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The (spectral) brightness for partially transverse coherent sources such as

synchrotron radiation and free-electron laser sources can be defined as the

maximum of the Wigner distribution. Then, the brightness includes information

on both coherence and wavefront characteristics of the radiation field. For

undulator sources, it is customary to approximate the single-electron electric

field at resonance with a Gaussian beam, leading to great simplifications.

Attempts to account for the modified spatial and angular profile of the

undulator radiation in the presence of detuning due to energy spread, currently

build on the simplified brightness expression derived under the assumption

of Gaussian beams. The influence of energy spread on undulator radiation

properties is becoming important in view of diffraction-limited rings with

ultralow emittance coming on-line. Here the effects of energy spread on the

brightness of undulator radiation at resonance are discussed, as well as relevant

relations with coherence properties.

1. Introduction

The concept of (spectral) brightness, which is used as a figure

of merit for synchrotron radiation and free-electron laser

(FEL) sources, is historically rooted in radiometry (Born &

Wolf, 1999). Radiometry treats radiation within the frame-

work of geometrical optics and characterizes sources in terms

of radiance, that is the maximum photon flux density in phase

space, measured as a spectral photon flux per unit area per

unit projection solid angle. Other quantities of interest can be

derived by computing the marginals of the photon phase space

distribution. A particularly attractive feature of the radiance is

that, for non-dissipative systems where the Liouville theorem

holds, this quantity is an invariant along the beamline.

Therefore, it is strictly related to the maximum spectral

photon flux that can be obtained at the sample position,

assuming an ideal optical system.

Starting from the pioneering works (Coisson & Walker,

1986; Kim, 1986, 1987a,b), a lot of literature is available, which

deals with the generalization of the concept of radiance to the

case of partially transverse coherent sources as synchrotron

radiation and FEL sources (Coisson & Walker, 1986; Kim,

1986 1987a,b; Hulbert & Weber, 1992; Howells & Kincaid,

1994; Bahrdt, 1997; Hulbert & Williams, 1992, 1998; Bosch,

1999; Attwood, 1999; Bosch, 2000; Ciocci et al., 2000; Duke,

2000; Thomson & Vaugham, 2001; Wiedemann, 2002; Onuki &

Elleaume, 2003; Hofmann, 2004; Clarke, 2004; Talman, 2006;

Williams, 2006; Tanaka & Kitamura, 2009; Bazarov, 2012;

Huang, 2013; Tanaka, 2014; Geloni et al., 2015; Vartanyants &

Singer, 2018). This generalization process required changing
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the working framework from pure geometrical optics to wave

optics, backed up by statistical optics. This led to the substi-

tution of the phase space of optical rays in geometrical optics

with a Wigner distribution that, as is well known, is a quasi-

probability distribution, not everywhere positive definite.

As underlined by Bazarov (2012), this generalization

process naturally includes a strong analogy with quantum

mechanics in position representation, where wavefunctions

are analogous to spatial field distributions and the classical

concept of phase space is substituted by a Wigner distribution,

which can assume negative values related to the ability of

wavefunctions (and electric fields) to interfere. In quantum

mechanics (or in wave optics) one often deals with random

processes so that it becomes necessary to describe the state of

the system (or the electric field) in terms of a density matrix,

which assumes the form of a correlation function in position

representation. In the case of synchrotron radiation and FEL

sources the underlying, fundamental stochastic process is the

shot-noise in the electron beam. As is well known, in statistical

optics the spatial field correlation function at a given

frequency takes the name of cross-spectral density. The overall

degree of transverse coherence is just analogous to the trace of

the square of the density matrix representing the statistical

operator for a quantum mixture, and can therefore be

expressed in terms of integrals of the cross-spectral density.

It is interesting to remark here that the trace of a matrix is

invariant with respect to a basis transformation. This fact is

well known in statistical quantum mechanics, where a mixed

state can be thought of as a mixture of pure states that diag-

onalize the statistical operator with weights given by its

eigenvalues. The same fact is similarly well known in statistical

optics, where the coherent mode decomposition theorem

allows a cross-spectral density to be written as a sum of

uniquely defined statistically independent contributions,

obviously leaving the overall degree of coherence unvaried.

The relation between cross-spectral density (or density

matrix) and Wigner distribution is a simple Fourier transfor-

mation. In other words, they carry the same identical amount

of information. The brightness can be seen as a figure of merit

that is extracted from the Wigner distribution. There are

several recipes for doing so. One defines the brightness in

terms of integrals of the Wigner function and of its square.

Another defines it as the Wigner function on-axis [see, for

example, Bazarov (2012) for a review].

However, as noted by Geloni et al. (2015), there is a

correspondence principle between wave and geometrical

optics, exactly as there is a correspondence principle between

quantum and classical mechanics. In particular, there is a

special class of sources, called quasi-homogeneous sources, for

which the Wigner distribution function factorizes as

Wðr; hÞ ¼ IðrÞ IðhÞ; ð1Þ

where IðrÞ and IðhÞ can be identified, respectively, with the

source intensity distribution and with the angular distribution

of radiation intensity. Then, W is the product of two positive

quantities, and, being positive-definite everywhere, can be

identified with a phase space. In this limit, the brightness must

strictly correspond to the radiance, and is the maximum of the

Wigner distribution function. It is therefore natural to define

the brightness for any source as the maximum of the Wigner

distribution.

