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X-rays offer high penetration with the potential for tomography of centimetre-

sized specimens, but synchrotron beamlines often provide illumination that is

only millimetres wide. Here an approach is demonstrated termed Tomosaic for

tomographic imaging of large samples that extend beyond the illumination field

of view of an X-ray imaging system. This includes software modules for image

stitching and calibration, while making use of existing modules available in other

packages for alignment and reconstruction. The approach is compatible with

conventional beamline hardware, while providing a dose-efficient method of

data acquisition. By using parallelization on a distributed computing system, it

provides a solution for handling teravoxel-sized or larger datasets that cannot be

processed on a single workstation in a reasonable time. Using experimental data,

the package is shown to provide good quality three-dimensional reconstruction

for centimetre-sized samples with sub-micrometre pixel size.

1. Introduction

Computed tomography (CT) allows one to obtain internal

structure of a three-dimensional sample from of a series of

two-dimensional projection images collected around a

common rotation axis. When using X-rays rather than visible-

light or electron microscopy, CT is especially powerful because

of the ability to image centimetre-sized or larger objects

(Stock, 2008a). Illuminating centimetre-sized objects is

straightforward when using cone-beam illumination from

laboratory-based electron-impact sources which emit into a

solid angle approaching �; however, with laboratory-based

systems it becomes challenging to obtain both submicrometre

voxel resolution and centimetre-sized fields of view in

reasonable experimental times. If one instead uses a

synchrotron radiation source for its higher spectral flux and its

parallel-beam geometry, relativistic effects limit the angular

extent of the beam so that even at the 20–50 m distance of

many experimental enclosures from the X-ray source one

often has a beam that is at most a millimetre or two in width

(Weitkamp et al., 2010). While there are a limited number of

long wiggler-source beamlines that can provide illumination

over much larger specimen widths (Nemoz et al., 2007), they

deliver a lower photon density on the specimen so that they

are less well suited for micrometre-resolution studies. There-

fore there is a need for a method for imaging centimetre-sized

ISSN 1600-5775

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577518010093&domain=pdf&date_stamp=2018-08-21


samples at sub-micrometre resolution using millimetre-sized

beams at the synchrotron light sources of today.

Consider a realistic example of three-dimensional imaging

of a 2 cm-sized specimen with 1 mm resolution [a spatial

resolution that is achievable using a scintillator imaged with a

microscope objective onto a visible-light camera (Flannery et

al., 1987)]. With such a sample, one would like to acquire

projection images with 20000 pixels on a side. Not only is it

difficult to illuminate such an imaging field for the reasons

described above, it is also difficult to obtain a high signal-to-

noise ratio (SNR) small-pixel-size visible-light camera with

such a large number of pixels in a single device.

In order to obtain tomographic reconstructions of an object

that is larger than the field of view of the illuminating beam

and the detector without sacrificing spatial resolution, several

approaches have been described previously (Kyrieleis et al.,

2009); we describe three main ones here: a local tomography

acquisition approach, a projection-oriented acquisition

approach, and a sinogram-oriented acquisition approach.

These acquisition methods (which are illustrated in Fig. 1, and

summarized in Table 1) have the following characteristics:

(i) Local tomography acquisition (LTA). One approach is

to acquire and reconstruct a series of local tomograms of

subregions of the specimen by successively placing each

subregion on the rotation axis (Kuchment et al., 1995; Oiko-

nomidis et al., 2017) [method III of Kyrieleis et al. (2009)], as

shown in Algorithm 1. This is also known as truncated object

tomography (Lewitt & Bates, 1978), or as interior tomography

(Natterer, 1986). In this scheme, features from outside the

reconstructed region are present in only a small subset of the

acquired projections. Therefore they contribute only weakly

to the local reconstruction volume, though they do introduce

some imaging artifacts (Kyrieleis et al., 2011). After recon-

struction, these local reconstructed tomogram volumes are

stitched together to reconstruct the full three-dimensional

volume.
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Figure 1
Schematic comparison of three methods for X-ray computed tomography of specimens that are larger than the illumination footprint and detector size,
as viewed from above for one object slice if the rotation axis is vertical. The bottom figure row shows views of one slice within the object corresponding to
one detector row, while the top figure row shows sinograms from one detector row as the object is rotated. In the local tomography acquisition (LTA) or
interior tomography Tomosaic approach, the rotation center is placed within a subregion of the object after which a rotation sequence is acquired; when
shown in the overall context of the object, one therefore obtains the corresponding sinogram above. In a projection-oriented acquisition (POA)
approach as shown in the middle, one acquires a tiled set of projection images while the object is moved transverse to the illumination direction; the
object is then rotated slightly about its overall center and the sequence repeated. In the sinogram-oriented acquisition (SOA) Tomosaic approach shown
on the right, the rotation center is moved to an offset position relative to the illumination and detector, and the object is rotated to acquire data from a
ring-within-a-cylinder region. Both the POA and SOA Tomosaic approaches involve less exposure overlap, reducing radiation dose. Furthermore, SOA
generally provides faster acquisition speed because it involves fewer translational motions from the sample stage.



