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The synchrotron radiation technique of nuclear resonant inelastic X-ray

scattering (NRIXS), also known as nuclear resonance vibrational spectroscopy

or nuclear inelastic scattering, provides a wealth of information on the

vibrational properties of solids. It has found applications in studies of lattice

dynamics and elasticity, superconductivity, heme biochemistry, seismology,

isotope geochemistry and many other fields. It involves probing the vibrational

modes of solids by using the nuclear resonance of Mössbauer isotopes such as
57Fe, 83Kr, 119Sn, 151Eu and 161Dy. After data reduction, it provides the partial

phonon density of states of the Mössbauer isotope that is investigated, as well as

many other derived quantities such as the mean force constant of the chemical

bonds and the Debye velocity. The data reduction is, however, not

straightforward and involves removal of the elastic peak, normalization and

Fourier–Log transformation. Furthermore, some of the quantities derived are

highly sensitive to details in the baseline correction. A software package and

several novel procedures to streamline and hopefully improve the reduction of

the NRIXS data generated at sector 3ID of the Advanced Photon Source have

been developed. The graphical user interface software is named SciPhon and

runs as a Mathematica package. It is easily portable to other platforms and can

be easily adapted for reducing data generated at other beamlines. Several tests

and comparisons are presented that demonstrate the usefulness of this software,

whose results have already been used in several publications. Here, the SciPhon

software is used to reduce Kr, Sn, Eu and Dy NRIXS data, and potential

implications for interpreting natural isotopic variations in those systems are

discussed.

1. Introduction

The method of nuclear resonant inelastic X-ray scattering

[NRIXS; also known as nuclear resonance vibrational spec-

troscopy (NRVS) or nuclear inelastic scattering (NIS)] is a

synchrotron radiation technique that allows one to probe the

vibrational properties of a solid (Singwi & Sjölander, 1960;

Visscher, 1960; Sturhahn et al., 1995; Alp et al., 2002; Sturhahn,

2004; Chumakov & Sturhahn, 1999; Kohn et al., 1998). Despite

its relative recent development, it has already found important

applications in a variety of scientific fields. In geophysics, it is

used to derive acoustic wave velocities, which are critical to

interpret seismograms from which the internal structure and

composition of the Earth can be inferred (Mao et al., 2001; Hu
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et al., 2003; Mao et al., 2006; Lin et al., 2003, 2013, 2014;

Sturhahn & Jackson, 2007). In geochemistry, the mean force

constants of chemical bonds can be measured, allowing one

to predict how isotopes should partition between coexisting

phases at equilibrium (Polyakov et al., 2005, 2007; Polyakov,

2009; Dauphas et al., 2012, 2014; Blanchard et al., 2015;

Roskosz et al., 2015; Shahar et al., 2016). In condensed matter

physics and material sciences, the partial phonon density of

states of Mössbauer isotopes provide considerable insights

into lattice dynamics and related properties of the materials

(Röhlsberger, 2004). In biochemistry, the vibration modes

provide clues on the arrangement of ligands around the heme

group (Sage et al., 2001; Scheidt et al., 2005, 2017). A common

feature of NRIXS usage across all these fields is that the

measurements always take time and are technically challen-

ging. Developing refined and rapid data reduction tools is thus

critical to make the most efficient use of this technique and

the limited beam time available for NRIXS measurements at

synchrotrons.

The method of NRIXS uses the excitation of Mössbauer

isotopes to probe the vibration properties of solids (Sturhahn

et al., 1995; Seto et al., 1995; Alp et al., 2002; Sturhahn, 2004;

Chumakov & Sturhahn, 1999; Kohn et al., 1998). In the

following, we will take 57Fe as an example and describe the

experimental setup used at sector 3ID of the Advanced

Photon Source (APS) at Argonne National Laboratory. Other

Mössbauer isotopes such as 83Kr, 119Sn, 151Eu and 161Dy are

routinely measured by NRIXS at the APS and other beam-

lines around the world. The software introduced here is

applicable to those systems as well. The Mössbauer isotope
57Fe has a low-lying nuclear excited state at 14.4125 keV. The

approach used in NRIXS is to scan the energy around this

transition and measure X-rays scattered by the de-excitation

of the 57Fe nuclei. The incident X-rays are monochromated to

1 meV band-pass FWHM (full width at half-maximum). They

consist of pulses of 70 ps duration separated by interpulses

of 153 ns duration. All electronic X-ray scattering processes

including elastic Thomson scattering, Compton scattering and

possible fluorescence emissions are instantaneous and rapidly

decay. The excited state of 57Fe has a lifetime of 141 ns so the

X-rays scattered by nuclear excitation are emitted with a

delay. By applying appropriate time discrimination, and only

collecting the signal emitted during the inter-pulse period, it

is possible to eliminate X-rays from electronic scattering and

only consider those produced by nuclear resonant scattering.

The energy of the incident X-ray beam is scanned around the

nominal nuclear resonance energy of 57Fe (i.e. 14.4125 keV)

and the scattered X-rays are collected (in the case of 57Fe, it is

advantageous to record the 6.403 keV K�1, 6.391 keV K�2 and

7.057 keV K� iron fluorescence signal induced by internal

conversion because the yield is higher and the efficiency of the

detector is increased). The plot of delayed nuclear resonance

signal versus energy (E) after proper normalization is called

the phonon excitation probability density and is denoted SðEÞ.

When the incident X-rays have lower energy than the nominal

nuclear resonance energy, excitation of 57Fe can also occur if

lattice vibrations (or their particle-like equivalents phonons)

provide the missing energy in a process known as phonon

annihilation. Conversely, if the incident X-rays have higher

energy than the nominal resonance energy, excitation of 57Fe

can still occur if lattice vibrations can absorb the extra energy

in a process known as phonon creation. The phonon excitation

probability density function SðEÞ thus contains considerable

information on lattice vibrations, the macroscopic manifesta-

tions of which are the elastic properties of the material

considered. In particular, appropriate data processing yields

the phonon density of states (PDOS) (Sturhahn et al., 1995).

The PDOS is partial in that iron (or any other resonant

nuclide; Diakhate et al., 2011; Simon et al., 2014; Long et al.,

2005) is the only nucleus that is probed by the technique, and it

is projected in that the quantities derived are projected along

the direction of the incident beam (Chumakov et al., 1997;

Kohn et al., 1998). For isotropic materials such as cubic crys-

tals, the PDOS has no directionality. For powder, the PDOS is

averaged over all directions.

The first NRIXS measurements were reported in 1995 (Seto

et al., 1995) and it was immediately recognized that the iron

PDOS could be derived from such measurements (Sturhahn et

al., 1995). The natural abundance of 57Fe is only 2.119% of

total iron so the measurements are most often made on

synthetic materials that have been enriched in 57Fe. This cuts

on acquisition time but NRIXS remains a time-intensive

technique, as it uses a very high resolution monochromator

that also reduces the flux of X-rays. A good spectrum can be

acquired in a time span of hours to days. Several synchrotron

beamlines around the world can perform NRIXS measure-

ments (sectors 3ID, 16-ID and 30-ID at APS, USA; ID-18 at

ESRF, France; P01 at PETRA-III, Germany; and BL09XU

and BL11XU at SPring-8, Japan). The analysis of NRIXS data

is quite involved. To make most efficient use of precious

synchrotron beam time, it is important to develop data

processing software such as PHOENIX (Sturhahn, 2000) or

DOS (Kohn & Chumakov, 2000) that allow beamline users to

analyze the results concurrently with data acquisition so that

they can assess if sufficient counts have been acquired or

if the measurements suffer from biases that can be rapidly

addressed. The software of choice for reducing NRIXS data at

sector 3ID of the APS is PHOENIX (Sturhahn, 2000), which

is written in Fortran90 and is a command-line based program.

To streamline data reduction (Blanchard et al., 2015; Dauphas

et al., 2014), we have developed a new software for NRIXS

analysis to meet the following requirements:

(i) It has a graphical user interface (GUI), which facilitates

learning of the program and speeds up data processing for the

most repetitive tasks.

(ii) It provides flexibility in the definition of the baseline.

(iii) It allows the user to define the energy range used in

data reduction.

(iv) It propagates uncertainties not only from counting

statistics but also from baseline subtraction and energy scaling.

(v) It outputs all the parameters already given by

PHOENIX.

The program is named SciPhon (Science of Phonons) and is

a package that can be run under Mathematica. The reason why
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Mathematica was used is that it makes it easy to develop a GUI

that is portable from one operating system to another and

from one software generation to another. The software is

available from the corresponding author upon request, from

scientists at sector 3ID of the APS, and from the website http://

originslab.uchicago.edu/Software-and-Facilities.

2. SciPhon operation

Below, we provide a step-by-step explanation of the algorithm

behind SciPhon (Fig. 1). The inputs are the measured phonon

spectrum and the resolution function. The NRIXS signal is

measured by one or several avalanche photodiode (APD)

detectors that are positioned, on the incident beam side, as

close as possible to the sample. The forward-scattering signal

corresponds to a convolution of the natural linewidth of the

14.4125 keV transition of 57Fe (4.66 neV) and the resolution

function of the monochromator (�1.0 meV FWHM). Because

the latter is so much larger than the former, the signal formed

by nuclear forward-scattered X-rays is a proxy for the reso-

lution function of the monochromator (Fig. 2). This signal is

measured by one APD detector placed far away behind the

sample in the direction of the beam. For samples that are too

thick for X-rays to pass through, a resolution function

measured during the same session as the samples should be

used. The data and resolution files can be obtained using the

‘padd’ module, which is part of PHOENIX (Sturhahn, 2000).