With this last definition, the brightness includes information

on both coherence and wavefront characteristics of the elec-

tric field, in contrast to the case where it is defined in terms of

integrals of the Wigner function, and only information on the

degree of coherence is present.

The previous discussion is meant to be a quick summary of

the strict relations between coherence properties and bright-

ness, which are important to keep in mind when discussing

radiation properties from FELs and storage-ring sources, and

are becoming more important for storage-ring-based sources,

in view of the coming on-line of many state-of-the-art

diffraction-limited rings.

For the case of storage rings, one can approximate the

transverse electron phase space with a Gaussian function.

Moreover, for undulator sources, it is customary to approx-

imate the single-electron electric field at resonance with a

Gaussian beam. In contrast to the real undulator field,

Gaussian functions are separable, and a simplified expression

for the brightness results in this case (Kim, 1986),

B ¼
F

4�2�x�y�x0�y0
; ð2Þ

where F indicates the total flux per unit spectral bandwidth,

while �x;y, �x0;y0 are effective source size and divergences,

calculated by summing in quadrature the sizes and diver-

gences of the electron beam and of the single-electron radia-

tion.

Equation (2), derived under the Gaussian beam approx-

imation, does not include detuning or energy-spread effects

on the radiation beam. However, for diffraction-limited rings,

studying the influence of energy spread of undulator radiation

properties is becoming more and more important, because of

the ultra-low electron emittance.

In the paper by Tanaka & Kitamura (2009), an attempt is

reported where the authors account for the modified spatial

and angular profile of the undulator radiation in the presence

of detuning. However, the approximate formula for the

brightness that they obtain still builds on equation (2), that is

based on the Gaussian beam approximation in the first place.

It is therefore interesting to study energy spread effects on

the brightness of undulator radiation by avoiding to rely on

the Gaussian beam approximation from the very beginning,

and defining the brightness as the maximum of the Wigner

distribution. Moreover, given the strict relation between

coherence and brightness, highlighted above, one should

complement a study on the effects on the brightness with a

study on the effects on coherence.

Here we will discuss the effects of energy spread on both

brightness and coherence of undulator radiation at resonance.

We will first introduce basic quantities and notations. Then,

using a simple model, we will demonstrate a very counter-

intuitive fact. In the limit for a vanishing small emittance the

brightness from an undulator is not influenced by the electron
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beam energy spread, in the case of a symmetrical distribution

around the nominal energy. Further on, with the help of semi-

analytical calculations, we will discuss the impact of energy

spread on the coherence properties of undulator radiation.

We will illustrate our results with examples compatible with

modern diffraction-limited sources, discussing similarities and

differences with respect to the approach by Tanaka & Kita-

mura (2009).

2. Basic quantities and notations

We follow notations similar to those used by Geloni et al.

(2008, 2015). We write the fundamental wavelength of a planar

undulator with Nu � 1 periods as �1 = �uð1þ K 2=2Þ=ð2�2
1 Þ,

where �u is the undulator period, Lu = Nu�u, ku = 2�=�u and K

is the maximum undulator parameter. Likewise, the funda-

mental frequency is !1 = 2�c=�1. �EEð!Þ denotes the Fourier

transform of the electric field, and we define with eEEð!Þ =
�EEð!Þ expð�i!z=cÞ the slowly varying envelope of the field

in the frequency domain, which we will refer to simply as

‘the field’.

Consider an electron that enters the undulator at a small

angle g and offset l with energy fixed by � that can be different

from the nominal value �1. The far-field angular distribution

seen at a distance z � Lu from the middle of the undulator

and at frequency ! such that j!� !1j=!1 � 1 (where the

resonance approximation applies) depends on the parameters

z; �; g and l, and is given by1

eEE hð Þ ¼ �
K!eLu AJJ

2c2z�
exp i

!

c

z�2

2
� h � l

� �� �
� sinc �

2�Nu � � �1ð Þ

�1

þ
!Lu h � g

�� ��2
4c

" #
: ð3Þ

Here, AJJ = J0½K
2=ð4þ 2K 2Þ� � J1½K

2=ð4þ 2K 2Þ� is the

coupling strength for the first harmonic under the resonance

approximation. Our considerations can be easily extended

to odd harmonics. For even harmonics one should consider,

instead, a different position of the maximum of the Wigner

function. Note that under the resonance approximation the

field is linearly polarized, hence eEE is a scalar quantity. An

expression for the field at the virtual position z = 0, i.e. in the

middle of the undulator and for any position after the undu-

lator exit at perfect resonance, can be found in equations (34)

and (35) of Geloni et al. (2007). However, to the authors’

knowledge there is no analytical expression for the field at

z = 0 at finite detuning, which should be calculated propa-

gating equation (3).