(ii) Projection-oriented acquisition (POA). In this

approach, one collects a mosaic tiling of two-dimensional

images at each projection angle � (Algorithm 2), after which

these images are stitched together to create a single two-

dimensional projection for that angle. These projections can

then be stacked in angle to create a sinogram of the full three-

dimensional volume, after which a tomographic reconstruc-

tion is obtained. This approach [method I of Kyrieleis et al.

(2009)] has been used for example with Fresnel zone plate

optics for sub-100 nm-resolution tomography (Liu et al., 2012;

Mokso et al., 2012).

(iii) Sinogram-oriented acquisition (SOA). In this approach,

one acquires data using a fixed horizontal and vertical or ðx; yÞ

offset between the field of view and the specimen rotation axis.

One then moves to the next ðx; yÞ offset before another

rotation dataset is acquired (Algorithm 3) (Vescovi et al.,

2017). In this way [method V of Kyrieleis et al. (2009)], each

rotation series provides a subregion of the full three-dimen-

sional sinogram which is complete in � and incomplete in x.

These ‘ring in a cylinder’ projection sets must then be aligned

and assembled prior to reconstruction of the full three-

dimensional volume (Vescovi et al., 2017).

While reconstruction of samples with up to two times larger

size than the illumination and detection field of view can be

achieved by placing the rotation axis on the illumination/

detection boundary (Stock, 2008b) [method II of Kyrieleis et

al. (2009)], this technique does not scale to larger volumes.

The three approaches described above each make different

tradeoffs in data acquisition and processing. To describe this,

we use a geometry shown in Figs. 1 and 3 where the object is

rotated about the y axis (vertical in the case of our X-ray

tomography setup), and reconstructed tomographic slices are

in the x–z plane. Consider the case where each field of view

contains Nx and Ny pixels in the x- and y-direction, respec-

tively. Ignoring overlaps between fields of view, the total

number of voxels in the reconstructed object using any of

LTA, POA and SOA will be given by

Nvoxels ¼ SxNxð Þ
2

SyNy

� �
; ð1Þ

where Sx and Sy represent the number of fields of view along

the x-direction (horizontal and perpendicular to the beam)

and y-direction (vertical), respectively. For LTA, there are

multiple scan regions also along the z-direction (parallel to the

beam), but we assume Sz = Sx for a roughly square-shaped

sample. We then notice the following differences among LTA,

POA and SOA:

(i) In LTA, one needs to work with a data size of N 2
x Ny for

each reconstruction, so that tomogram reconstruction soft-

ware optimized for one illumination/camera field of view can

be used unaltered. In addition, one can examine each local

tomogram region as it is acquired, without waiting for the

entire specimen’s data to be collected. However, one must

then assemble these N 2
x Ny size reconstruction volumes into

an overall volume of ðSxNxÞ
2
ðSyNyÞ. In both the POA and

SOA approaches, one must reconstruct the complete

ðSxNxÞ
2
ðSyNyÞ-sized dataset before any subregion of the

reconstructed volume can be viewed, which can lead to

computational challenges as described below.

(ii) In the LTA approach, most regions of the specimen are

exposed to the beam more than once, as can be seen in the

sinogram representation of Fig. 1. This can increase the

radiation dose to the specimen, unless approaches analogous

to dose fractionation are used (Hegerl & Hoppe, 1976).
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Table 1
Terminology used in this work for data acquisition and reconstruction
approaches.

Local tomography
acquisition (LTA)

A data acquisition mode where one collects
tomography data from local regions of the sample,
and stitches together the individual reconstructions.

Projection-oriented
acquisition (POA)

A data acquisition mode where one collects a full
panoramic projection image at each rotation
angle.

Sinogram-oriented
acquisition (SOA)

A data acquisition mode where one collects 180�

projections at each position on the sample. This is
the method used in Tomosaic.

Whole-block mode
(WBM)

A reconstruction mode in Tomosaic where
projections are stitched for each angle, after
which reconstruction is performed on the merged
dataset.