Padd stacks the different scans that belong to a single sample

and establishes the energy scale. A typical NRIXS scan would

be from �130 to +150 meV in steps of 0.25 meV. To minimize

bias introduced by unaccounted drift (increase or decrease) in

the instrument response with time, we alternate between low

to high (�130 to +150 meV) and high to low (+150 to

�130 meV) energy scans. The expectation is that by

measuring an even number of scans the systematic effects

associated with such a change in the instrument response can

be minimized.

2.1. Selection of a Mössbauer isotope

A picture of the GUI is shown in Fig. 3. The user starts by

selecting the Mössbauer isotope that was measured by

NRIXS. The options given in a drop-down menu are 57Fe,
119Sn, 151Eu, 161Dy and 83Kr, with 57Fe selected as the default

option. The user is then guided through a sequence of buttons

numbered 1 to 11 that all perform a task. The buttons appear

as gray and cannot be clicked before all the tasks needed for

that action are completed. Once a button is clicked and an

action is performed, the button turns gray and cannot be

clicked again. If a mistake is made, the user has the option of

aborting the sequence and starting the data reduction anew.

2.2. Load data file

The data file contains a header where each line starts with

the symbol # and which is discarded by SciPhon. The rest of

the file contains three columns. The first column is the energy

in meV. The second column is the total number of counts in

each energy channel. The monochromator does not produce a

perfectly flat intensity profile as a function of energy and the

intensity provided by the synchrotron can fluctuate. These
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Figure 1
Flowchart of the SciPhon Mathematica package. Fig. 3 shows how these
actions are implemented through GUI display panels. See text for details.

Figure 2
Example of the resolution function measured in the nuclear forward-
scattering channel. The FWMH is �1 meV. The intensity decreases by
four orders of magnitude in the first �15 meV. Beyond that, the
measured counts are below baseline level. Before further processing, the
baseline counts (in red here) are subtracted form the signal and the
spectrum is truncated to eliminate the low- and high-energy tails where
the signal is below baseline (here beyond ��15 meV).



variations are corrected for in padd (part of the PHOENIX

software) by normalizing the counts to the flux measured in an

ionizing chamber (IC1) located after the monochromator. The

third column in the data file is the 1� error from counting

statistics (
ffiffiffi
n
p

, where n is the number of counts in each

channel). The user selects the data file by using a standard file

browser interface. The directory where the data file is located

is the default output directory for SciPhon, where the results

of the calculation are exported.

2.3. Load resolution file

The resolution function file contains a header that is

discarded. The first column records the energy in meV, the

second column contains the counts, and the third column

contains the uncertainty from counting statistics. The uncer-

tainty column is not used in the calculation. By default, the

software opens the file browser window starting in the direc-

tory where the data file is, but the user can then browse other

directories to find the resolution function.

2.4. Deconvolution of the resolution function and spectrum

In samples that do not block X-rays, the resolution function

R Eð Þ is measured in the forward channel at the same time as

the NRIXS signal is being measured. It thus has the same

energy range as the samples. In samples that are too thick to

let X-rays pass through, it can be separately measured in the

forward channel before or after the sample measurement. In

samples that do not block X-rays, R Eð Þ is measured over the

same energy range as the data. The resolution function typi-

cally decreases to values that are below background outside of

about �15 to +15 meV (Fig. 2). In SciPhon, the user is thus

given the option to truncate the resolution function and only

use the potion that is above background level. This is done

using an interactive graphics interface where R Eð Þ is plotted as

a function of E on a log–linear scale. The user can use this plot

to visually assess the energy values beyond which the signal is

all background and to set those limits using vertical sliders.

Once those energies have been set, SciPhon truncates R Eð Þ to

this range and a baseline is subtracted by interpolating the

background signal measured outside the truncation range. The

resolution function thus defined (truncated and with a base-

line subtracted) is denoted ~RR Eð Þ hereafter.

The next step in the algorithm is the optional deconvolution

of ~RR Eð Þ from SðEÞ. One may wonder why this deconvolution is

done before baseline subtraction on SðEÞ. Convolution has the

property of distributivity, meaning that deconvolution of the

signal and the baseline can be examined independently. The

convolution of an even function whose integral is 1 ( ~RR is

normalized and is approximately symmetric around zero

energy) with a linear function is the linear function itself. This

means that it would make no difference if the baseline was

subtracted before or after peak deconvolution. This being

true, we prefer to carry out the peak deconvolution first

because some peak deconvolution algorithms do not handle

well negative numbers that can arise when a background/

baseline is subtracted.

The measured NRIXS spectrum is a convolution of the

‘true’ spectrum and the resolution function, SðEÞ =
~SSðEÞ � ~RR Eð Þ. A mathematical deconvolution can be

performed by dividing the discrete Fourier transform of SðEÞ

by the Fourier transform of ~RR Eð Þ, and then taking the inverse

Fourier transform of that ratio. While mathematically

rigorous, this procedure does not work for noisy data as the

noise tends to be amplified. In many respects, the problem at

hand is reminiscent of image deconvolution where images

often suffer from noise and the point-spread function (the

equivalent of the resolution function) is known. Several

algorithms are routinely used in image processing. One is the

Wiener deconvolution, where some filtering is carried out in

the frequency domain on the Fourier transform to reduce

issues of noise amplification. Others, like the steepest descent

and Richardson–Lucy algorithms, do work in the time domain

and use iterative approaches. We have tested several image

deconvolution algorithms available in Mathematica (damped

least-squares, Tikhonov regularization, truncated singular-

value decomposition, Wiener deconvolution, Tikhonov–

Golub–Kahan bidiagonalization regularization, Richardson–

Lucy, modified residual norm steepest descent). The criteria

for judgment were the degree to which the elastic peak

approached a Dirac delta function, the lack of deconvolution

artifacts near the elastic peak, the accuracy of derived PDOS,

and minimal noise amplification. The Richardson–Lucy

(Richardson, 1972; Lucy, 1974) and steepest descent (Nagy

& Strakos, 2000) methods yielded the best results and the
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Figure 3
Main GUI display panel of SciPhon. Fig. 1 shows the sequence of actions
that call the opening of these windows. See text for details.



steepest descent method was adopted for use in SciPhon. It is

a simple and well established iterative optimization method

whose principles are briefly explained below.

Deconvolution of discrete data without noise corresponds

to the solution of a system of linear equations. Such a solution

can be achieved using iterative methods whereby a starting

solution vector is used, which is updated at each iteration

using a restoration vector. The restoration vector is calculated

so that the discrepancy between the measured spectrum and

the solution vector is most rapidly minimized (hence the name

steepest descent). The restoration vector can be modified so

that no spurious negative counts can be present in the solution

vector and noise amplification is limited. Furthermore, to limit

noise amplification, the user can limit the number of iterations

so that a partial solution is retained while keeping noise

amplification within an acceptable range. The iterative solu-

tion is appealing because it stands between no deconvolution

(no noise amplification but the presence of resolution arti-

facts) and full deconvolution (significant noise amplification

but reduction in resolution artifacts).

To test the steepest descent deconvolution technique, we

used a synthetic Debye DOS. The rationale for using such a

DOS is that it presents a sharp decrease at the Debye energy

so the strengths and virtues of the method should be exacer-

bated. To run the test, we computed a synthetic Debye DOS

with a Debye energy cutoff of 30 meV (Fig. 4). A synthetic

spectrum S(E) was then calculated from this DOS. In NRIXS,

the X-rays from nuclear resonant elastic scattering are

suppressed relative to those from nuclear resonant inelastic

scattering. The elastic peak in the synthetic spectrum was

therefore arbitrarily reduced by a factor of ten compared with

the rest of the spectrum while in reality the reduction is higher

(Mooney et al., 1992). The synthetic spectrum with suppressed

elastic peak was convolved with a synthetic resolution func-

tion of Gaussian shape and FWHM of 2 meV. The overall

spectrum was rescaled to yield 6000 total counts on the elastic

peak. Noise was added to this spectrum using a Poisson

distribution. The synthetic spectrum thus produced has many

of the features of real NRIXS data (Fig. 4a). We then used this

synthetic spectrum and associated resolution function as

inputs in the SciPhon software to calculate the PDOS and all

the atomic dynamics and thermodynamic properties that are

derived from g(E) and S(E). We compared the results

following (1) no deconvolution of the resolution function

from the data, (2) deconvolution with 10 iterations, and

(3) deconvolution with 100 iterations. Near the elastic peak,

significant oscillations are present in the deconvoluted data,

especially when 100 iterations are performed (Fig. 4b). As

is expected, the calculated PDOS after 10 or 100 iterations

define sharper drops at the Debye energy than when no

deconvolution is performed (Fig. 4c). However, the decon-

voluted data with either 10 or 100 iterations yield noisier

PDOS. All the properties derived from the data (deconvo-

luted or not) are consistent within error bars. As an example,

the expected true force constant for a Debye spectrum with a

Debye energy of 30 meV is 117.8 N m�1. The force constant

without deconvolution is 120.2 � 6.3 N m�1, the one after 10
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Figure 4
Effect of deconvolution of the resolution function on NRIXS spectra and
phonon density of states. (a) Synthetic NRIXS spectrum calculated from
a Debye PDOS with an energy cutoff of 30 meV (black curve) that was
convoluted with a Gaussian-shaped resolution function (FWHM of
2 meV) and to which Poisson noise was added (blue curve). (b) Close-up
of the NRIXS spectrum near the elastic peak after no deconvolution
(blue curve) and deconvolution using the steepest descent with 10 (red
curve) and 100 (orange curve) iterations. (c) Calculated PDOS from the
synthetic NRIXS spectrum with or without deconvolution compared with
the input Debye PDOS. A deconvolution using the steepest descent
method and 10 iterations is a good trade off between accuracy (the peak
in the PDOS at 30 meV is better reproduced) and noise amplification (see
text for details).



iterations is 119.0 � 5.5 N m�1, and that after 100 iterations is

118.5 � 5.6 N m�1. To summarize, this analysis shows that

deconvolution of the resolution function is largely innocuous

but can slightly improve the accuracy and reveal subtle

features in the PDOS. SciPhon leaves to the user the choice

of using or not the deconvolution option and, if chosen, of

deciding on the number of iterations to perform. Our

experience dealing with hundreds of NRIXS spectra is that

deconvolution using the steepest descent approach with 10

iterations yields acceptable results (this is the default option in

SciPhon). Most importantly, it does not add any bias.

