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In-line X-ray phase-contrast computed tomography (IL-PCCT) can reveal fine

inner structures for low-Z materials (e.g. biological soft tissues), and shows high

potential to become clinically applicable. Typically, IL-PCCT utilizes filtered

back-projection (FBP) as the standard reconstruction algorithm. However, the

FBP algorithm requires a large amount of projection data, and subsequently

a large radiation dose is needed to reconstruct a high-quality image, which

hampers its clinical application in IL-PCCT. In this study, an iterative

reconstruction algorithm for IL-PCCT was proposed by combining the

simultaneous algebraic reconstruction technique (SART) with eight-neighbour

forward and backward (FAB8) diffusion filtering, and the reconstruction was

performed using the Shepp–Logan phantom simulation and a real synchrotron

IL-PCCT experiment. The results showed that the proposed algorithm was able

to produce high-quality computed tomography images from few-view projec-

tions while improving the convergence rate of the computed tomography

reconstruction, indicating that the proposed algorithm is an effective method of

dose reduction for IL-PCCT.

1. Introduction

X-ray phase-contrast imaging (PCI) is a powerful imaging

technique that can detect subtle differences in the electron

density of materials or tissues. Regardless of the anisotropy in

the medium, the refractive index, n, which characterizes the

optical properties of an object, can be described with its

complex form: n = 1� �þ i�, where � is the refractive index

decrement responsible for the phase information; however,

the imaginary part, �, is the attenuation coefficient of the

X-ray beam passing through the object responsible for the

absorption information (Chen et al., 2013). For weakly

absorbing objects such as biological soft tissues, phase infor-

mation plays a more important role than the absorption

information, because � is approximately three orders of

magnitude higher than � (Momose et al., 1996; Stampanoni et

al., 2011; Brandlhuber et al., 2016). Compared with conven-

tional absorption-based X-ray imaging, phase-based PCI

enables the acquisition of images with higher resolution in

biological soft tissues. As a result, PCI has been particularly

applied to visualize soft tissue details and has become one of

the most popular pre-clinical imaging techniques (Bravin &

Coan, 2012).
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In the past decade, various PCI techniques have been

proposed; the four major types are X-ray interferometry,

diffraction-enhanced imaging (DEI), X-ray grating inter-

ferometry and in-line X-ray phase-contrast imaging (IL-PCI).

Among these methods, IL-PCI shows a high potential to

become clinically applicable because of its simplicity (Lee,

2015). By extending IL-PCI to computed tomography (CT),

in-line X-ray phase-contrast computed tomography (IL-

PCCT) holds outstanding potential to reveal detailed micro-

structures inside biological tissues at micrometre-scale reso-

lution (Liu et al., 2010; Xuan et al., 2015; Hetterich et al., 2016;

Cao et al., 2017). Typically, filtered back-projection (FBP)

is utilized to reconstruct CT images in IL-PCCT. However,

to produce high-quality images, the FBP algorithm requires

many projections, which leads to a large total exposure time

and thus a large radiation dose. It is significant for clinical

applications of IL-PCCT to reduce the radiation dose while

maintaining the high quality of reconstructed images. In

IL-PCCT, one approach to decrease the radiation dose is to

shorten the total exposure time by reducing the number of

projections, such as few-view projections (Melli et al., 2016).

The CT iterative reconstruction algorithm can provide excel-

lent reconstructed results from few-view projections and thus

has a high potential for IL-PCCT. The simultaneous algebraic

reconstruction technique (SART) is an important algebraic

iterative reconstruction method (Hansen & Saxild-Hansen,

2012) that formulates the reconstruction problem as a discrete

linear transformation and can reconstruct better results than

the FBP algorithm using few-view projections. However, when

applying the SART algorithm in the case of few-view projec-

tions, the reconstructed images still retain some artefacts

(e.g. streak artefacts, oscillating artefacts, etc.), which suggests

that the performance of the SART algorithm still needs to

be improved.

The current strategies of few-view CT reconstruction

assume that the reconstructed images are piecewise smooth

and include the design of regularization techniques for detail

preserving and artefact smoothing in the CT reconstruction

procedure, such as the total variation (TV) regularization

approach (Sidky et al., 2006). These regularization-based CT

reconstruction techniques typically sacrifice regional fine

textures and may compromise clinical tasks. Notably, many IL-

PCCT images of biological tissues containing complex textures

cannot satisfy the assumption of piecewise smoothness, and

the regularization techniques developed under this assump-

tion may have limited ability to address this case. To overcome

the limitation from the above-mentioned assumption, one

possible framework for few-view IL-PCCT reconstruction is to

incorporate an anisotropic filtering method, based on local

image features, into the CT iterative reconstruction procedure.

In 2002, Gilboa et al. proposed a forward and backward (FAB)

diffusion-filtering method (Gilboa et al., 2002). As a powerful

nonlinear anisotropic diffusion filtering method, the FAB

method can adaptively control diffusion filtering force based

on gradient information of local features in the image, thereby

enabling a synergy of artefact smoothing and detail preser-

ving. To date, due to its excellent performance in detail

preserving and denoising, the FAB method has been devel-

oped and applied in many types of images, including synthetic

aperture radar images (Zhou et al., 2004), ultrasound images

(Nieniewski, 2014) and magnetic resonance images (Prasath et

al., 2015). To the best of our knowledge, no study has shown

that the FAB method can be used in IL-PCCT images. Hence,

the FAB method was employed here to preserve detailed

features and smooth artefacts in the IL-PCCT reconstruction

procedure. As gradients of eight neighbours were able to

represent the more accurate local features of the image, we

developed an eight-neighbour FAB algorithm (FAB8).