Following the references above we use normalized units

defined as

ĝg ¼
g

�- =Luð Þ
1=2
; ĥh ¼

h

�- =Luð Þ
1=2
;

r̂r ¼
r

�- Luð Þ
1=2
; l̂l ¼

l

�- Luð Þ
1=2
;

’̂’ ¼
ct

�-
; �̂�E ¼ �4�Nu

� � �1

�1

;

ð4Þ

so that it is natural to define

Nx;y ¼
�2

x;y

�- Lu

; Dx;y ¼
�2

x0;y0

�- =Lu

;

�’ ¼
c�t

�-

� �2

; �E ¼ 4�Nu���=�

	 
2
:

ð5Þ

Roughly speaking, this amounts to normalizing angles to the

diffraction angle of single-electron emission, sizes to the

diffraction size, fractional energy deviation to the undulator

resonant bandwidth, and times to inverse radiation frequency.

Moreover, here �x;y;t;��=� are the r.m.s. of the electron beam

dimensions in phase space, and we assume for simplicity that

at z = 0, i.e. in the middle of the undulator, the electron beam

phase space can be factorized as

f̂f6D ¼ f�x
ð�̂�xÞ f�y

ð�̂�yÞ flx
ðl̂lyÞ flx

ðl̂lyÞ f’ð’̂’Þ f�E
ð�̂�EÞ; ð6Þ

with

f�x
ð�̂�xÞ ¼

1

2�Dxð Þ
1=2

exp �
�̂� 2

x

2Dx

� �
;

f�y
ð�̂�yÞ ¼

1

2�Dy

	 
1=2
exp �

�̂� 2
y

2Dy

� �
;

flx
ðl̂lxÞ ¼

1

2�Nxð Þ
1=2

exp �
l̂l 2
x

2Nx

 !
;

fly
ðl̂lyÞ ¼

1

2�Ny

	 
1=2
exp �

l̂l 2
y

2Ny

 !
;

f’ð’̂’Þ ¼
1

2��’

	 
1=2
exp �

’̂’ 2

2�’

� �
;

f�E
ð�̂�EÞ ¼

1

2��Eð Þ
1=2

exp �
�̂� 2

2�E

 !
;

ð7Þ

where we defined the various Gaussian distributions in terms

of the variances Nx;y, Dx;y, �E and �’ and we introduced f’ð’̂’Þ
and �’ only for completeness, because in this paper we deal

with spontaneous radiation and therefore these quantities are

not used. The far-zone field in normalized units can be written

as

ÊEðĥhÞ ¼
1

ẑz
exp i

�̂� 2ẑz

2
� iĥh � l̂l

 !
sinc

�̂�E

2
þ
jĥh � ĝgj2

4

 !
; ð8Þ

where ẑz = z=Lu. As discussed above, one may calculate the

analogous field at the virtual source as
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1 Note the minus sign in the first term under the sinc function. If, for example,
we fix ! ¼ !1 but our electron has � >�1, then the resonance frequency for
that electron is higher than !1, effectively corresponding to a negative
detuning �2�Nuð� � �1Þ=�1.



ÊEðr̂rÞ ¼ � i exp iĝg � r̂r� l̂l
	 
� �

�

Z 1
0

d�̂� �̂� J0 �̂� r̂r� l̂l
��� ���� �

sinc
�̂�E

2
þ
�̂� 2

4

 !
: ð9Þ

In the top panel of Fig. 1 we plot ẑzÊEð�̂�Þ= expði�̂� 2ẑz=2Þ, i.e. the

well known far-field profile for l̂l = 0 and ĝg = 0 (which is

azimuthal-symmetric) as a function of �̂� for different values of

the detuning �̂�E, while in the bottom panel we plot the field at

the virtual source (which has a plane wavefront) for the same

choices of the detuning parameter. For comparison, in the top

and bottom panels of Fig. 2 we plot, respectively, ẑz2jÊEð�̂�Þj2 and

jÊEðr̂rÞj2 that are the corresponding intensity distributions.

It can be shown that for negative values of �̂�E the maximum

intensity at the source increases and tends to ‘saturate’ for

large negative values, while it remains constant in the far zone.

We will discuss the consequences of this fact later on.

Also, even at �̂�E = 0, the intensity distribution at the virtual

source and in the far zone are not Gaussian. Therefore, any

Gaussian approximation relies on a fitting procedure. In this

regard it is important to remark that the intensity distribution

in the far zone and at the virtual source are related by the laws

of field propagation in free-space, basically a Fourier trans-

formation. One may fit the intensity at the virtual source with

a Gaussian, but in that case the real intensity in the far-zone

does not match the propagated Gaussian beam. One may fit

the intensity in the far zone with the Gaussian, but in that case

the intensity at the virtual source does not match the back-

propagated Gaussian beam. In other words, there is some

freedom when it comes to applying the Gaussian approx-

imation. Many different choices can be found in the literature

[see, for example, Kim (1986, 1987a), Lindberg & Kim (2015)].

One of the possible choices (Kim, 1987a; Tanaka & Kitamura,

2009) is to fix, for the single-electron intensity distribution,

�r = ð2�LuÞ
1=2=ð4�Þ and �r 0 = ½�=ð2LuÞ�

1=2, corresponding to

the photon emittance (strictly speaking we cannot define a

photon emittance, except in those cases when the Wigner

distribution is positive definite, and the Gaussian approxima-

tion is one of those cases) "r = �r �r 0 = �=ð4�Þ. In our

normalized units, they amount to �̂�r = 1=ð2
ffiffiffi
�
p
Þ and �̂�r 0 =

ffiffiffi
�
p

.

