysis time.

research papers

1140 Faisal Khan et al. � XPCS data reduction using Hadoop MapReduce J. Synchrotron Rad. (2018). 25, 1135–1143

Figure 6
(a) The area detector writes images as a series of frames. (b) The data are
stored in a distributed filesystem where the data are split into blocks of
equal size, S. These blocks are processed by individual maps. Each map
handles a unique split of the data. (c) The pixel-intensity data per frame
is emitted as intermediate data. (d) The framework combines pixel
intensities for all frames for a given pixel and passes it to a reducer.
(e) The reduce processes compute the auto-correlation of pixel-intensities
across time.

The plot in Fig. 8 compares the time it takes the MapReduce

system to analyze the data with the time the acquisition system

takes to acquire the data, which includes the data acquisition

and data transfer to the analysis cluster. As one of our goals

is to complete our analysis in near real-time, we are pushing

for bringing these times as close to each other as possible.

However, due to limitations of the MapReduce framework

and its requirement of batch processing, our system still has

overheads as shown in the plot.

The plot in Fig. 9 is the analysis time using the two-time

auto-correlation algorithm on data sets of different sizes. The

amount of intermediate data produced by the two-time

analysis is also much larger than that produced by the multi-

tau algorithm. For each pixel the multi-tau algorithm produces

a relatively smaller number of correlation values while the

two-time calculations produces N correlations for each pixel.

This difference also means that the amount of data to move

within the cluster is usually higher for two-time. This is one of

the reasons we restricted our analysis to <10000 frames for the

two-time algorithm.

The plot in Fig. 10 shows a comparison between analysis

and acquisition time for the two-time correlations.

6. XPCS workflow using virtualized computing

In order to keep up with the demand for more computing

resources, the APS has teamed up with the Computing,

Environment and Life Sciences (CELS) directorate at

Argonne to use Magellan, a virtualized computing resource.

Virtual computing environments separate physical hardware

resources from the software running on them, isolating an

application from the physical platform. The use of this remote

virtualized computing affords the APS many benefits.

Magellan’s virtualized environment allows the APS to install,

configure and update its Hadoop-based XPCS reduction

software easily and without interfering with other users on the

system. Its scalability allows the APS to provision more

computing resources when larger data sets are collected, and

release those resources for others to use when not required.

Further, the underlying hardware is supported and maintained

by professional HPC engineers, relieving APS staff of this

burden.

The XPCS workflow starts with raw data streaming directly

from the detector, through an on-the-fly firmware discrimi-

nator to a compressed file on the parallel file system located

research papers

J. Synchrotron Rad. (2018). 25, 1135–1143 Faisal Khan et al. � XPCS data reduction using Hadoop MapReduce 1141

Figure 7
Time (in seconds) to compute multi-tau correlations for data sets of
different sizes.

Figure 8
Time (in seconds) to compute the multi-tau auto-correlation for a given
data size in comparison with the time taken for collecting the same
dataset. The analysis and capture time are shown side-by-side for better
comparison.

Figure 9
Time (in seconds) to compute the two-time correlation for a given
data size.

at the APS. Once the acquisition is complete, the data are

automatically transferred using GridFTP to the Hadoop

Distributed File System (HDFS) running on the Magellan

resource in the computing center located on the Argonne

campus. This transfer occurs over two dedicated 10 Gb s�1

fiber optic links between the APS and the Magellan cluster. By

bypassing intermediate firewalls, this dedicated connection

provides a very low latency high-performance data pipe

between the two facilities. Immediately after the transfer, the

Hadoop MapReduce-based data reduction algorithms are run

in parallel on the provisioned Magellan compute instances,

followed by Python-based error-fitting code. Magellan

resources provisioned for typical use by the XPCS application

include approximately 120 CPU cores, 500 GB of distributed

RAM, and 20 TB of distributed disk storage. Provenance

information and the resultant reduced data are added to the

original HDF5 file, which is automatically transferred back to

the APS. Finally, the workflow pipeline triggers software for

visualizing the data (see Fig. 11).

7. Conclusion and future work

We have presented a MapReduce-based implementation of

computing auto-correlations for XPCS data at beamline 8-ID

at the APS. Our system works on a cluster of computers and

is able to process the majority of the datasets acquired at the

beamline within a small factor of the acquisition time. This

make it possible for our users to adjust experimental settings

in near real-time and finish their analysis in a short span

of time.