Single-slice mode
(SSM)

A reconstruction mode in Tomosaic where
sinograms for a slice are extracted and stitched,
after which this particular object slice is
reconstructed.



Assuming that the sample is square in shape, LTA requires a

larger number of 180� scans than POA and SOA by a factor of

Sx if a square grid on the xz-plane is used, or Sx=
ffiffiffi
3
p

if a

hexagonal grid is used. These tradeoffs are investigated in

more detail in simulation studies (Du et al., 2018).

(iii) The specimen stage motions between these approaches

are quite different. In the LTA approach, one must translate

selected specimen ðx; y; zÞ positions onto the rotation axis, and

then acquire a rotation angle dataset. In POA, one translates

the specimen in ðx; yÞ at each angle �, after which the trans-

lation sequence must be repeated. In the SOA approach, one

translates the rotation stage in ðx; yÞ, and then acquires a

complete rotation angle dataset at that ðx; yÞ position. In

practice, high-precision rotation stages can quickly rotate a

specimen over 180�, whereas translations in ðx; y; zÞ tend to

take a longer time to allow for acceleration, deceleration and

settling at the end position, so that the SOA approach is

favored.

As can be seen from the above, POA and SOA offer

advantages compared with LTA in terms of dose efficiency.

This is a crucial factor to be considered when imaging soft

materials. With today’s computing resources and parallel

computation techniques, the computational burden of POA

and SOA can be overcome, as will be shown in the Results

section. Furthermore, when comparing POA and SOA one

will notice that fewer translational motions are needed by

SOA, which makes SOA a faster acquisition method than

POA. We thus consider SOA to be the optimal tomographic

acquisition method for large radiation-sensitive samples. In

the experiments described below, we have used the SOA

approach.

To implement the SOA approach, we have developed a

software package for the processing of multi-field-of-view

tomography data named Tomosaic. Because tomographic

projections can be acquired at high speed at synchrotron light

sources, one can obtain micrometre-resolution tomograms of

centimetre-sized objects using millimetre-sized beams in a

matter of hours using the Tomosaic approach. While image

reconstruction from smaller datasets has already been

demonstrated using a single workstations (Vescovi et al.,

2017), we extend here the reconstruction approach to work

with teravoxel-sized reconstruction volumes and parallel

computing. This is done via a message-passing-interface (MPI)

enabled Python library which is written in a way that the same

code can be run on standard workstations for smaller datasets,

or on distributed clusters for data sizes that demand more

memory and computing power. While the code is written in

such a way that one can employ specific packages to read data

in specific formats, and other packages for tomographic data

reconstruction, the current version uses the DataExchange

package for data file input/output (De Carlo et al., 2014), and

the TomoPy (Gürsoy et al., 2014; Bicer et al., 2016) and Astra

(Pelt et al., 2016) packages as the tomographic reconstruction

backends. Moreover, in order to meet the demands of users

with access to different levels of computational resources,

Tomosaic provides two modes of reconstruction (WBM

and SSM) as will be discussed further in x3.5. The overall

workflow of Tomosaic is shown in Fig. 2, while our termi-

nology for acquisition and reconstruction modes is summar-

ized in Table 1.

2. Mosaic data acquisition

The first step in our Tomosaic approach is to acquire the data,

following the SOA approach shown in Fig. 1 and also Algo-

rithm 3. This is shown in greater detail in Fig. 3. For projection

position P1, the rotation axis is shifted in ðx; yÞ relative to the

illumination/camera field of view, after which the first mosaic

ring dataset M1 is acquired by rotating the specimen through

N� angular steps over a 180� range. This is then repeated for

each of the Nmosaic = Sx � Sy fields of view, so that the last

projection position is PNmosaic
and the last mosaic ring dataset is

MNmosaic
. The actual acquisition also involves the collection of

white-field (image with beam on and sample absent) and dark-

field (image with beam off) data before acquiring sample

projection data for each tile. These supply the needs of
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Figure 2
Overall workflow for Tomosaic data acquisition and reconstruction.
Projections are obtained using sinogram-oriented acquisition (SOA) as
shown on the right in Fig. 1. The alignment between subregions is then
refined, after which the full three-dimensional dataset is assembled either
by stitching together the sinograms as shown on the right in Fig. 1, or by
collecting together full object projections as illustrated in Fig. 3 below. In
either approach, one obtains the set of sinograms from all slices of the full
object, and these object slice sinograms can then be fed to TomoPy
(Gürsoy et al., 2014) for parallelized reconstruction (Bicer et al., 2016).