The corresponding FWHM values are obtained multiplying

by 2
ffiffiffiffiffiffiffi
ln 2
p

’ 2.35 and read 	r̂rGauss = 0.664 and 	r̂r 0Gauss = 4.17, to

be compared with the corresponding FWHM values for the

actual intensities at �̂�E = 0, which are found to be 	r̂rreal = 1.36

and 	r̂r 0real = 4.72.

Having discussed the single-electron field and intensity

profiles, we now introduce the cross-spectral density in

normalized units,

ĜGðĥh;�hÞ ¼ ÊEðĥh þ�ĥh=2Þ ÊE 	ðĥh ��ĥh=2Þ
D E

; ð10Þ

where the brackets h. . .i indicate averaging over an ensemble

realizations, ĥh is the vector position at which a two-pinholes

system is introduced to probe coherence, and �ĥh is the vector

describing the separation between the two pinholes, see

research papers

1338 Gianluca Geloni et al. � Energy spread in undulator sources J. Synchrotron Rad. (2018). 25, 1335–1345

Figure 2
Top panel: the function ẑz 2jÊEð�̂�Þj2 is plot for different values of �̂�E. Bottom
panel: the function jÊEðr̂rÞj2 is plot for different values of �̂�E. Both functions
are axis-symmetric, i.e. a three-dimensional picture can be obtained by a
rotation around the vertical axis. Here l̂l = 0 and ĝg = 0.

Figure 1
Top panel: the function ẑzÊEð�̂�Þ= expði�̂� 2ẑz=2Þ is plot for different values of
�̂�E. Bottom panel: the field at the virtual source located in the middle of
the undulator,�iÊEðr̂rÞ, is plot for different values of �̂�E. Both functions are
axis-symmetric, i.e. a three-dimensional picture can be obtained by a
rotation around the vertical axis. Here l̂l = 0 and ĝg = 0.



equation (4). Clearly, ĥh and �ĥh may have different directions.

We remind that the spectral degree of coherence is defined as

gðĥh;�ĥhÞ ¼
ĜGðĥh;�ĥhÞ

ĜGðĥh þ�ĥh=2Þ ĜGðĥh ��ĥh=2Þ
h i1=2

; ð11Þ

and the fringe visibility of an interference experiment is given

by

V ¼
2jĜGðĥh;�ĥhÞj

ĜGðĥh þ�ĥh=2; 0Þ þ ĜGðĥh ��ĥh=2; 0Þ
: ð12Þ

Finally, the Wigner distribution in normalized units is

ŴWðr̂r; ĥhÞ ¼

Z
d2
ð��̂�Þ expði r̂r ��ĥhÞ ĜGðĥh;�ĥhÞ: ð13Þ

Following the same formalism as Geloni et al. (2015), the

corresponding result in dimensional units is found to be linked

to equation (13) by the constant

C ¼
z 2IK 2!3
A2

JJ

64�4ec3�2Lu

; ð14Þ

with 
 = e2=ðh- cÞ the fine structure constant. This result follows

from the correspondence principle for quasi-homogeneous

sources discussed in the Introduction, for which equation (1) is

valid. The brightness, defined by us as the maximum of the

Wigner distribution, is therefore given by

B ¼ CmaxðŴWÞ: ð15Þ

Here we underline the fact that, while this is often the case, in

the most general case the maximum of the Wigner function

may not be on-axis, i.e. may not be at r̂r = 0 and �̂� = 0. Choosing

the maximum of the Wigner function for defining the bright-

ness assures that the correspondence principle discussed in the

Introduction is consistently applied.

Substitution of equation (8) into equation (10) gives the

following explicit expression for the cross-spectral density

in the case of undulator radiation around the fundamental

harmonic (or, with simple changes, for odd harmonics),

ĜGðĥh;�ĥhÞ ¼
1

ð2�Þ3=2 DxDy�E

	 
1=2
ẑz 2

exp �iẑzĥh ��ĥh
� �

� exp �
Nx��̂�

2
x

2

 !
exp �

Ny��̂�
2
y

2

 !

�

Z 1
�1

d�̂�x

Z 1
�1

d�̂�y

Z 1
�1

d�̂�E

� exp �
�̂� 2

x

2Dx

� �
exp �

�̂� 2
y

2Dy

� �
exp �

�̂� 2
E

2�E

 !

� sinc
�̂�E

2
þ
jĥh � ĝgþ�ĥh=2j2

4

 !

� sinc
�̂�E

2
þ
jĥh � ĝg��ĥh=2j2

4

 !
: ð16Þ

Note that the single-electron spectral-angular intensity

distribution has, in our case, its maximum at resonance on-axis.

Then, for a Gaussian distribution of energy spread, divergence

and size of the electron beam, the maximum of the Wigner

distribution must be at r̂r = 0 and �̂� = 0, and therefore

B ¼ C � ŴWð0; 0Þ ¼ C
R

d2
ð��̂�Þ ĜGð0;�ĥhÞ; ð17Þ

the integral extending over all the plane spanned by the

vector �ĥh.