2.5. Input of background counts and experiment temperature

The background can be measured away from the resonance

by setting the energy to �200 meV relative to the resonance

energy, where no counts (even from multiple phonon annihi-

lation) should be present and all the signal should come from

the background. This background can be measured for a set

duration and the resulting counts can be subtracted from the

signal. As discussed below, another option is given to the user,

which is to apply a baseline subtraction based on the counts

measured in the low- and high-energy tails of the spectrum.

In the following, we will refer to background for the counts

measured at a single energy far from resonance, and baseline

for the counts interpolated from the low- and high-energy tails

of the spectrum.

The user is also asked to enter the experiment temperature,

meaning the temperature of the sample as it is being

measured. This is used when calculating the phonon annihi-

lation part of the NRIXS spectrum from the phonon creation

part. Indeed, an option is given in the software to either use

the temperature from the detailed balance or that entered by

the user. This is particularly useful for experiments carried out

at high temperature, where the temperature given by the

detailed balance is very imprecise. The input temperature is

also used for elastic peak removal (see the section below).

2.6. Elastic peak removal

The procedure used by PHOENIX for removal of the

elastic peak is to rescale the resolution function and to fit it

to the undeconvoluted elastic peak. The procedure used in

SciPhon is different. At two given energies �E and +E, the

NRIXS signal must respect the detailed balance

SðEÞ ¼ S �Eð Þ exp E=kBTð Þ; ð1Þ

where kB is the Boltzmann constant and T is the temperature

in K. This is the standard way of writing the detailed balance

but it can also be written in the form

SðEÞ

exp E=2kBTð Þ
¼

S �Eð Þ

exp �E=2kBTð Þ
: ð2Þ

The function SðEÞ=exp E=2kBTð Þ is thus an even function,

which can be expanded in a Taylor series as

SðEÞ

exp E=2kBTð Þ
¼
X1
i¼ 0

a2i E 2i: ð3Þ

In SciPhon, the series is truncated at the second order and

near the elastic peak we use the approximation

SðEÞ ’ a0 þ a2E 2
� �

exp E=2kBTð Þ: ð4Þ

This function is used to extrapolate the NRIXS signal below

the elastic peak (Fig. 5). To do this, the user can move two

sliders (denoted E1 and E2 hereafter) that define an energy

interval where the data will be used to define the interpola-

tion. The E1 marker is positioned by the user immediately to

the right of the elastic peak while the second marker is posi-

tioned further away in a range where SðEÞ is well fit by

equation (4). The parameters a0 and a2 are calculated by fitting

equation (4) to SðEÞ in the interval ½�E2;�E1� [ ½E1;E2�.

The data SðEÞ and the fit ~SSðEÞ are displayed on the screen in

real time as the user adjusts the sliders so that one can directly

assess the quality of the fit. In the range ½�E1;E1� , which

corresponds to the footprint of the elastic peak, the data

points are replaced by the fit function.

2.7. Energy truncation and baseline definition

Removal of a constant background is sometimes not

adequate in NRIXS. This issue is most clearly seen in

measurements performed over a broad energy range. Beyond

a certain energy that depends on the material analyzed, no

signal should be detectable above background. In reality,

significant counts often remain at low and high energies that

cannot be accounted for by multiple phonons. Those counts

often do not average to the same values on the low- and high-

energy ends of the spectra. As a result, some of the quantities

derived from SðEÞ never converge, yielding unreproducible

results (Dauphas et al., 2012, 2014; Blanchard et al., 2015;

Shahar et al., 2016). This issue had not been identified before

because most studies in NRIXS spectroscopy have focused on

the part of the spectrum that is near the elastic peak, where

this issue of non-constant baseline is largely inconsequential.

However, parameters that depend on accurate measurement

of the high- and low-energy ends of the spectrum, such as the

mean force constant of iron bonds, are severely affected by

this issue of baseline subtraction. To remediate this problem,

Dauphas et al. (2014) used a routine for baseline subtraction

that relies on acquisition of broad energy scans, the tails of

which are used to define a baseline that is subtracted by

linearly interpolating the signal between the low- and high-

energy tails. The SciPhon software gives the option of doing

this in an interactive manner using a GUI. A panel displays

a zoomed view of the low-energy tail over the interval

½�Emin;�Elow cut�, while another panel displays a zoomed view

of the high-energy tail between ½Ehigh cut;Emax� (the total

energy acquisition range is from �Emin to Emax). The user can

move two sliders to define the energy range beyond which

no signal is present (i.e. beyond which the signal stops

decreasing). The signal in the tails thus defined is cut out and a

baseline defined by linear interpolation between the cut out

sections is removed from the rest of the spectrum. The user

has the option to bypass this truncation/baseline subtraction

routine or to manually modify the baseline values to test the
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sensitivity of the results to baseline subtraction. This routine

significantly improves the reproducibility of force constants

measured on the same minerals analyzed in different sessions

separated by several months or years.

2.8. Temperature calculation

The temperature of the sample can be calculated in NRIXS

by using the detailed balance (Lin et al., 2004)

T Eð Þ ¼
E=kB

ln SðEÞ=S �Eð Þ½ �
: ð5Þ

Temperature values can be calculated for every pair of ener-

gies �E and E. For example, for a scan from �120 to

+130 meV measured in steps of 0.25 meV, a total of 480 (120/

0.25) temperatures can be estimated. SciPhon calculates those

temperatures and displays them on the screen, so that the user

can get a sense of the reliability of the temperature estimate.

Not all temperatures have the same error because the counts

vary from one energy bin to another. Assuming Poisson

statistics, the uncertainty on T Eð Þ is

�T Eð Þ ¼
kB T Eð Þ

2

E
ffiffiffiffiffiffiffiffiffi
SðEÞ

p 1þ
1

exp E=kBTð Þ

� �1=2

: ð6Þ

The temperature is calculated by forming the weighted

average of the temperatures calculated in each energy bin,

�TT ¼

P
i Ti=�

2
TiP

i 1=�2
Ti

: ð7Þ

The temperature cannot be reliably estimated from the

detailed balance for high-temperature experiments because

the relative error increases with temperature:

�T Eð Þ=T Eð Þ / T Eð Þ. After calculating the temperature from

the detailed balance, the user is given the choice to either use

this temperature or the one entered (x2.5). The temperature

thus chosen (either calculated from the detailed balance or

provided as input from the user) is used subsequently in

calculation of the DOS and other parameters.

2.9. Normalization of S(E), calculation of the Lamb–
Mössbauer factor, the DOS and extrapolation of S(E)
beyond the truncation range

Calculation of the PDOS from a NRIXS spectrum was first

performed by Sturhahn et al. (1995) (also see Sturhahn, 2000,

for details). The first step in the calculation of the phonon

density of states gðEÞ is the normalization of the nuclear

resonant spectrum I Eð Þ using Lipkin’s sum rule (Lipkin, 1962,

1995, 1999). It stipulates that the first moment of the excitation

probability density must be equal to the recoil energy,R
ESðEÞ dE ¼ ER; ð8Þ
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Figure 5
Examples of removal of the elastic peak from the phonon excitation probability density S(E) by interpolation of the signal at the left and right of the
elastic peak. (a) Olivine (Dauphas et al., 2014). (b) Fe3+-rich rhyolite glass (Dauphas et al., 2014). (c) Fe2+-rich basalt glass (Dauphas et al., 2014).
(d) Goethite (Dauphas et al., 2012; Blanchard et al., 2014). The user moves the red sliders to define the energy range used for the interpolation (red and
black vertical markers E1, E2, �E1, �E2). The blue curve shows the interpolated function using equation (4). In some cases (most minerals) the
interpolation is straighforward but in others (e.g. glasses) the range available to define the interpolation is narrow. The spectrum between �E1 and E1

(elastic peak) is replaced by the interpolated function before further processing. The values of S(E) near zero, at or near the elastic peak, are artifacts
from the deconvolution algorithm (the black curve is the spectrum after deconvolution of the resolution function).



where ER = h- 2k2= 2Mð Þ = E 2=ð2Mc2Þ = 1.96 meV for E =

14.4125 keV (k is the wavenumber, M is the mass of 57Fe,

c is the speed of light and h- is the reduced Planck’s constant).

SðEÞ comprises an inelastic term Sinelastic Eð Þ and an elastic term

fLM� Eð Þ, where � Eð Þ is the Dirac delta function and fLM is the

Lamb–Mössbauer factor. Because the Dirac delta function is

even, it cancels out in the integral and
R

ESinelastic Eð Þ dE = ER.