normalization correction, which are intended for the allevia-

tion of beam intensity fluctuations, scintillator inhomogene-

ities, and thermally induced signal buildup in the CCD

detector. Control of the beam shutters and sample stages are

automated through a control script based on the Experimental

Physics and Industrial Control System (EPICS). Our experi-

ence suggests that a robust tomography system should be

equipped with not only stable and low-distortion optics and

positioners but also reliable and properly optimized control-

ling hardware and software. The requirement is high particu-

larly for experiments with a large number of rotation angles

and short exposure times, since the speed of data saving can

become the bottleneck in the loop and potentially lead to

frame loss. High-speed storage media should be used as buffer

zones for data transfer and writing, and the host console

should have sufficient memory and multi-tasking capabilities

in order to avoid the interruption of data I/O.

The Tomosaic pipeline works by reading in a file that names

all of the grid positions involved in the dataset, so as to create

the metadata necessary to merge and reconstruct the data.

Each array (or ‘tile’) Mi of mosaic projections is saved as a

hierarchical data format (HDF) file, with a file naming scheme

sampleNameAndParameters y <dd> x <dd> : h5,

where <dd> are two-digit integer indices counting from zero,

identifying the grid position of the tile. Experimental metadata

including the exposure time, beam current, motor readouts

and the unique ID for each projection image are logged along

with the tomogram data in the same file.

2.1. Experimental setup

All data were acquired at the 32-ID beamline at the

Advanced Photon Source. The setup consists of a �u = 1.8 cm-

period undulator operated at a low deflection parameter value

of K = 0.26, so that a single quasi-

monochomatic peak at E = 25 keV

could be generated without loss due

to crystal monochromators etc. For a

sample at 68 m from the undulator, this

produced a photon fluence rate of about

�nn=ð�2tÞ = 1:8� 107 photons s�1 mm�2,

so that a specimen with an X-ray

attenuation length of ��1 = 56.9 mm [an

example value for poly(methyl metha-

crylate) or PMMA with � = 1.18 g cm�3]

would receive a skin dose rate D=t of

D

t
¼

�nn

�2 t

E�

�
¼ 1100

Gray

second
: ð2Þ

The sample was mounted on an air-

bearing rotary stage PI-Micos UPR-160

AIR with motorized x–y translation

stages located underneath and x–y piezo

stages on top. Typical exposure times

for a single projection image at one

mosaic grid point and one rotation

angle were 10–20 ms, and N� = 1500–

6000 was used for the number of rotation angles at each grid

point. Tomographic projections were recorded by using a

10 mm-thick LuAG:Ce scintillator to convert the propagation-

enhanced X-ray intensity pattern into a visible-light image

which was then magnified using a microscope objective onto

a visible-light scientific CMOS camera (1920 � 1200 GS3-U3-

23S6M-C for the charcoal sample, and 2448� 2048 Point Gray

GS3-U3-51S5M-C for larger specimens).

2.2. Data transfer and storage

Data written on the experimental control computers at the

beamline were transferred to the compute cluster Cooley, with

a copy sent to the remote large-capacity data vault Petrel.

Both facilities are developed and maintained by the Argonne

Leadership Computing Facility (ALCF). Upon the completion

of collection a rotation dataset at one tile position, an HDF5

file was created. This triggered Ripple, an event-driven data

management software operating on an if-trigger-then-action

basis (Chard et al., 2017). File transfer to Cooley and Petrel

was accomplished using Globus (Chard et al., 2014), a data

transfer and management service.

3. Mosaic data processing

With the mosaic projection data acquired, we now describe

the sequence of steps for data processing leading to a recon-

structed three-dimensional image. The main steps were illu-

strated in Fig. 2.

3.1. Data downsampling

To increase the speed of the pipeline and the data quality

assessment, the user has the choice to reorganize the data into

new folders containing binned versions of the original data.
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Figure 3
Schematic of the Tomosaic data collection approach, providing detail beyond Fig. 1. The rotation
stage is first moved to projection position P1, and the specimen is then rotated through N� angular
positions over a 180� range. This yields a mosaic ring projection dataset M1. This is continued for all
of the Nmosaic fields of view. In order to obtain a complete projection image at one rotation angle
indexed by i�, one must extract the corresponding projections from all of the mosaic ring datasets
Mimosaic

as shown on the right. In this example, the number of mosaic fields of view is Sx = 6 and Sz = 4,
yielding Nmosaic = 24.