For the future, we note that the batch processing nature

of Hadoop’s MapReduce framework introduces additional

delays. We are exploring other options to enable real-time

streaming and reduction of our datasets including a parallel

C++ solution using optimized math libraries and the Message

Passing Interface (MPI) distributed framework.

Acknowledgements

The work and the use of Advanced Photon Source is

supported by US Department of Energy, Office of Science,

under Contract No. DE-AC02-06CH11357. The authors thank

Mitch McCuiston for the initiation of this project, Giampiero

Sciutto for supporting the APS computing cluster, and Daniel

Murphy-Olson and Ryan Aydelott for their support in setting

up the Magellan virtualized environment.

References

Apache, (2008). Hadoop distributed filesystem and mapreduce, http://
hadoop.apache.org/. Online: accessed 31 August 2016.

areaDetector, (2008). areadetector: Epics software for area detectors,
http://cars9.uchicago.edu/software/epics/areaDetector.html.
Accessed: 28 January 2017.

Bandyopadhyay, R., Liang, D., Yardimci, H., Sessoms, D., Borthwick,
M., Mochrie, S., Harden, J. & Leheny, R. (2004). Phys. Rev. Lett. 93,
228302.

research papers

1142 Faisal Khan et al. � XPCS data reduction using Hadoop MapReduce J. Synchrotron Rad. (2018). 25, 1135–1143

Figure 10
Time comparison (in seconds) against number of frames for recording
and analyzing data using the two-time auto-correlation algorithm. The
analysis and capture times are stacked in the same plot for better
comparison.

Figure 11
The virtualized XPCS acquisition and analysis workflow system in use at
the APS. These components are loosely connected via a well defined
HDF5 file interface and a message-based workflow pipeline. (1) The
detector data acquisition system writes data directly to a parallel file
system located at the APS. (2) The workflow pipeline automatically
transfers data from the APS to the Magellan resource over 2� 10 Gb s�1

network links. (3) The Hadoop MapReduce-based autocorrelation job
and subsequent fitting routines are run on the Magellan resource.
(4) Reduced data are automatically transferred back to the APS. (5) The
user views output visualizations and may adjust experiment parameters
for subsequent acquisitions.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB3

Berne, B. J. & Pecora, R. (2000). Dynamic Light Scattering: With
Applications to Chemistry, Biology, and Physics. Courier Corpora-
tion.

Broennimann, Ch., Eikenberry, E. F., Henrich, B., Horisberger, R.,
Huelsen, G., Pohl, E., Schmitt, B., Schulze-Briese, C., Suzuki, M.,
Tomizaki, T., Toyokawa, H. & Wagner, A. (2006). J. Synchrotron
Rad. 13, 120–130.

Cipelletti, L. & Weitz, D. (1999). Rev. Sci. Instrum. 70, 3214–3221.
Cloudera, (2014). Cloudera hadoop distribution, version 5, http://

www.cloudera.com/documentation/cdh/5-1-x/CDH5-Installation-
Guide/CDH5-Installation-Guide.html. Accessed: 31 August 2016.

Dean, J. & Ghemawat, S. (2008). Commun. ACM, 51, 107–113.
DeCaro, C., Karunaratne, V. N., Bera, S., Lurio, L. B., Sandy, A. R.,

Narayanan, S., Sutton, M., Winans, J., Duffin, K., Lehuta, J. &
Karonis, N. (2013). J. Synchrotron Rad. 20, 332–338.

Denes, P., Doering, D., Padmore, H., Walder, J.-P. & Weizeorick, J.
(2009). Rev. Sci. Instrum. 80, 083302.

Fluerasu, A., Sutton, M. & Dufresne, E. M. (2005). Phys. Rev. Lett.
94, 055501.

Hruszkewycz, S. O., Sutton, M., Fuoss, P. H., Adams, B., Rosenkranz,
S., Ludwig, K. F., Roseker, W., Fritz, D., Cammarata, M., Zhu, D.,
Lee, S., Lemke, H., Gutt, C., Robert, A., Grübel, G. & Stephenson,
G. B. (2012). Phys. Rev. Lett. 109, 185502.