The procedure described in x2.6 provides a means of removing

the elastic peak and retrieving the inelastic part of the phonon

excitation probability density Iinelastic Eð Þ, which is proportional

to Sinelastic Eð Þ,

Iinelastic Eð Þ ¼ ASinelastic Eð Þ: ð9Þ

Using equation (8), we can calculate the normalization factor,

A ¼
REmax

Emin

Iinelastic Eð ÞE dE =ER: ð10Þ

This factor is used to rescale the intensity spectrum, which

has units of counts, into an excitation probability density

Sinelastic Eð Þ, which has units of inverse of the energy (1/eV).

Note that the measured phonon excitation probability density

is a convolution of the density SðEÞ and the resolution func-

tion R Eð Þ. As discussed in x2.4, the first step in the procedure

is to deconvolve the resolution function from the spectrum.

If this was not done and the resolution function had

a non-zero first moment, a correction would need to be

applied to the normalization factor: A =
R

I Eð ÞE dE =ER �R
R Eð ÞE dE

R
I Eð Þ dE =ER (Sturhahn et al., 1995). Similar

corrections would also be needed for the higher-order

moments (Hu et al., 2013). However, these are unnecessary in

our data reduction procedure because the normalization and

all subsequent data treatment is performed on a deconvolved

spectrum.

One can then calculate the Lamb–Mössbauer factor fLM

using the zeroth moment of Sinelastic Eð Þ;

fLM ¼ 1�
REmax

Emin

Sinelastic Eð Þ dE: ð11Þ

The full excitation probability density, including the elastic

peak, can be reconstructed by adding a Dirac delta function of

integral fLM,

SðEÞ ¼ Iinelastic Eð ÞER

� REmax

Emin

Iinelastic Eð ÞE dE ð12Þ

þ 1� ER

REmax

Emin

Iinelastic Eð Þ dE
� REmax

Emin

Iinelastic Eð ÞE dE

" #
� Eð Þ:

As explained below, the normalized function SðEÞ is used to

calculate the PDOS.

Assuming that the lattice is harmonic, meaning that the

potentials vary as the square of the atomic displacements, it

is possible to calculate the DOS gðEÞ from SðEÞ. We have the

following expressions,

SðEÞ ¼ fLM � Eð Þ þ
X
n¼ 1

Sn Eð Þ; ð13Þ

S1 Eð Þ ¼
ER

E 1� exp �E=kBTð Þ
� 	 gðEÞ; ð14Þ

Sn Eð Þ ¼
1

nfLM

Z
Sn�1 xð Þ S1 E� xð Þ dx; i> 1; ð15Þ

where Sn Eð Þ is the n-phonon contribution. The measured

spectrum SðEÞ after normalization is thus a combination of

1, 2, . . . , n contibutions and each n term is the convolution of

the 1 phonon and n� 1 phonon contributions. Kohn et al.

(1998) and Sturhahn (2000) showed, using formulas previously

derived in the context of electron scattering (Johnson &

Spence, 1974), that the S1 phonon contribution could be

derived from S using the Fourier–Log method. Because the

Fourier transform of two convoluted functions is the product

of their Fourier transforms, the Fourier transform of equation

(15) yields

~SSn

fLM

¼
1

n!

~SS1

fLM


 �
; ð16Þ

where ~SS is the Fourier transform of S. The Fourier transform

of equation (13) that gives the full excitation probability

density is

~SS ¼ fLM þ
X
n¼ 1

~SSn: ð17Þ

Combining those two equations, we have

~SS ¼ fLM exp ~SS1=fLM

� �
: ð18Þ

The single-phonon contribution can therefore be calculated

from the excitation probability density using the formula

S1 ¼ F
�1 fLM ln ~SS=fLM

� �� 	
; ð19Þ

where F �1 is the inverse Fourier transform. Once S1 is known,

it is straighforward to calculate the partial (only reflecting iron

excitation) projected (along the measurement direction)

phonon density of states,

gðEÞ ¼
E 1� exp �E=kBTð Þ
� 	

ER

S1 Eð Þ: ð20Þ

The phonon annihilation and creation parts of the spectrum

both convey some information on the PDOS as S1 Eð Þ is

related to S1 �Eð Þ through the detailed balance. Let us denote

S1 Eð Þ as the weighted average value calculated from S1 Eð Þ and

S1 �Eð Þ. We assume that the errors in S1 Eð Þ and S1 �Eð Þ scale

as the square-root of those values. It follows that the average

weighted by the inverse of the variance is

S1 Eð Þ ¼
1þ exp �E=kBTð Þ

1=S1 Eð Þ þ exp �2E=kBTð Þ=S1 �Eð Þ
: ð21Þ

We therefore have, for gðEÞ,
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gðEÞ ¼
E

ER

1� exp �2E=kBTð Þ

1=S1 Eð Þ þ exp �2E=kBTð Þ=S1 �Eð Þ

� �
; E � 0;

gðEÞ ¼ 0; E < 0: ð22Þ

SciPhon calculates S1 Eð Þ using the fast Fourier transform

routine implemented in Mathematica. Once the single-phonon

contribution has been calculated, gðEÞ is computed using

equation (22).

A potential difficulty with NRIXS is that the signal at high

energy can influence the calculated parameters even when the

signal is near or below the baseline. To mitigate this issue,

SciPhon recalculates SðEÞ from S1 Eð Þ at energies that are

beyond the energy acquisition or truncation ranges. This is

equivalent to the ‘refinement’ method used in PHOENIX and

it allows extrapolation of SðEÞ outside the truncation/acqui-

sition range in a physically sound manner. Once this extra-

polation is done, the synthetic part of the spectrum is

appended to the measured spectrum and this new ‘augmented’

spectrum is used to recalculate S1 Eð Þ and gðEÞ. This procedure

is repeated twice, ensuring convergence and consistency of the

parameters derived from SðEÞ and gðEÞ.

2.10. Calculate sound velocities

An important use of NRIXS in geophysics and high-pres-

sure mineral physics is the determination of seismic velocities

at high pressure–temperature (Mao et al., 2001; Hu et al.,

2003). The shear (vs) and compressional (vp) velocities are not

measured directly in NRIXS. Instead, one can measure the

Debye velocity (vD). This velocity is calculated from the

NRIXS spectrum near the elastic peak. While some quantities

derived from NRIXS measurements depend dramatically on

removal of the background/baseline, determination of the

Debye velocity depends on achieving a good resolution so that

the contribution from the elastic peak is small. For most solids,

the spectrum near the elastic peak shows Debye-like behavior,

meaning that the PDOS increases quadratically with the

energy (glasses can show departure from this behavior in the

form of a Boson peak; Chumakov et al., 2011),

gðEÞ=E 2 ¼
M

� 2�2h- 3v3
D

; ð23Þ

where M is the mass of the nuclear resonant isotope and � is

the density. In SciPhon, the user is asked to enter the density �
and bulk modulus K of the material being examined. The

function gðEÞ=E 2 is plotted as a function of E. For a pure

Debye behavior, it should be constant over some interval. In

practice, this is not often achieved, partly because the low-

energy range of the spectrum is below the elastic peak. To

address this difficulty, the function gðEÞ=E 2 is fitted by a low-

degree series expansion with a derivative that is zero at the

origin,

gðEÞ=E 2 ¼ y0 þ �E 2; ð24Þ

where y0 is the intercept at E = 0 and it has unit of 1/energy3.

The user can move two vertical sliders that define the energy

range over which the data are fitted by this function. A black

vertical marker indicates the energy that the user has

previously defined to remove the elastic peak from the spec-

trum by extrapolation (E1 in x2.5). The data points below this

energy are not real data as they are derived from interpolated

values during elastic peak removal, and the user is advised

against using them in the fit. Nevertheless, they provide

another test to assess the robustness of the fit and the Debye

velocity estimate. Indeed, it is possible to compare the inter-

cept (a) calculated by fitting the function gðEÞ=E 2 using

equation (24) with the intercept given by processing the

interpolated SðEÞ through the whole procedure for deriving

gðEÞ. Both interpolations are series expansions but they are

performed in different spaces so agreement between the

intercepts obtained using both approaches gives confidence

that the Debye velocity estimate is reliable. Knowing vD, � and

K, it is possible to calculate vp and vs by solving the following

system (Mao et al., 2001),

K

�
¼ v 2

� ¼ v 2
p �

4

3
v 2

s ; ð25Þ

3

v 3
D

¼
1

v 3
p

þ
2

v 3
s

: ð26Þ

These formulae are strictly valid for isotropic media only, and

are not valid for crystals, including cubic ones or powders

(Bosak et al., 2016). To propagate the uncertainties from vD, K

and �, we use approximate solutions to these equations,

v 3
s ’

2

3
v 3

D ’
M

3��2h- 3y0

; ð27Þ

v 2
p ’ v 2

� þ v 2
D ’

K

�
þ

M

� 2�2h- 3y0


 �2=3

; ð28Þ

with v� = ðK=�Þ1=2. It follows that

�vs
’

2

81


 �1=3

vD

�2
�

�2
þ
�2

y0

y2
0


 �1=2

; ð29Þ

�vp
’

1

v 2
� þ v 2

D

� �1=2

v 4
� �

2
K

4K 2
þ

3v2
�

2
þ v2

D


 �2 �2
�

9�2
þ

v 4
D�

2
y0

9y2
0

" #1=2

:

ð30Þ

The Poisson ratio that relates transverse to axial strain can be

calculated from vp and vs using the formula

	 ¼
vp=vs

� �2
� 2

2 vp=vs

� �2
� 1

h i : ð31Þ

SciPhon reports this value, which expectedly is always close

to 0.3 for metals.