An n-fold binning is performed in the projection axis resulting

in a 1=n2 reduction in the raw data size and a 1=n3 reduction in

the reconstruction size. This approach also makes the pipeline

more robust for finding the optimal solution for the metadata

refinement, since each higher-resolution step can use the

knowledge obtained from the lower-resolution (but more

rapidly processed) step.

3.2. Registration of data

With perfect translation and rotation stages, all of the

Nmosaic sinograms would be in perfect registration. In practice,

this is not quite the case, so the commanded translations are

used as a starting point for refinement of relative positions

in a registration step. Because of the density of information

in projections through thick objects, it is often difficult to

recognize specific features and use feature-based alignment

methods. Instead we follow the practice described previously

(Vescovi et al., 2017) and use the phase correlation method

(Kuglin & Hines, 1975) which can efficiently determine sub-

pixel registration through the use of matrix upsampling

(Guizar-Sicairos et al., 2008) as implemented in the Python

library Scikit-image. The relative shift vector c between two

images of the same object is given by

c ¼ argmax F �1 F IaðxÞ
� �

F I �b ðxÞ
� �

F IaðxÞ
� �

F I �b ðxÞ
� ��� ��

( )
ðxÞ

 !
: ð3Þ

In other words, the relative shift vector is given by the coor-

dinates of the global maximum in the Fourier cross-correlation

map of images a and b. In principle, this can lead to four

different possible shift vectors due to the periodicity of

Fourier space (Preibisch et al., 2009), but in our case we search

for a maximum within a limited radius of zero shift because of

the approximate correctness of the translation stage positions.

Full-pixel shifts are handled in the obvious way, and sub-pixel

shifts are implemented using the shift theorem of the Fourier

transform as

Iðxþ cÞ ¼ exp
�

j 2�w � c
�
F
�
IðxÞ

�
ðwÞ: ð4Þ

The results of registration are automatically exported as a text

file with columns for the y-position and x-position of the tile,

and the y- and x-axis shifts with regards to neighboring tiles to

the right as well as the bottom.

3.3. Stitching and blending of data

Once the correct relative alignment of mosaic fields has

been found, these fields must be stitched together. Slight

errors in X-ray beam intensity normalization can lead to slight

changes in apparent brightness at the boundary between one

mosaic field and its neighbor; this can result in visible seams at

mosaic field boundaries, which in turn cause ring artifacts in

the tomographic reconstruction. Therefore, adjacent images

must be blended through their overlapping region in order to

result in a smooth transition. While we have compared several

methods for doing this, pyramid blending (Adelson et al.,

1984) provides a good balance between computation speed

and accuracy as shown in Fig. 4. The workflow of pyramid
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Figure 4
Blending results of two 1920� 1200 images given by pyramid blending, maximum blending, minimum blending and feather blending. The edges of
the input images in the blending results are marked by blue and green arrows. In each subfigure in the left column, a white curve is shown to reflect
the grayscale profile of the blended figure along its horizontal midline. A bar chart of the average wall clock time in ten runs of each algorithm is
also provided.



blending is shown in Algorithm 4. Briefly, the algorithm works

by joining the image pair using a gradient mask at different

down-sample levels. Through these operations, image features

in multiple scales are captured and preserved. Background

variations at lower spatial frequencies are blended more

smoothly, while fine structures with higher spatial frequency

content are given a quicker transition to prevent the ghosting

effect. The benchmark testing shown in Fig. 4 demonstrates

the performance of pyramid blending. The size of each input

image is 1920� 1200, and the edge positions are marked by

blue and green lines. For pyramid blending, no visible seams

are found in the output image, in contrast to simple blending

methods such as choosing the maximum or minimum value

at each pixel in the overlap region. We also tried feather

blending, which is essentially just a single Gaussian mask

applied to the images at their original scales. Feather blending

exhibits a ‘harder’ transition that leads to more ring artifacts

in a tomographic reconstruction than one has when pyramid

blending is used. The cost of pyramid blending is its relatively

higher time consumption as compared with the other methods

demonstrated here; however, the time needed for pyramid

blending a full-resolution pair of images is still only about 0.6 s

on an ordinary laptop computer, which is well acceptable.

Using pyramid blending, Tomosaic reads in the shift data

file created in the registration stage, and stitches the radio-

graphs of all tiles in the grid into a panorama for each

projection angle. The merged data are stored as a new HDF5

file. During stitching, projection images are normalized using

flat fields and dark fields, so the stored data are in the form of

floating points between 0 and 1.

3.4. Rotation center calibration

Once the set of projection images has been assembled, the

correct center of rotation must be found. When this is at a

position different than what was assumed, objects that would

be on the rotation axis appear to be rotating about it, leading

to the appearance of arc artifacts in reconstructed images.