3. Effects of energy spread on the brightness

Let us first consider the simplest case of a beam with vanishing

emittance. Equation (16) simplifies accordingly, and substitu-

tion into equation (17) gives the following expression for the

brightness2,

B ¼

ffiffiffiffiffiffi
2�
p
Cffiffiffiffiffiffiffi

�E

p
ẑz2

Z 1
0

dð��̂�Þ��̂�

Z 1
�1

d�̂�E exp �
�̂� 2

E

2�E

 !

� sinc2 �̂�E

2
þ
ð��̂�=2Þ2

4

" #
; ð18Þ

where we used the fact that in the limit for zero emittance

ĜGð0;�ĥhÞ is azimuthal symmetric. Now we note that

B ¼

ffiffiffiffiffiffi
2�
p
Cffiffiffiffiffiffiffi

�E

p
ẑz2

Z 1
�1

d�̂�E exp �
�̂�2

E

2�E

 !
Fð�̂�EÞ; ð19Þ

where

Fð�̂�EÞ ¼

Z 1
0

dð��̂�Þ��̂� sinc2 �̂�E

2
þ
ð��̂�=2Þ2

4

" #

¼
4

�̂�E

2þ ��̂�E � 2 cosð�̂�EÞ � 2�̂�E Sið�̂�EÞ

h i
; ð20Þ

where Sið�̂�EÞ =
R �̂�E

0 dt sincðtÞ is the sine integral function.

By definition, the function Fð�̂�EÞ is proportional to the

angle-integrated spectral flux from a single electron, and

therefore the brightness is proportional to the single-electron

angle-integrated spectral flux, averaged over the energy

spread distribution.

Moreover, the function Fð�̂�EÞ has the property that

Fð�̂�EÞ þ Fð��̂�EÞ = 8� independently of the value of the real

number �̂�E. We conclude that for zero emittance and

symmetric energy spread distribution we cannot have any

effect of the energy spread on the brightness that can in fact be

written as

B ¼
IK 2!3
A2

JJLu

8�2ec3�2
: ð21Þ

In order to make our argument clearer, we calculated the

brightness for two specific cases using the code SPECTRA

(Tanaka & Kitamura, 2001). Both cases refer to parameters

compatible with the PETRA IV project, with an energy of

6 GeV, and a planar undulator with period �u = 65.6 mm and

a length of 5 m, corresponding to 76 periods. We set zero

emittance and discuss two single-electron cases with resonant
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2 Mathematically speaking, here we take limit for Nx;y �! 0 and Dx;y �! 0.



energies at 580 eV and 4000 eV. The results are plotted in

the top panel of Fig. 3 as a function of the detuning �̂�E =

�4�Nuð� � �1Þ=�1, where we show the brightness divided by

the value at zero detuning. In the bottom panel of the same

figure we plot the function Fð�̂�EÞ. By comparing the two plots

one can see, as expected, a very similar behaviour. The only

difference is that the brightness computed with SPECTRA

(which is not based on the resonant approximation used for

the analytical calculations) has its maximum around �̂�E ’ �4,

while the analytical calculation shows that the function Fð�̂�EÞ

continues to grow for values of �̂�E below that. This last fact can

be seen as a consequence of the fact that, at the source, the

maximum of the intensity profile is increasing for negative

detuning values (see Fig. 1, bottom panel), as previously

discussed. Note that, in any case, the brightness is roughly

anti-symmetrical with respect to the point �̂�E = 0 also for large

detuning values, and this reinforces our conclusion that for

zero emittance and symmetric energy spread distribution we

cannot have any effect of the energy spread on the brightness,

in agreement with the analysis of equations (18) and (20).

It is interesting to compare our results with those of Tanaka

& Kitamura (2009). As discussed in the Introduction, Tanaka

& Kitamura (2009) proposed an approximated formula for the

brightness, which is derived starting from equation (2), that

is the usual expression for the brightness based on Gaussian

approximation but includes the impact of a modified spatial

and angular profile of the undulator radiation in the presence

of detuning. In our notations, setting for simplicity

N 
 Nx ¼ Ny and D 
 Dx ¼ Dy, this formula reads

BA ¼ B
D

�
þQ 2

a

ffiffiffiffiffiffiffi
�E

p

2

� �� ��1

4�N þ 4Q 4=3
a

ffiffiffiffiffiffiffi
�E

p

8

� �� ��1

;

ð22Þ

where

QaðxÞ ¼
2x2

�1þ expð�2x2Þ þ
ffiffiffiffiffiffi
2�
p

x erfð
ffiffiffi
2
p

xÞ

� �1=2

; ð23Þ

and the subscript ‘A’ stands for ‘Approximated’.