3. Derived parameters

In addition to temperature, many parameters can be derived

from the excitation probability distribution SðEÞ and from

the PDOS gðEÞ (Sturhahn, 2000; Kohn & Chumakov, 2000;

Dauphas et al., 2012; Hu et al., 2013). Some parameters can be
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derived from both functions, and one should always make sure

that the parameters are in agreement. Below, we give the

formulas used in SciPhon to calculate those parameters. Many

of these formulas depend on the moments of S and g, so we

use the following notations,

m
g
i ¼

Rþ1
0

E i gðEÞ dE ð32Þ

for the ith moment of the PDOS,

~mm g
i ¼

Zþ1
0

1

2
coth

E

2kBT


 �
E igðEÞ dE ð33Þ

for the ith thermalized moment of the PDOS,

RS
i ¼

Rþ1
�1

E� ERð Þ
i
SðEÞ dE; ð34Þ

for the ith central moment of the excitation density distribu-

tion.

3.1. Parameters from S

Temperature T. This has already been discussed at length

in x2.8 and will not be repeated here. The detailed balance

equation is used to calculate T through [equation (5)]

T Eð Þ ¼
E=kB

ln SðEÞ=S �Eð Þ½ �
: ð35Þ

Lamb–Mossbauer factor fLM. The Lamb–Mössbauer factor

is the ratio of recoil-free to total nuclear resonant absorption.

It follows from the normalization of the phonon excitation

probability function [equation (11)],

fLM ¼ 1�
REmax

Emin

Sinelastic Eð Þ dE: ð36Þ

Mean-square displacement hz2i. The mean-square displa-

cement of atoms in their potential is related to the Lamb–

Mössbauer factor through

hz2
i ¼ �

ln fLM

k2
; ð37Þ

where k is the wavenumber of the photons with 14.4125 keV

energy [k = 2�=
 = E= h- cð Þ = 7.30 Å�1]. Note that the wave-

number k should not be mistaken for the Boltzmann

constant kB.

Kinetic energy per atom KE. This is the energy associated

with atomic motions along the direction of the X-ray beam,

KE ¼ R S
2 = 4ERð Þ: ð38Þ

Internal energy per atom U. This is the total energy of the

iron sublattice and it comprises kinetic energy from atomic

motions and potential energy from chemical bonds. For a

harmonic oscillator, the internal energy is equally partitioned

between kinetic and potential energy, so we have

U ¼ 2KE ¼ R S
2 = 2ERð Þ: ð39Þ

Mean force constant hFi. The third central moment of SðEÞ

gives the second derivative of the potential, which for a

harmonic oscillator is the force constant,

@2V

@z2

� 

¼ Fh i ¼

M

h- 2ER

R S
3 : ð40Þ

Dauphas et al. (2012) compiled mean force constant deter-

minations for iron-bearing compounds published until 2012.

Isotopic fractionation factors �. At equilibrium, the various

isotopes of an element are not distributed randomly between

coexisting phases. Instead, heavy isotopes tend to partition

into phases that form stronger bonds (Bigeleisen & Mayer,

1947; Urey, 1947). This is quantified using reduced partition

function ratios, or �-factors, which correspond to equilibrium

isotopic fractionation factors between the phase of interest

and monoatomic gas of the same element. If this � factor

is known, then it is straightforward to calculate equilibrium

fractionation between coexisting phases. We can write an

isotope exchange reaction for 54Fe and 56Fe between solid-

phase FeX and monoatomic gaseous Fe,

54FeX þ 56Fegas Ð
56FeX þ 54Fegas: ð41Þ

The equilibrium constant for this reaction (substituting

isotopes form near ideal solutions) is

Keq ¼

56FeX
� 	

P54Fe

54FeX½ �P56Fe

¼

56Fe=54Fe
� �

FeX

56Fe=54Fe
� �

Feg

: ð42Þ

This is the expression of the �-factor or reduced partition

function ratio used in isotope geochemistry. Because isotopic

variations are small, 1000 ln� is more often reported than the

absolute value of �. Dauphas et al. (2012) and Hu et al. (2013)

established relationships between the even moments of g(E)

and the moments of S(E) to calculate the �-factors at any

temperature as a function of the moments of S(E),

1000 ln � ¼ 1000
M

M 	
� 1


 �
1

ER

"
R S

3

8 k2
BT 2
�

R S
5 � 10R S

2 R S
3

480 k4
BT 4

þ
R S

7 þ 210 R S
2

� �2
R S

3 � 35R S
3 R S

4 � 21R S
2 R S

5

20160 k6
BT 6

#
;ð43Þ

where M and M 	 are the masses of the two isotopes. This can

be rewritten as 1000 ln � = A1=T 2 + A2=T 4 + A3=T 6, where

the coefficients A1, A2 and A3 can be readily identified with

the terms in equation (43). SciPhon calculates and reports all

these coefficients. Truncating the formula above, we obtain the

approximate formula

1000 ln � ¼
B1hFi

T 2
�

B2hFi
2

T 4
; ð44Þ

where hFi is the mean force constant of the iron bonds

[equation (40)]. B1 is fixed for a given element (2904 for iron)

while B2 depends on the phase that is being considered. For a

Debye PDOS and for iron, B2 = 37538. Most phases have a
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PDOS that corresponds to a B2 value of �52000 for iron.

SciPhon reports the value of B2 calculated based on

equation (43).

3.2. Parameters from g

Mean square displacement and Lamb–Mössbauer factor.

The atoms oscillate in their potential around an equilibrium

position. The magnitude of these oscillations is quantified by

the mean square displacement (i.e. the mean value of the

square of the displacement). This can be calculated from a

thermalized moment of the PDOS,

hz2i ¼
h- 2

M
~mm g
�1; ð45Þ

where M is the mass of the nuclear resonant isotope. The

Lamb–Mössbauer factor is calculated from the mean square

displacement through [equation (37)]

fLM ¼ exp �k2
hz2
i

� �
; ð46Þ

where k is the wavenumber. The temperature-dependence of

the mean square displacement is given by

dhz2i

dT
¼

h- 2

MkBT 2

Zþ1
0

exp E=kBTð Þ

exp E=kBTð Þ � 1
� 	2 gðEÞ dE: ð47Þ

At high temperature when kBT 
 E over most of the phonon

spectrum (the temperature corresponding to a Debye energy

of 30 meV is 350 K), this can be approximated by

dhz2i

dT
’

h- 2kB

M
~mm g
�2: ð48Þ

For energies close to zero, the integral is not well defined but

we can use the fact that near zero we have

gðEÞ ’
M

� 2�2h- 3v 3
D

E 2; ð49Þ

lim
E!0

exp E=kBTð Þ

exp E=kBTð Þ � 1
� 	2

gðEÞ ¼
M kBTð Þ

2

� 2�2h- 3v 3
D

: ð50Þ

The SciPhon program calculates the Debye velocity [i.e. the

proportionality constant between gðEÞ and E 2]. The integral

giving dhz2i=dT in equation (47) is thus split into two domains,

one where the term under the integral is given by equation

(50) (the limit in energy corresponds to the upper bound of

the elastic peak as defined by the user) and another where the

full formula [equation (47)] is used.

Critical temperature. The Lamb–Mössbauer factor

decreases when the temperature increases. The temperature

increment corresponding approximately to a factor of

expð1Þ = 2.7 decrease in fLM is called the critical temperature

and is calculated as

Tc ¼
1

k2 dhz2i=dT
: ð51Þ

Resilience. Another quantity related to the mean square

displacement is the resilience, introduced in the study of

protein dynamics (Zaccai, 2000; Leu & Sage, 2016). It has the

same unit as the force constant (N m�1) and its expression is

K 0 ¼
kB

dhz2i=dT
: ð52Þ

Internal and kinetic energy. The partial and projected

internal energy (kinetic and potential) is given by

U ¼ ~mm g
1 : ð53Þ

The Virial theorem says that the internal energy must be

equally partitioned between potential and kinetic energy. The

kinetic energy associated with vibrations along the measure-

ment direction is thus given by

KE ¼
1

2
U ¼

1

2
~mm g

1 : ð54Þ

Vibrational entropy. Entropy can take two forms in solids:

vibrational and configurational. The latter corresponds to

atomic disordering when several non-identical atoms can

occupy the same site as is the case for solid solutions. The

former corresponds to the thermal agitation of atoms around

their equilibrium positions. Its expression is

S ¼ kB

Zþ1
0

E

2kBT
coth

E

2kBT


 �
� ln 2 sinh

E

2kBT


 �� �� �
gðEÞ dE:

ð55Þ

Helmoltz free energy. The projected partial Helmoltz free

energy is given by the expression

F ¼ kBT

Zþ1
0

ln 2 sinh
E

2kBT


 �� �
gðEÞ dE: ð56Þ

Lamb–Mössbauer factor and kinetic energy at T = 0 K. At

0 K, solids still possess quantum mechanical zero-point energy.

The kinetic energy at 0 K can be calculated from NRIXS

spectra using the formula KE = ð1=2Þ ~mm g
1 , where a temperature

of 0 K is used in the expression of ~mm g
1 . Similarly, the Lamb–

Mössbauer factor at 0 K can be calculated using hz2i =

ðh- 2=MÞ ~mm g
�1 adopting T = 0 K in ~mm g

�1.