Finding the correct center of rotation is a well known problem

in tomography, and several approaches have shown varying

degrees of success (Brunetti & De Carlo, 2004; Donath et al.,

2006; Vo et al., 2014; Yang et al., 2017).

Artifacts represented by the U-shape distortion of point

features can seriously deteriorate image quality if the center

is not correctly set. Tomosaic uses an entropy-based optimi-

zation approach (Donath et al., 2006) for finding the rotation

center for every row in the tile grid. The concept of image

entropy is defined as

S ¼ �
P

i

pi log2 pi; ð5Þ

where pi is the probability of a certain grayscale value i. It has

been observed that a reconstruction image with an incorrect

center setting has a wider distribution of grayscale values due

to the smearing effects of the artifacts, and is associated with a

higher entropy. Thus, the correct center value r0 can be found

through

r0 ¼ argmin
�
SðrÞ

�
: ð6Þ

A demonstration of the entropy-based center-searching

algorithm is shown in Fig. 5. A scan from r = 770 to 790 was

carried out, and the correct center position of 781 was

successfully identified by the sharp minimum of the curve.

Tomosaic calculates the rotation center for each row in the

tile grid. The results are exported as a text file listing the row

number and the corresponding center position. Also, recon-

struction images for the range of center positions searched are

kept in the hard drive as well, so that one could manually re-

examine the images if the automated outcomes are not satis-

factory.

3.5. Reconstruction

In order to flexibly meet the needs of users and to function

properly on various platforms with different hardware
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conditions, Tomosaic provides two modes for tomographic

reconstruction of the three-dimensional object from the

rotation sets of two-dimensional projection images as noted

in Table 1:

(i) Whole-block mode (WBM). In this mode, a single

merged dataset containing aligned and stitched projections for

all rotation angles as described in x3.3 is fed to the tomo-

graphic reconstruction package. In practice, the dataset is

stored on the hard drive, and data are read as required.

Algorithm 6 shows the workflow of this mode. This mode is

able to deal with sub-pixel registration shifts transverse to and

along the rotation axis, or ðx; yÞ shifts of each mosaic field of

view. Because each projection slice along the rotation axis

direction can be reconstructed independently of all other

projection slices, this task is trivially parallelizable on multi-

node clusters. Since the stitching of projections is done in both

the x- and y-direction, smooth blending and sub-pixel regis-

tration in both axes can be preserved.

(ii) Single-slice mode (SSM). In this mode, sinograms rather

than projections are stitched using Algorithm 7. In this case,

one can register mosaic sinograms at full-pixel precision in the

direction of the axis of rotation, with further sub-pixel preci-

sion achievable in the transverse direction only. The advantage

that one gains in return is that SSM demands far less storage

space and time, because the stitching of projections for all

angles is not needed for reconstruction. As a result, recon-

struction can be done on personal workstations or even laptop

computers in this way. Also, because this mode provides an

ad hoc approach to reconstruct a small number of slices, it

is a convenient solution for delivering a fast preview of the

data quality.

In both cases we assume that the registration between

subfields has already been determined as described in x3.2. For

both modes, Tomosaic uses the package TomoPy (Gürsoy et

al., 2014) for volumetric image reconstuction using one of

several available standard algorithms, including on distributed

computers (Bicer et al., 2016). This package implements a

transport-of-intensity-based approach (Paganin et al., 2002)

for the reconstruction of phase contrast features from the

projections acquired at a distance from the sample. Because

the ‘gridrec’ implementation (Dowd et al., 1999) of filtered

backprojection offers rapid non-iterative reconstructions, we

use it to minimize computing time when working with the very

large data sets described here.

In order to compare reconstruction quality between WBM

versus SSM reconstructions, in Fig. 6 we compare recon-

structions by looking at the reconstruction quality along the

vertical direction. The SSM reconstruction shows a disconti-

nuity at the border between two data acquisition tiles (Fig. 3),

while the WBM does not. This illustrates how the single-

workstation-compatible SSM approach gives a quick and

useful view of the data by only considering one object slice at a

time, but the full dataset registration and blending capabilites

of the WBM approach (which is best done on a larger compute

cluster) are required for obtaining the highest reconstructed

image quality.

3.6. Scalability

Because the WBM reconstruction approach can be applied

to datasets that are too large to fit within the memory of most

single-node computers, and also to gain speed in data

processing, the WBM steps have been parallelized using the

open-source message passing interface package MPI for
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Figure 5
Identification of the correct center of rotation in a tomographic slice
reconstruction by using image entropy of reconstructed images [equation
(5)] as a metric (Donath et al., 2006). In this case, the center of rotation
turned out to be at pixel index 781; a range of pixel centers from 770 to
790 are shown.