We considered the previously discussed parameters

compatible with the PETRA IV project and we analysed the

case of zero emittance as well as the case for a finite emittance

"x;y = 10 pm, equal betatron functions �x;y = 1 m, and no

dispersion. A comparison of the brightness as a function of the

energy spread for zero and non-zero emittance at the two

different resonance photon energies of 580 eV and 4000 eV is

shown in Fig. 4, as calculated using our formulas, SPECTRA

and equation (22). The cases of non-zero emittance corre-

spond to Nx;y = 0.0059 and Dx;y = 0.15 for the case of 580 eV,

and Nx;y = 0.04 and Dx;y = 1.01 for the case of 4000 eV. The

main parameters are summarized in Table 1. Note that the

detuning parameter depends linearly on the harmonic

number. If we consider Nu ’ 100 and ���=� = 10�3, one

immediately sees that the normalized r.m.s. energy spread

parameter is about 1.3 for the first harmonic, but, since it

scales linearly with the harmonic number, for the fifth it would

be already about 6.3. Therefore, we chose to present plots up

to values of
ffiffiffiffiffiffiffi
�E

p
= 5.

Looking at Fig. 4 we see that there is a factor of four

difference between equation (22) in the limit for no emittance

and energy spread and equation (21). In Tanaka & Kitamura

(2009) this seems to be explained as due to the fact that while

the Gaussian approximation was used ‘to determine the

angular divergence and source size, the spatial profile’ was

‘derived by the spatial Fourier transform of the angular
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Figure 3
Single electron. Top panel: calculated brightness as a function of �̂�E for
parameters specified in the text. Bottom panel: the function Fð�̂�EÞ.

Table 1
Main parameters corresponding to the simulations in this paper.

Parameter Value Unit

"x,y 10 pm
�x,y 1 m
E 6 GeV
�u 65.6 mm
Nu 76 –



distribution of the complex amplitude’, leading to a factor of

two in the source size. We argue that this procedure should not

lead to any difference in the brightness in the case of zero

emittance and energy spread, because in that limit one must

have (Kim, 1987a)

B ¼ 4F=�2 ð24Þ

as is confirmed by equation (21) and (see Fig. 4) by direct

calculations with the code SPECTRA.

Aside for the factor of four discrepancy, we note that

equation (22) approximates the influence of energy spread

by summing emittance-related parameters (N and D) with

powers of the function Qa that depend on the energy spread.

Therefore, in the limit for zero emittance, energy spread

effects dominate the brightness. In contrast to this, equation

(18) is completely independent of the energy spread. This

behaviour is exemplified in Fig. 4.

Our conclusion is that, while equation (22) may constitute a

good approximation in some region of the parameter space,

when it comes to the limit for a diffraction-limited beam with

non-negligible energy spread, a more detailed study is needed.

In particular, when one is well within the diffraction limit,

there is no region where the brightness is dominated by

energy-spread effects.

Clearly, the above considerations are valid only for a

vanishing emittance of the electron beam, i.e. in the limit for

Dx;y � 1 and Nx;y � 1. In fact, even for vanishing offsets

Nx;y � 1, if we cannot assume Dx;y � 1 the expression for

the brightness includes the integrated spectral flux for elec-

trons with different angles, and the sum of contributions with

positive an negative detuning is now depending on the

detuning value, at difference with the case above where

Fð�̂�EÞ + Fð��̂�EÞ = 8�, independently of �̂�E.

4. Effects of energy spread on coherence

It is interesting to discuss possible effects of the energy spread

on the coherence properties of undulator radiation. As before,

we will first consider the case for zero emittance.

Clearly, the phase of the field in equation (8) only depends

on the electron offset, and is fully independent of �̂�E, i.e. of �.

However, we note that the magnitude and, most importantly,

the sign of the field depend on �̂�E. Let us discuss the impact

of this sign on the spectral degree of coherence. We write

explicitly a simplified expression in the case of zero emittance

as

gð�̂�;��̂�Þ ¼ exp �iẑz�̂���̂�
� �

Gð�̂�;��̂�Þ

¼ exp �iẑz �̂���̂�
� � Z 1

�1

d�̂�E sinc
�̂�E

2
þ
ð�̂� þ��̂�=2Þ2

4

" #

� sinc
�̂�E

2
þ
ð�̂� ���̂�=2Þ2

4

" #
exp �

�̂�2
E

2�E

 !
, (Z 1

�1

d�̂�E sinc2

"
�̂�E

2
þ
ð�̂� þ��̂�=2Þ2

4

#

� exp

 
�

�̂�2
E

2�E

!)1=2

�

(Z 1
�1

d�̂�E sinc2

"
�̂�E

2
þ
ð�̂� ���̂�=2Þ2

4

#

� exp �
�̂�2

E

2�E

 !)1=2!
: ð25Þ

This equation has been found on the basis of equation (16),

where we took the limit for zero emittance and we assumed,

for simplicity, that the two vectors ĥh and �ĥh are directed along

the same direction. This simplification does not deprive our

model of any useful physics, but it makes all arguments scalars,

and hence easier to consider. Further on, since, as remarked

above, the phase of the field in equation (8) only depends on

the electron offset, we factorize g in the product of G and of

the phase factor expði�̂���̂�Þ. Note that G is still allowed to

assume negative values.

It is easy to see by inspection of equation (25) that, when

�E ! 0, G is different from unity, but jgj = jGj �! 1 every-

where. Moreover, on-axis, i.e. for �̂� = 0, one has g = G = 1, while

off-axis, i.e. for �̂� 6¼ 0, one has jumps of G from +1 to �1 at all

those values of ��̂� where ð�̂� þ��̂�=2Þ2=4 and ð�̂� ���̂�=2Þ2=4

differ by an odd multiple of �.