Mean force constant. The mean force constant of the bonds

holding the resonant isotope in position is given by the second

moment of the PDOS, which is mathematically related to the

third moment of SðEÞ,

hF i ¼
M

h- 2 m
g
2 : ð57Þ

Isotopic fractionation factors �. The isotopic fractionation

factors, or more specifically the coefficients in the temperature

expansion of 1000 ln �, can be calculated from the kinetic
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energy or the even moments of gðEÞ. The relationship was

established by Polyakov et al. (2005) using the kinetic energy

and first-order perturbation theory while Dauphas et al. (2012)

derived the formula using a Bernoulli expansion of the

reduced partition function ratio. In the expression 1000 ln � =

A1=T 2 þ A2=T 4 þ A3=T 6, the coefficients can be identified

with the formula below,

1000 ln � ¼ 1000
M

M 	
� 1


 �

�
m

g
2

8 k2
BT 2
�

m
g
4

480 k4
BT 4
þ

m
g
6

20160 k6
BT 6


 �
: ð58Þ

Comparison of the isotopic fractionation factors � at the

experiment temperature. The value of 1000 ln � can be calcu-

lated from both SðEÞ and gðEÞ at any temperature, including

the experiment temperature, using the polynomial’s expan-

sions in even powers of the inverse of the temperature

[equations (43) and (58)]. Polyakov et al. (2005) also give a

formula that gives 1000 ln � as a function of the partial kinetic

energy, whose value can be calculated using both SðEÞ and

gðEÞ. The expression for 1000 ln� is

1000 ln � ¼ �1000
M

M 	
� 1


 �
KE

kBT
�

3

2


 �
: ð59Þ

SciPhon calculates and outputs the value of 1000 ln � at the

experiment temperature using these four approaches (poly-

nomial expansion or kinetic energy using S or g), which are

mathematically equivalent. This allows the user to assess the

consistency of those calculated values. In our experience, the

values are always consistent to within a few percent.

3.3. Calculation of error bars on derived parameters

Calculating the errors on the parameters derived from gðEÞ

is not straightforward because the errors of the PDOS at

different energies are correlated. Indeed, the value of g at any

given energy E depends on the values of SðEÞ at all energies

due to the various normalizations and Fourier–Log transform

involved. In the present implementation of SciPhon, the errors

are not propagated in the parameters derived from gðEÞ. We

plan to implement this capability in a future version of

SciPhon, presumably using a Monte Carlo approach.

The errors on the parameters derived from SðEÞ are more

straightforward to compute. Details on the error propagation

calculation are provided by Hu et al. (2013), Dauphas et al.

(2014) and Hu (2016). The uncertainties that are propagated

are presented below. Note that all sources of error are not well

quantified and the default values adopted below are conser-

vative. The user can easily change these uncertainties in

SciPhon.

(1) Counting statistics that follow a Poisson distribution.

(2) Uncertainties in the baseline definition, which is given

by the uncertainty in the interpolation between the truncated

low- and high-energy ends.

(3) Offset in energy scaling. The resonance energy is found

automatically by the padd routine of the PHOENIX package

by finding the maximum in SðEÞ corresponding to the elastic

peak. The energy resolution of the scans is �1 meV but the

scans are made with energy steps much smaller than that

(typically 0.25 meV). In a single scan, the maximum intensity

in the spectrum, which sets zero in the energy scale, is not

known to better than half of the energy step size (0.25/2 ’

0.1 meV). Several energy scans are stacked and the energy

scale zero is known with a better precision than 0.1 meV. As a

conservative approach, we adopt a default uncertainty of

0.1 meV in the possible offset in the energy scale relative to

the resonance energy but the user can set it to a lower value if

so desired.

(4) Overall energy scaling. If the energy scale is not

perfectly calibrated, this could result in stretching or

compression of the energy scale relative to the true value. The

absolute energy scaling is checked at the beginning of each

session by measuring an iron foil characterized by a sharp

decrease in the PDOS at an energy of 35–40 meV. Therefore,

the effect is probably minor. Nevertheless, we have adopted a

default uncertainty of 1% of this energy scaling.

(5) Bin-to-bin energy jitter. The scans in energy are

performed in increments by the motion of crystals in the high-

resolution monochromator. This can induce some bin-to-bin

jitter in energy. A default jitter value of 0.1 meV is used. The

net effect of this source of uncertainty is small compared with

others because this jitter largely cancels out for the large

number of energy increments used during a scan.

All these sources of error are combined quadratically into

an overall error for the derived parameters.

4. Discussion

The software most often used for reducing NRIXS data at

sector 3ID of the APS is PHOENIX (Sturhahn, 2000). The

SciPhon software presented here presents several distin-

guishing features. Most notably, (1) it is a GUI software with

interactive sliders and fill spaces that streamlines some tasks

associated with the data reduction (Fig. 3), (2) it outputs all

the parameters needed to calculate reduced partition function

ratios that are used to predict equilibrium isotopic fractiona-

tion between coexisting phases in geochemistry, (3) it uses a

different approach to remove the elastic peak based on an

interpolation of the signal near the elastic peak, (4) it offers

the option of running an iterative peak deconvolution algo-

rithm, (5) it offers the option of truncating the energy range

used in the data analysis, and (6) it streamlines the definition

and removal of a non-constant baseline across the energy

range, which is important for the determination of the para-

meters derived from the higher moments of gðEÞ and SðEÞ.

Below, we highlight how some of these differences affect the

results and assess the quality of the data reduction algorithm.

4.1. Deconvolution of the resolution function and spectrum

As discussed in x2.4, the deconvolution algorithm has little

influence on the calculated results. This includes the estima-

tion of the Debye velocity, which is close to the elastic peak
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and could potentially benefit or suffer from the deconvolution

algorithm. Where deconvolution provides the most benefit

is in sharpening the peaks and improving the resolution of

the spectrum. The downside of the deconvolution is that it

amplifies the noise but this is not really an issue where signal is

well above background. Where the deconvolution algorithm is

most useful is in biochemistry, where the NRIXS technique

(also known as NRVS) is used to study the vibrational prop-

erties of iron-bearing biomolecules (Sage et al., 2001; Scheidt

et al., 2005; Rai et al., 2002a,b, 2003; Leu et al., 2007, 2008;

Lehnert et al., 2010). In those biomolecules, very specific

vibration modes dominate and the PDOS often features well

defined peaks. The peak positions in the PDOS can be

compared with theoretical models to test hypotheses on

molecular configurations. To assess the usefulness of the

deconvolution algorithm, we have performed the data

reduction on previously acquired NRVS spectra of nitrosyl

iron porphyrinate derivatives (Pavlik et al., 2010). These

spectra are ideally suited to test the algorithm because the

non-deconvoluted spectrum shows overlapping adjacent

peaks that cannot be fully resolved. The result of the decon-

volution is shown in Fig. 6. The peaks that could not be

resolved prior to deconvolution can be clearly distinguished

when the resolution function is deconvoluted from SðEÞ. The

iterative steepest descent algorithm is thus appropriate for

applications of NRVS to biochemistry.

4.2. Round-robin test

We routinely compare the results from SciPhon with those

from PHOENIX and we have found excellent agreement

when the exact same procedure is used. For example,

PHOENIX does not offer any built-in feature to remove a

non-constant baseline but this can be done offline on the data

file so that a truncated and baseline-corrected file can be used

as input in PHOENIX.

Our previous results of force constant determinations have

shown that the results could be affected by the presence of a

non-constant baseline (Dauphas et al., 2012, 2014; Roskosz et

al., 2015; Blanchard et al., 2015). Despite an extensive inves-

tigation, we are still unsure as to why the baseline is sometimes

not constant between the low- and high-energy tails of the

spectrum. The issue is particularly important for the para-

meters derived from higher-order moments of gðEÞ or SðEÞ

because the signal at high energy is low and close to the

background but its contribution to higher-order moments is

significant because it is multiplied by a large power of the

energy. In SciPhon, the user decides visually what part of the

spectrum will be used to define the baseline and will be

truncated. Similarly, the user is involved in deciding, on the

basis of a graph, what the bounds are for the resolution

function, what part of SðEÞ is used to remove the elastic peak

by interpolation, and what part of gðEÞ is used to calculate the

Debye velocity. There is thus a certain level of subjectivity

involved in reducing NRIXS data. A virtue of SciPhon is that

the relevant graphs are provided to the users to help them

make informed choices. In principle, there is no reason why

those tasks could not be handled algorithmically but imple-

menting these would be tedious while they can easily be

performed by the user. In order to assess the degree to which

those user decisions affect the model output, the lead author

organized a round-robin test. The files corresponding to some

NRIXS measurements of goethite powder (‘Goethite 2’ in

Table 1 of Blanchard et al., 2015) were distributed to several of

the co-authors. The files containing the data and resolution

were relabeled ‘mystery.dat’ and ‘mystery.res’, respectively,

and the participants were never informed of the nature of the

phase that they were analyzing. The result of this comparison

between seven users is compiled in Fig. 7. The reasons why

goethite was used as a test case are that (i) it is rich in 57Fe and

good quality data can be acquired in a short time span so we

measure it regularly to assess the long-term reproducibility of

the technique, and (ii) this particular data set was difficult to

handle as the spectrum has tails at the low- and high-energy

ends that are not identical and it is not completely clear

whether some of the features in those tails belong to the signal

or the baseline. As a result, the seven users decided to truncate

the data over very different intervals. The data were acquired

over an energy range of [�130; +170] (meV). The data ranges

defined by the users varied from [�125; 165] (i.e. little trun-

cation; user EA in Fig. 7) to [�90; 115] (i.e. extensive trun-

cation of the tails; user NN in Fig. 7). Despite those disparate

choices, the calculated force constant varies little; from 256 �

11 N m�1 to 268 � 13 N m�1 (the force constant is used for

comparison purposes because it is highly sensitive to the

baseline definition). All other parameters derived from the

NRIXS data also agree well, including the Debye velocity. The

range of Debye velocities is from 3839 � 56 m s�1 to 3960 �
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Figure 6
Effect of the deconvolution algorithm on the PDOS of nitrosyl iron
porphyrinate derivative (heme)[Fe(oep)NO] for NRIXS spectra
measured out-of-plane [(a) OP; perpendicular to the porphyrin plane]
and in-plane [(b) IP; parallel to the porphyrin plane] (Pavlik et al., 2010).
The blue curves are undeconvoluted data while the orange curves are
the PDOS calculated from S(E) after deconvolution of the resolution
function using the steepest descent method and 100 iterations. As shown
in (b), peaks that would be unresolvable are clearly separated after
deconvolution of the resolution function.