Python (Dalcı́n et al., 2005, 2008, 2011). Job allocation among

available ‘ranks’ or processing nodes is done automatically

within Tomosaic, so that the only input needed from a user is

the number of ranks to use. The pattern of thread allocation

varies adaptively for different stages of the Tomosaic work-

flow. Fig. 7 illustrates the parallelization mechanism for

registration, merging (i.e. stitching and blending), center

calibration and reconstruction.

Test runs of parallel processing have been performed on

laptops, workstations and the multi-node supercomputer

Cooley located at the Argonne Leadership Computing

Facility. Benchmark data will be presented in x4.

4. Results

Tomosaic has been applied to a three-dimensional imaging

and processing of a collection of samples. In this section,

we describe its use for imaging two samples using 25 keV

monochromatic X-rays as described above, with data proces-

sing times listed in Table 2.

The first dataset is of an activated charcoal pellet with an

approximate diameter of 4 mm. For each scan, N� = 4500

rotation angles were uniformly sampled in the 0–180� interval.

Using a 1920� 1200 pixel camera, a 4� 4 tile grid was used to

cover the entire sample, resulting in a total data size of 302 GB

(of 16-bit unsigned integers). The complete reconstructed
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Figure 6
A comparison of reconstruction quality between the (a) single-slice (SSM) and (b) whole-block (WBM) modes of Tomosaic reconstructions. These
images are of an x–y reconstruction plane from a the charcoal sample described in x4, where y is in the vertical direction (the direction of the axis of
rotation in our geometry with a horizontal illuminating beam from a synchrotron). The x–y plane view is at the intersection between two tiled projection
datasets, one above the other (see Fig. 3); the y gradient image is also shown next to the reconstruction plane view. Because the SSM reconstruction does
not perform sub-pixel alignment or blending between object slices in the vertical direction (so as to fit within the memory and computing power
constraints of a single workstation), one can see a discontinuity at the tile intersection as indicated by an arrow. This discontinuity is removed in the
WBM reconstruction, which includes aligment and blending in the vertical direction (thus demanding more memory and computing power, making it
better suited for use on a parallelizable computing cluster).

Figure 7
Pattern of thread allocation for registration, merging, center optimization and reconstruction.



volume has a voxel dimension of 6600� 6600� 4204 with

a pixel size of 0.6 mm. The processing of this dataset was

performed on a workstation equipped with dual Intel E5-

2690V2 CPUs (ten cores each, at 3 GHz) and 128 GB physical

memory. Parallelized with 20 threads, registration of the 16

tiles was completed in just 25 s. With pyramid blending and

20 threads, the stitching of all projections was finished within

176 min. One of the stitched projection images is shown

in Fig. 8(a). Reconstruction of the full dataset was then

performed in 500 min, also using 20 threads. Figs. 8(b)–8( f)

show cross sections cut along the x–y and x–z planes. No ring

artifacts are found in the horizontal slices. The full recon-

struction volume was rendered using Vaa3D (Peng et al., 2010)

yielding the visualization shown in Fig. 8(g). The volume is

truncated vertically to reveal the internal structure. This

dataset, as well as the single data file merged using Tomosaic,

has been made available on TomoBank, a public repository of

tomographic datasets and phantoms (De Carlo et al., 2018),

with a sample ID of 00078.

We also used Tomosaic to image a metal-stained epoxy-

embedded mouse brain specimen (10.7 mm � 9.2 mm �

13.2 mm, images of which will be published separately) which

involved more challenges due to its significantly larger

volume. The final pixel size of the acquisition was 0.8 mm. In

order to illuminate the whole sample, a 12� 11 tile of partial

tomograms with N� = 4500 angles was used. The projection

images were stored as 16-bit unsigned integers, yielding a total

data size of 5.8 TB. The full-resolution reconstruction of the

dataset was conducted using the compute cluster Cooley at

Argonne, which has 126 computation nodes, each possessing

two Intel E5-2620 v3 processors (12 cores in total) and 384 GB

RAM. Data registration was conducted using 100 threads (20

nodes with five threads per node) and was performed within

30 s. Stitching and blending took approximately 10 h with 250

threads. The final reconstruction was carried out with 100

threads (50 nodes with two threads per node) in about 50 h.