Let us consider the case of non-zero energy spread. If we

look on-axis at �̂� = 0, from equation (25) we see directly that

g = G = 1. However, off-axis, an interesting phenomenon takes

place. The field from different electrons with different

detuning �̂�E experiences a change in sign at different values of

��̂�. This means that different electrons generate radiation
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Figure 4
A comparison of the brightness as a function of the energy spread for
zero and non-zero emittance at two different resonant photon energies
(580 eV and 4000 eV, see text) and using different methods: equation (18)
(blue circles), equation (17) (green diamonds), SPECTRA calculations
(orange squares and red upwards triangles) and equation (22) (violet
downwards triangles and brown empty circles).



with different wavefronts, and coherence is therefore

decreased. This effect is encoded in the function G, while the

phase factor expði�̂���̂�Þ cannot change. To our understanding,

this mechanism was not discussed before and is at the basis

of any possible coherence deterioration

related to energy spread effects. It is

important to underline that it is present

only off-axis, while energy spread alone

cannot influence coherence properties

on-axis. In the presence of a finite

emittance, one must include the effect

of different angles ĝg in equation (16).

Then, even on-axis, different electrons

generate radiation with different wave-

fronts, and coherence deteriorates.

In order to illustrate our statements

and to estimate the importance of the

effects of energy spread on coherence

we performed semi-analytical calcula-

tions for the case of zero emittance. We

fixed different values of �̂� and plot the

cross-spectral density (a real function, in

our case), the spectral degree of coher-

ence, and the visibility calculated above

in the far-zone as a function of ��̂� for

different values of the energy spread.

Fig. 5 presents results for �̂� = 0.5 and

�̂� = 1. We remind the reader that the

definition of our dimensionless units is

given in equation (4). The normal-

ization factor ð�- =LuÞ
1=2 is of the order of

the angular size of the central cone.

Therefore, it does not make too much

sense to consider values of �̂� larger than

unity. As one immediately sees from the

plots, even at �̂� = 1 the effects of energy

spread on coherence deterioration is

very small. This is because the first

change in sign for G happens at ��̂� = 2�
(and the second would be at ��̂� = 4�).

Obviously there is little interest in going

at such distance from the axis, and our

conclusion is that the effect of energy

spread on the deterioration of coher-

ence is usually negligible in the far zone.

However, the situation changes if the

optics images, at the sample position,

the virtual source in the middle of the

undulator. In this case the previous

analysis must be repeated using the

quantities defined as before, but

considering equation (9) instead of

equation (8).

Fig. 6 presents results for r̂r = 0.5 and

r̂r = 1. This time, the normalization factor

ð�- LuÞ
1=2 in equation (4) is of the order

of the transverse size of the central cone

at the virtual source and, analogously as in the far zone, we

limit ourselves to values of r̂r up to unity. The same remarks

made for the far zone hold for the values of the energy spread

parameter. Inspection of Fig. 6 shows an important effect of

research papers

1342 Gianluca Geloni et al. � Energy spread in undulator sources J. Synchrotron Rad. (2018). 25, 1335–1345

Figure 5
Far zone, zero emittance. Left panel: modulus of the cross-spectral density, jgj (top plot), the
function G (middle plot) and the fringe visibility V (lower plot) as a function of ��̂� for different
values of the energy spread (see legend) and for �̂� = 0.5. Right panel: the same as in the left panel,
for �̂� = 1.0. The symbols indicate actually simulated data. The solid lines are only a guide to the eye.

Figure 6
Virtual source, zero emittance. Left panel: modulus of the cross-spectral density, jgj (top plot), the
function G (middle plot) and the fringe visibility V (lower plot) as a function of �r̂r for different
values of the energy spread (see legend) and for r̂r = 0.5. Right panel: the same as in the left panel,
for r̂r = 1.0. The symbols indicate actually simulated data. The solid lines are only a guide to the eye.



the energy spread on coherence prop-

erties at the virtual source position.

While we do not possess a simple

expression as equation (8) at the virtual

source position, the mechanism that

leads to coherence degradation is the

same: namely, there is a change in the

sign of the field (see Fig. 1). This

happens, however, for smaller values of

r̂r, which leads to degradation already for

small values of �r̂r, as seen from Fig. 6.

It should be noted that, although the

shape of the spectral degree of coher-

ence is different when we compare

the source with the far zone, the over-

all degree of coherence � remains

unchanged. As discussed in the Intro-

duction, the overall degree of coherence

is analogous to the trace of the square

of the density matrix representing

the statistical operator for a quantum

mixture, the statistical operator being

just, in our case, the cross-spectral

density. The same degree of coherence

can be expressed in terms of the Wigner

distribution, because it is related to the

cross spectral density by a simple

Fourier transform,

� ¼

R
d2� d2r W 2ðr; hÞR
d2� d2r Wðr; hÞ

� �2 : ð26Þ

Since the free-space propagation of the Wigner function is

given by

Wðr; h; zÞ ¼ Wðr� zh; h; 0Þ; ð27Þ

a simple change of integration variables r ! R = r� zh
shows that � is invariant for free-space propagation.3

We now complicate the situation by introducing finite

emittance effects, corresponding to the two previously

discussed cases for 580 eV and 4000 eV, respectively. In

particular we consider again the two settings Nx = Ny = 0.0059,

Dx = Dy = 0.15, corresponding to a resonant energy of 580 eV,

and Nx = Ny = 0.04, Dx = Dy = 1.01, corresponding to a

resonant energy of 4000 eV. We set �̂� = 0.5 in the far zone and

r̂r = 0.5 at the virtual source position, and we plot the three

functions jgj, G and V at the virtual source and in the far zone.