52 m s�1. All the parameters derived from the data also agree

well with the mean goethite values published by Blanchard et

al. (2015), which correspond to average values from three

independent measurements performed in different sessions

over several years. The conclusion of this test is that user

choices do not dramatically influence the parameters calcu-

lated from NRIXS data and that the user-to-user dispersion is

within the quoted errors for most parameters, even for data

sets for which data reduction is not straightforward, such as

the goethite data used as a test case. We expect the user-to-

user dispersion to be smaller in most cases when the NRIXS

spectra are better behaved.

This goethite spectrum also provides us with the opportu-

nity to compare the model outputs from SciPhon and

PHOENIX. Co-authors Michael Hu and Ercan Alp, who are

well versed in the use of PHOENIX, carried out the data

reduction on the same sample using PHOENIX (Fig. 7). The

calculated force constant is slightly higher with PHOENIX

[280 N m�1 calculated from g(E) after refinement] than with

SciPhon but still within error. The difference is most likely

due to the fact that a constant background is subtracted

with PHOENIX while a linearly interpolated baseline is

subtracted from the data with SciPhon. The most obvious

difference between the SciPhon and PHOENIX outputs are

the values of the resilience. SciPhon gives a value of

�88 N m�1, while PHOENIX gives a value of �27 N m�1.

The critical temperatures in PHOENIX and SciPhon are very

close (�1200 K). Resilience (K 0) and critical temperature (Tc)

are related through Tc = K0=ðk2kBÞ. We found internal

consistency between these values in SciPhon but not in

PHOENIX. Finally, PHOENIX reports errors that are

significantly smaller than those reported by SciPhon. This is

because PHOENIX only propagates counting errors, while

SciPhon propagates those same errors as well as uncertainties

associated with the subtraction of a baseline and error in the

energy scaling (see x3.3). Our experience is that the counting

errors alone cannot explain the session-to-session variability

in some parameters, suggesting that the inclusion of other

sources of uncertainty in the error propagation scheme is not

only justified but necessary.

4.3. Application to Mössbauer isotopes other than iron

SciPhon has been used primarily to reduce NRIXS data for

iron but it was designed to handle other Mössbauer isotopes.

The isotopes provided by default are 57Fe, 119Sn, 151Eu, 161Dy

and 83Kr, which have been measured at the APS. We can easily

add other elements upon request by modifying a few lines in

the code. The code was extensively tested for iron and several

publications have already made use of it (Dauphas et al., 2014;

Roskosz et al., 2015; Blanchard et al., 2015; Shahar et al., 2016;

Liu et al., 2017). Other Mössbauer isotopes may present other

challenges to the data reduction algorithm. As a test of how

the algorithm performs on non-iron isotopes, we have reduced

NRIXS data for SnO (Giefers et al., 2006), SnO2 (Hu et al.,

1999), Kr at 2 GPa (Zhao et al., 2001), EuO and Eu2O3 (see

supporting information for the values of the PDOS for these

compounds).
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Figure 7
Comparison between users on the data reduction of goethite NRIXS data (i.e. ‘Goethite 2’ from Blanchard et al., 2015).



An important difference between iron and tin is that the

Lamb–Mössbauer factor of tin compounds is usually small and

multi-phonon contributions are significant (Hu et al., 1999).

Fig. 8 compares the PDOS of SnO2 and SnO calculated by

PHOENIX and SciPhon. As shown, there is excellent agree-

ment between the two. We also examined the parameters

calculated by PHOENIX and SciPhon and there is again

excellent agreement between the two. The only major

disagreement concerns the resilience, which SciPhon calcu-

lates at 159 N m�1 while PHOENIX gives a value of

51 N m�1. As discussed above in the context of 57Fe NRIXS

measurements, the critical temperature estimates agree

between SciPhon and PHOENIX but there is no internal

consistency between the critical temperature and resilience

calculated by PHOENIX. Another difference concerns the

vibrational entropy and vibrational specific heat, which differ

by a factor of three (the output values of PHOENIX are

higher than those of SciPhon). The values calculated by

SciPhon are directional, meaning that they would have to be

multiplied by a factor of three to account for the bulk material

if it was isotropic. This factor of three is not the cause for the

discrepancy between the two softwares for the resilience.

Polyakov et al. (2005) used previously published NRIXS

data of SnO and SnO2 to calculate the � fractionation factors

for those compounds. These �-factors give the extent of tin

isotopic fractionation between coexisting phases at equili-

brium. To calculate those �-factors, they digitized published

data. As discussed by Dauphas et al. (2014) and Blanchard et

al. (2015), great care must be exercised in handling the low-

and high-energy tails of NRIXS spectra for application to

isotope geochemistry, so it is worth re-evaluating the fractio-

nation factors for Sn (Fig. 9). The polynomial expansion to the

�-factors for Sn are (the temperature T is in K), for SnO,

1000 ln�
122Sn=116Sn
SnO ¼

348483

T 2
�

1:005� 109

T 4
þ

9:73� 1012

T 6
;

ð60Þ

for SnO2,

1000 ln �
122Sn=116Sn
SnO2

¼
948567

T 2
�

7:543� 109

T 4
þ

1:748� 1014

T 6
;

ð61Þ

and the predicted equilibrium fractionation between Sn4+

(SnO2) and Sn2+ (SnO) is

1000
�

ln �
122Sn=116Sn
SnO2

� ln �
122Sn=116Sn
SnO

�
¼

600084

T 2
�

6:54� 109

T 4
þ

1:65� 1014

T 6
: ð62Þ

We have also reduced NRIXS data for EuO and Eu2O3. The

polynomial expansion to the �-factors for Eu are (the

temperature T is in K), for EuO,

1000 ln �
153Eu=151Eu
EuO ¼

43963

T 2
�

1:590� 107

T 4
�

5:32� 1010

T 6
;

ð63Þ

for Eu2O3,

1000 ln �
153Eu=151Eu
Eu2O3

¼
75471

T 2
�

1:037� 108

T 4
þ

2:36� 1011

T 6
;

ð64Þ

and the predicted equilibrium fractionation between Eu3+

(Eu2O3) and Eu2+ (EuO) is

1000
�

ln �
153Eu=151Eu
Eu2O3

� �
153Eu=151Eu
EuO

�
¼

31507

T 2
�

8:78� 107

T 4
þ

2:89� 1011

T 6
: ð65Þ

Previous NRIXS studies have investigated the force constants

of iron bonds in FeO (wüstite) and Fe2O3 (haematite)

(Dauphas et al., 2017). The equilibrium isotopic fractionation

between Fe2+ and Fe3+ in oxides has important geologic

implications (Dauphas & Rouxel, 2006; Dauphas et al., 2009a,

2017; Roskosz et al., 2015), and the redox pairs Sn4+/Sn2+

and Eu3+/Eu2+ could similarly provide insights into redox

processes in the Earth and other planetary bodies. In Fig. 9 we

plot the equilibrium fractionation factors for all three redox

couples (Fig. 10). The system that shows the largest fractio-

nation is Sn, followed by Fe and then Eu, which reflects in part
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Figure 8
Comparison between the Sn partial phonon density of states of SnO2

(cassiterite; Hu et al., 1999) and SnO (Giefers et al., 2006) at 300 K
calculated using the PHOENIX (dashed black curve) and SciPhon (solid
orange curve). There is excellent agreement between the two,
demonstrating that SciPhon can handle data reduction of Mössbauer
isotopes other than iron.



the large relative mass difference between the isotopes

involved (�m/m = 0.05 for 122Sn/116Sn, 0.036 for 56Fe/54Fe and

0.013 for 153Eu/ 151Eu). At room temperature (25�C), the

calculated fractionations are 6.2% for Sn, 2.5% for Fe and

0.34% for Eu. At a temperature of 1100�C that is more rele-

vant to magmatic systems, the calculated fractionations are

0.32% for Sn, 0.13% for Fe and 0.02% for Eu. The isotopic

composition of Sn can be measured with a precision of less

than �0.04% (Wang et al., 2017; Creech et al., 2017) and that

of Fe can be measured with a precision of �0.03% (Dauphas

et al., 2009b, 2017). There is extensive literature documenting

redox-controlled Fe isotopic fractionation in laboratory

experiments and natural systems, including low-temperature

aqueous systems and high-temperature magmatic systems

(Dauphas & Rouxel, 2006; Dauphas et al., 2017). Tin isotope

systematics is an emerging stable isotope system (Wang et al.,

2017, 2018; Creech et al., 2017; Brügmann et al., 2017).