Jiang, Z., Kim, H., Jiao, X., Lee, H., Lee, Y.-J., Byun, Y., Song, S.,
Eom, D., Li, C., Rafailovich, M., Lurio, L. B. & Sinha, S. K. (2007).
Phys. Rev. Lett. 98, 227801.

Kim, H., Rühm, A., Lurio, L., Basu, J., Lal, J., Lumma, D., Mochrie, S.
& Sinha, S. (2003). Phys. Rev. Lett. 90, 068302.

Li, L., Kwaśniewski, P., Orsi, D., Wiegart, L., Cristofolini, L.,
Caronna, C. & Fluerasu, A. (2014). J. Synchrotron Rad. 21,
1288–1295.

Lumma, D., Lurio, L., Mochrie, S. & Sutton, M. (2000). Rev. Sci.
Instrum. 71, 3274–3289.

Lurio, L., Lumma, D., Sandy, A., Borthwick, M., Falus, P., Mochrie, S.,
Pelletier, J., Sutton, M., Regan, L., Malik, A. & Stephenson, G. B.
(2000). Phys. Rev. Lett. 84, 785–788.

Madsen, A., Leheny, R. L., Guo, H., Sprung, M. & Czakkel, O. (2010).
New J. Phys. 12, 055001.

Madsen, A., Seydel, T., Sprung, M., Gutt, C., Tolan, M. & Grübel, G.
(2004). Phys. Rev. Lett. 92, 096104.

Pennicard, D., Lange, S., Smoljanin, S., Becker, J., Hirsemann, H.,
Epple, M. & Graafsma, H. (2011). J. Instrum. 6, C11009.

Pennicard, D., Lange, S., Smoljanin, S., Hirsemann, H., Graafsma, H.,
Epple, M., Zuvic, M., Lampert, M., Fritzsch, T. & Rothermund, M.
(2013). J. Phys. Conf. Ser. 425, 062010.

Renzi, M., Tate, M., Ercan, A., Gruner, S., Fontes, E., Powell, C.,
MacPhee, A., Narayanan, S., Wang, J., Yue, Y. & Cuenca, R. (2002).
Rev. Sci. Instrum. 73, 1621–1624.

Rogers, M. C., Chen, K., Andrzejewski, L., Narayanan, S.,
Ramakrishnan, S., Leheny, R. L. & Harden, J. L. (2014). Phys.
Rev. E, 90, 062310.

Rumaiz, A. K., Siddons, D. P., Deptuch, G., Maj, P., Kuczewski, A. J.,
Carini, G. A., Narayanan, S., Dufresne, E. M., Sandy, A., Bradford,
R., Fluerasu, A. & Sutton, M. (2016). J. Synchrotron Rad. 23, 404–
409.

Ruta, B., Baldi, G., Chushkin, Y., Rufflé, B., Cristofolini, L., Fontana,
A., Zanatta, M. & Nazzani, F. (2014). Nat. Commun. 5, 3939.

Schatzel, K. (1990). Quantum Opt. 2, 287–305.
Sikharulidze, I., Dolbnya, I. P., Fera, A., Madsen, A., Ostrovskii, B. I.

& de Jeu, W. H. (2002). Phys. Rev. Lett. 88, 115503.
Sikorski, M., Jiang, Z., Sprung, M., Narayanan, S., Sandy, A. &

Tieman, B. (2011b). Nucl. Instrum. Methods Phys. Res. A, 649, 234–
236.

Sikorski, M., Sandy, A. & Narayanan, S. (2011a). Phys. Rev. Lett. 106,
188301.

Sutton, M., Laaziri, K., Livet, F. & Bley, F. (2003). Opt. Express, 11,
2268–2277.

Sutton, M., Mochrie, S., Greytak, T., Nagler, S. E., Berman, L. E.,
Held, G. A. & Stephenson, G. B. (1991). Nature (London), 352,
608–610.

Tieman, B., Narayanan, S., Sandy, A. & Sikorski, M. (2011). Nucl.
Instrum. Methods Phys. Res. A, 649, 240–242.

research papers

J. Synchrotron Rad. (2018). 25, 1135–1143 Faisal Khan et al. � XPCS data reduction using Hadoop MapReduce 1143

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5359&bbid=BB32