Results are shown in Figs. 7 and 8. Comparing Fig. 6 with Figs. 7

and 8 we see how the effects of emittance become more and

more important and finally dominate over energy spread

effects. One can see coherence degradation already at zero

energy spread, both at the virtual source and in the far zone.

As is to be expected from the previous discussion, energy

spread effects are more visible at the virtual source, while in

the far zone they are much less important.

It should be underlined once more that none of the

degradation effects on coherence has an impact on the

brightness when the beam has zero emittance. We checked this

fact by using the expression for ĜG to evaluate the brightness

according to equation (17). No degradation was found in the

case for zero emittance. However, as is obvious, in the case of

non-zero emittance brightness degrades. Equation (17) can,

once more, be used to investigate the brightness degradation.

The fact that the brightness cannot be affected by the

energy spread alone, whereas the energy spread alone has an

impact on the coherence properties of the radiation, seems

paradoxical. However, one should remember that in our case

the brightness, according to our definition, is the Wigner

distribution on-axis, i.e. at r̂r = 0 and �̂� = 0. As one can see from

the previous analysis, at r̂r = 0 and �̂� = 0 there is no coherence

degradation, whatever the energy spread parameter chosen.

Intuitively speaking, the brightness is strictly related to the

ability to focus a radiation beam on a sample. It can be spoiled

by a decrease in spectral photon flux, by degradation of

coherence or by wavefront distortions. In the previous parts of

this paper we showed that, for a vanishing emittance and in

the case of a symmetric energy spread distribution, one has a

constant spectral photon flux over a large region of the energy

spread parameter. However, we have seen here that there is

an off-axis decrease of coherence. It is difficult to imagine that

this has no effect on the ability to focus radiation. The
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Figure 7
Non-zero emittance case with Nx = Ny = 0.0059 and Dx = Dy = 0.15 corresponding to the previously
defined case for 580 eV. Left side: modulus of the cross-spectral density, jgj (top plot), the function G
(middle plot) and the fringe visibility V (lower plot) as a function of �r̂r for different values of the
energy spread (see legend) and for r̂r = 0.5 at the virtual source position. Right panel: the same as in
the left panel, for �̂� = 0.5 in the far zone. The symbols indicate actually simulated data. The solid
lines are only a guide to the eye.

3 In principle one may directly show this fact in terms of integrals involving the
spectral degree of coherence. However, carrying our the calculation explicitly
would require extending the tabulation of Figs. 5 and 6 to very large values of
��̂� and �r̂r. We therefore prefer to give a synthetic, and more general,
demonstration of the invariance of �.



dependence of the brightness on the on-axis Wigner function

(where no coherence degradation takes place) seems, in this

case, in contradiction with intuition. However, the decrease of

off-axis coherence is only given by changes in sign of the field,

happening at different transverse positions for particles with

different energies. The ability to focus the field cannot depend

on a change in sign, because it only introduces a trivial

wavefront distortion: only trivial phase changes of � are

introduced by changing the energy, as in Fig. 1. As a result, the

brightness remains unvaried even though the coherence

properties off-axis are degraded.

5. Conclusions

In this article we noted that changes in the brightness can be

determined, roughly speaking, by influences related to the

spectral photon flux, to the coherence or to the wavefront.

These three quantities can influence the brightness, because

they influence the ability to focus radiation onto the sample.

Consider vanishing emittance and a symmetrical energy

spread distribution. We have discussed a mechanism for

degradation of coherence off-axis, while we have seen that, on-

axis, coherence is preserved. Moreover, the field wavefront is

not influenced (aside for a � phase-difference) by the presence

of energy spread, meaning that there cannot be any detri-

mental effect to the brightness, related with wavefront

distortions. Finally, equation (20) shows no effects on the flux,

so we concluded that the brightness cannot be affected, in this

case, by the energy spread. The same

conclusion was reached by a direct

calculation of the brightness, equation

(21). We studied the situation by means

of semi-analytical calculations in x2.

In x3 we extended our considerations

to the case of a finite emittance. First,

we confirmed our previous semi-analy-

tical results. Then we increased the

emittance and we studied its impact on

coherence and brightness, showing how

it degrades for parameters compatible

with diffraction-limited storage rings of

the next generation.

We conclude that there is no ‘energy-

spread dominated’ regime: when the

emittance decreases, so does also the

influence of the energy spread on

coherence properties and brightness.

The spectral degree of coherence is

seen, instead, to decrease off-axis: this

result is in agreement with our conclu-

sion concerning the brightness. We illu-

strated our statements with simulation

results, complementing them with

remarks for the case of finite emittance.
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