In aqueous systems, tin is predominantly Sn4+, except in

acid and reducing environments, where Sn2+ can be present

(Kabata-Pendias & Pendias, 2001) but there is clearly some

potential to detect Sn isotopic fractionation. In magmatic

systems, Sn4+ is a large highly charged ion that behaves as an

incompatible element but can substitute for Fe3+ and Ti4+ in

minerals. The SnO2–SnO buffer lies 2 to 4 log units below the

FMQ (fayalite–magnetite–quartz) buffer, which taken at face

value would indicate that Sn is dominated by Sn4+ in terrestrial

magmas while Sn2+ could be present in significant amounts in

reduced lavas (Lehmann, 2006). The activities of SnO2 and

SnO in silicate melts could, however, affect the equilibrium

between those two oxidation states. Indeed, the results of

Johnston (1965) for Na2O
SiO2 glass put the Sn4+/Sn2+ equi-

librium crossing the FMQ buffer at a temperature of 1000�C,
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Figure 10
NRIXS data for Sn, Kr, Eu and Dy compounds reduced with the SciPhon software (a comparison with PHOENIX is provided for Sn and Kr).

Figure 9
Predicted equilibrium fractionation factors (in %) of the redox pairs
Sn4+/Sn2+ (SnO2, SnO) (Giefers et al., 2006; Hu et al., 1999), Fe3+/Fe2+

(Fe2O3, FeO) (Dauphas et al., 2014) and Eu3+/Eu2+ (Eu2O3, EuO); see
text for details. The blue dashed line is the previous estimate for the Sn4+/
Sn2+ redox pair by Polyakov et al. (2005). The solid blue line is the new
updated value.



meaning that Sn2+ could represent a significant portion of Sn

in magmas. We used the data published in that paper to

calculate the Sn4+/Sn2+ ratio in those glasses, taken as proxies

of silicate melts,

XSn4þ

XSn2þ
¼

ffiffiffiffiffiffiffiffi
f O2

p
10ð18800=TÞ�9:35: ð66Þ

where XSn4þ and XSn2þ are the mol fractions of the two

oxidation states of Sn, f O2 is the oxygen fugacity in bar, and

T is the temperature in K. Most terrestrial rocks have oxygen

fugacities within 2 log units of the FMQ oxygen buffer. As

shown in Fig. 11, the rocks in that range are expected to

display large variations in their Sn4+ and Sn2+ proportions.

This, together with the fact that very large equilibrium isotopic

fractionation is expected between these two oxidation states,

means that the isotopic composition of Sn could be a useful

tracer of redox processes in the Earth. Wang et al. (2018)

speculated, for instance, that the heavy Sn isotopic composi-

tion of basalts relative to mantle peridotites could be due to

the more incompatible behavior during mantle melting of

isotopically heavy Sn4+ relative to light Sn2+. A similar idea

had been proposed to explain the heavy Fe isotopic compo-

sition of basalts relative to peridotites (Dauphas et al., 2009a).

More work is clearly needed to characterize the Sn4+/Sn2+

ratio of igneous rocks and evaluate how Sn isotopes are

fractionated at equilibrium between these two oxidation states

in silicate magmas.

We have also calculated the �-factor of solid Kr at 2 GPa,

which gives

1000 ln �
86Kr=82Kr
Kr ¼

105337

T 2
�

8:312� 107

T 4
þ

1:07� 1011

T 6
:

ð67Þ

Because the 1000 ln�
86Kr=82Kr
Kr factor of mono-atomic gaseous

Kr is 0, the formula above gives the equilibrium fractionation

factor for Kr between solid and gas. Assuming that solid Kr at

2 GPa can be taken as a proxy for Kr trapped in ice at low T,

we can calculate the isotopic composition of Kr in cometary

ice at equilibrium with solar gas. The temperature of

condensation of Kr in cometary ice is uncertain but a

temperature of 50 K may be reasonable (Dauphas, 2003;

Owen et al., 1992; Mousis et al., 2016). At such a temperature,

we would predict that Kr in ice should be isotopically frac-

tionated relative to the gas by +35% (3.5%) in the 86Kr=82Kr

ratio. This value should be taken with a grain of salt but it

shows that significant equilibrium isotopic fractionation may

be present during trapping of Kr and possibly other noble

gasses in cometary ice. As of today, there are no Kr isotope

measurements of comets or experimental determinations with

which to compare the calculated value.

4.4. A one-parameter expression for the temperature
dependence of b-factors

Dauphas et al. (2017) derived an approximate one-para-

meter formula to express the temperature-dependence of �-

factors. This is useful in geochemistry to extrapolate equili-

brium fractionation factors measured experimentally at one or

a few temperatures to different temperatures (a 1/T 2 depen-

dence is often assumed but the formulas given below yield

more accurate extrapolations). If one assumes that the mate-

rial has a Debye PDOS, the even moment of g(E) can be

expressed as even powers of the Debye energy cutoff,

m
g
2 ¼

3

5
E 2

D; m
g
4 ¼

3

7
E 4

D; m
g
6 ¼

1

3
E 6

D: ð68Þ

One can therefore approximate equation (58) by a one-

parameter (A1) formula,

1000 ln � ’
A1

T 2
�

A2
1

6300 ðM=M	Þ � 1½ �T 4

þ
A3

1

25515000 ðM=M	Þ � 1½ �
2 T 6

: ð69Þ

For the 56Fe/54Fe ratio, this would give

1000 ln � ’
A1

T 2
� 0:0043

A2
1

T 4
þ 0:000029

A3
1

T 6
: ð70Þ

In practice, the PDOS of natural materials show large depar-

tures from a Debye behavior. Assuming a similar functional

relationship as that derived for a Debye behavior in the more

general case, one can write the �-factor as

1000 ln � ’
A1

T 2
� a

A2
1

T 4
þ b

A3
1

T 6
; ð71Þ

where a and b are fit parameters that can be calculated based

on NRIXS measurements or ab initio studies that give the

third-order polynomial expansion of the �-factor. For the
56Fe/54Fe ratio, Dauphas et al. (2017) obtained an approx-

imate formula,

1000 ln � ’
A1

T 2
� 0:0076

A2
1

T 4
þ 0:000164

A3
1

T 6
: ð72Þ
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Figure 11
Proportions of Sn4+ and Sn2+ in Na2O.2SiO2 glass (Johnston, 1965) as a
function of oxygen fugacity (fO2) and temperature [equation (66)].
Several oxygen buffers are shown; NNO = Ni–NiO, FMQ = fayalite–
magnetite–quartz, IW = iron–wüstite. Most terrestrial igneous rocks have
oxygen fugacities within �2 Log-units of the FMQ buffer, where Sn4+

and Sn2+ could co-exist.



For the 122Sn/ 116Sn isotopic ratio, we use the three NRIXS

data reported by Polyakov et al. (2005) to derive a one-para-

meter expression of the �-factor,

1000 ln � ’
A1

T 2
� 0:0062

A2
1

T 4
þ 0:000052

A3
1

T 6
: ð73Þ

This formula will be refined as the database of NRIXS

measurements continues to expand for Sn.

5. Conclusion

The synchrotron radiation technique of nuclear resonant

inelastic X-ray scattering is used across many fields, including

material sciences, condensed matter physics, heme biochem-

istry, geophysics and isotopic geochemistry. Isotopic

geochemistry requires accurate determination of the force

constant of the chemical bonds, which depends on the third

moment of the NRIXS spectrum and is prone to biases that

had not been fully appreciated before. This prompted us to

develop a new software called SciPhon to reduce NRIXS data

for all applications. This software runs in Mathematica and

is thus portable on Windows, MacOS, Linux and Raspbian

platforms. It is also perennial as most Mathematica codes are

portable in new versions of the software. A virtue of using

the Mathematica platform is that a user-friendly GUI can

be deployed on many operating systems. The program runs

rapidly, with each step in the data processing not taking more

than a few seconds. The total data reduction can be done in a

minute or two. NRIXS data for all Mössbauer isotopes can be

reduced with this software. The options offered to the user are

those studied at the APS but this can easily be extended to

include other Mössbauer isotopes. SciPhon presents several

features that make it an asset when reducing NRIXS data:

(1) It has a GUI, which facilitates learning of the program

and speeds up data processing for the most repetitive tasks.

(2) It provides flexibility in the definition of the baseline/

background.

(3) It allows the user to define the energy range used in

data reduction.

(4) It propagates uncertainties from counting statistics, as

well as baseline subtraction and energy scaling.

(5) It outputs all the parameters that can be extracted from

the NRIXS spectrum and partial PDOS. This includes a built-

in function to calculate the Debye velocity from the PDOS as

well as all data needed to calculate reduced partition function

ratios used in isotope geochemistry.

(6) It uses an original approach to remove the elastic peak

using an interpolation that respects the detailed balance.

Extensive testing was performed to ensure that the software

performs as expected. SciPhon yields values that are most

often consistent with the values derived by PHOENIX. The

baseline subtraction procedure used in SciPhon has been

proven to yield reproducible data. SciPhon is routinely used

by our group and others and data generated by it have already

been published in top journals (Dauphas et al., 2014; Blan-

chard et al., 2015; Roskosz et al., 2015; Shahar et al., 2016; Liu

et al., 2017).
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