After the entire process, we obtain the volume mapping of

the entire sample containing 22556� 22556� 18406 = 9.36 �

1012 voxels (or 37.4 TBytes at 32-bit depth) as indicated in

Table 2.

5. Discussion

As illustrated here, increases in the tomographic field of view

to the teravoxel scale and beyond dictate the development of

data acquisition, management and reconstruction pipelines so

as to keep experiments within the bounds of what is compu-

tationally feasible. In this paper we introduced a pipeline for

mosaic tomography. Considering the strong similarities among

various tomographic techniques, we designed Tomosaic using

a modular strategy so that its functionality can be made

available for other techniques (for example, for image regis-

tration and merging).

The use of high-performance computing (HPC) systems for

the solution of large-scale tomography problems is becoming

more prevelant. While software routines that enable the

management (Li et al., 2017) and visualization (Ahrens et al.,

2005) of petabyte-scale data on HPCs have been made

available to the community, they mostly work with gigavoxel-
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Table 2
Scalability of Tomosaic data processing with data set size and number of
nodes.

Sample Charcoal Mouse brain

Pixels per tile 1920 � 1200 2448 � 2048
Number of rotations N� 4500 4500
Pixel size (mm) 0.6 0.8
Mosaic tile grid size 4 � 4 12 � 11
Full recorded data volume (TB) 0.30 5.8
Threads for registration 20 100
Time for registration (s) 25 30
Threads for merging 20 250
Time for merging (h) 2.9 10
Threads for center calibration 4 11
Time for center calibration (h) 0.1 0.25
Threads for reconstruction 20 100
Reconstructed volume voxels 6600 � 6600

� 4204
22556 � 22556
� 18406

Reconstructed data volume (TB) 0.73 (32 bit) 37.4 (32 bit)
Time for reconstruction (h) 8.3 50

Figure 8
Tomosaic reconstruction of a charcoal specimen. (a) One of the
panorama projection images obtained using pyramid blending. (b)–(e)
Selected reconstruction slices in the x–z plane. The positions of these
slices along the y-axis are indicated by the dashed lines in (b). ( f ) Cross
sections of the entire reconstructed volume in the x–y plane. (g) Three-
dimensional rendering of the reconstructed volume, truncated vertically
to reveal internal structure.



scale three-dimensional image data that were already

acquired, assembled and reconstructed. We have seen fewer

examples of software packages that fully exploit the potential

of HPCs for the upstream processing of tomography data,

such as the acquisition of three-dimensional volumes from raw

projections or their alignment. The major issue lying between

most existing beyond-field-of-view tomographic reconstruc-

tion routines and their HPC deployment is either the lack of

an interface to distribute jobs among multiple computational

nodes, or deficiencies in the level of automation across the

entire tomographic processing pipeline. Our current imple-

mentation of Tomosaic has an abstraction layer on top of the

Python bindings in order to make the whole pipeline suitable

for HPC systems. This modularity and layering allows one to

access the full range of capabilities and features of the toolbox

(such as pre-processing functions) using different computing

resources.

Since Tomosaic is available as an open-source project, it is

important that the package can handle data generated from a

wide range of light sources across the world, where the data

format usually varies from case to case. Therefore, a universal

data reader and converter is needed as the I/O backend

for Tomosaic. A published scheme, DataExchange, has the

potential to serve as the bridge between stored raw data and

the Tomosaic pipeline (De Carlo et al., 2014). With the

DataExchange module, one can import data from a range of

synchrotron facilities worldwide, all of which have their

unique format for storing experimental data. The conversion

of tomographic data from these various facilities into the

DataExchange format makes it easier for Tomosaic to

potentially benefit a wide range of users in the imaging

community.

For the future, one of the largest problems for which

improved solutions are sought involves tile alignment and

assembly. The phase correlation method currently being used

is not always reliable for ultra-thick specimens due to the

shortage of high-contrast features, and is vulnerable to noise.

Artificial fiducial marks added to the specimen may improve

the reliability of correlation registration for thick samples. We

can also consider application of an iterative reprojection

approach [sometimes called a bootstrapping approach

(Dengler, 1989), for which speedups are available when using

iterative tomogram reconstruction methods (Gürsoy et al.,

2017)] though this will be challenging given large datasizes. We

may also apply convolutional neural network-based classifiers

as an automated gage for the quality of registration outcome.

6. Conclusion

This paper describes the modules currently available in the

Tomosaic framework. The most important part of the pipeline

is it scalability that permits tomography experiments to have

their field of view extended as much as necessary. The

Tomosaic code produced thus far is publicly available as a

package of the same name on GitHub.
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