In this study, the FAB8 method and the SART algorithm

were combined to develop CT reconstruction, and a SART-

FAB8 algorithm was proposed and applied in IL-PCCT

reconstructions with few-view projection data. The proposed

method consists of two steps per iteration. First, the SART-

step is performed to enforce consistency of the inconsistent

projection data and acquire the reconstructed image with

artefacts. Second, the FAB step is utilized to reduce the

artefacts in the reconstruction image acquired from the

‘SART step’ and improve the convergence of image recon-

struction. Finally, the Shepp–Logan phantom simulation

and synchrotron IL-PCCT experiment were performed to

demonstrate the effectiveness and ability of the proposed

algorithm.

2. Methods

2.1. IL-PCI and its phase retrieval

As a propagation-based imaging technique, IL-PCI

(Snigirev et al., 1995) can produce high-resolution images in

weakly absorbing materials, especially for biological tissues

(Rastogi et al., 2013; Jian et al., 2016; Mai et al., 2017). In IL-

PCI, when the quasi-coherent X-ray beams illuminate the

object they will yield the spatially varying phase shifts in the

X-ray beams. As the beams propagate from the object, the

distorted wavefront, which has undergone different deflec-

tions, will generate a characteristic pattern in the image plane.

Due to Fresnel diffraction, the phase shifts are subsequently

transformed to detectable intensity variations, and finally

recorded by the detector. In practice, IL-PCI presents a very

simple experimental setup for PCI (see Fig. 1). IL-PCI

requires no additional optical element compared with the

conventional CT modality except that the provided X-ray

beams are sufficiently spatially coherent and the sample-to-

detector distance (SDD) is variable (Chen et al., 2012). Due to

its high resolution in biological tissues and simplicity of

experimental setup, IL-PCI has been widely used in biological

science and is one of the most important pre-clinical imaging

techniques.

However, projection images from IL-PCI contain absorp-

tion information and phase information (Chen et al., 2011)

and, therefore, phase retrieval may be implemented to extract

the phase information. Generally, phase retrieval requires at

least two phase-contrast radiographs, taken at two different

SDDs (Nugent et al., 1996), but this method delivers a high
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radiation dose to the samples and encounters a complicated

registration problem. According to Gureyev’s study, phase

retrieval from a single SDD IL-PCCT data set is possible

(Gureyev et al., 2004), and several phase-retrieval methods

using single SDD IL-PCCT data have been proposed, e.g. the

Modified Bronnikov algorithm (MBA) method (Bronnikov,

1999, 2002; Groso et al., 2006), the TIE-based method by

Paganin (Paganin et al., 2002; Wu et al., 2005), and the phase-

attenuation duality Bronnikov algorithm (PAD-BA) (Chen et

al., 2013). In this study, PAD-BA, a single SDD phase-retrieval

method, was implemented on projection images using PITRE

software to extract quantitative phase information (Chen et

al., 2012). This algorithm is grounded in a priori knowledge

that the � and � parts of the complex refractive index are

proportional to each other. In our experiment, by some

experimental trials, we found that the reconstructed image

using a � /� value of 1000 has a high contrast between

the adjoining tissues and enables an optimal distinguishing

performance in the regions of edge details and fine textures,

which is the best result for our subsequent research, and thus

1000 was considered as the best � /� value. After phase

retrieval, the phase information distribution from the IL-PCI

of samples can be obtained and its quantitative analysis can

be performed.

2.2. The CT iterative reconstruction method

In the IL-PCCT experiment, the imaging model can be

approximated to a discrete linear transformation as follows,

p ¼ A f ; ð1Þ

where A stands for an M � N system matrix that represents

the X-ray parallel beam forward projection, p 2 R M is the

projection data acquired from the detector, and f 2 R N

denotes the phase information distribution of the illuminated

object. The goal of IL-PCCT reconstruction is to accurately

reconstruct f from p.

In this work, a block-iterative based SART technique is

adopted, which has the potential to handle large-scale data

quickly, and is expressed as follows,

f ðkþ1Þ
¼ f ðkÞ þ �k V �1 AT W p� A f ðkÞ

� �
; ð2Þ

where k is the number of iterations, �k represents the

relaxation coefficient of the kth iteration, T stands for the

transpose operator, and V and W are the diagonal matrixes

with row sums and column sums of A in the diagonal,

respectively.

To improve the convergence performance of the SART

algorithm, �k is chosen using the line search method (Hansen

& Saxild-Hansen, 2012), which can be computed as follows,

�k ¼ p� Af ðkÞ
� �T

W p� Af ðkÞ
� �

=kAT p� Af ðkÞ
� �

k
2
2; ð3Þ

where k . . . k2
2 represents the square of the nuclear norm.

2.3. The FAB method

The FAB method contains forward diffusion and backward

diffusion processes, and it is able to switch the diffusion

process between the forward diffusion and backward diffusion

according to the diffusion coefficient (i.e. when the diffusion

coefficient is positive, it is the forward diffusion process; when

negative, it is the backward diffusion process). The forward

diffusion process is capable of smoothing low gradients and

thus enables suppression of the streak artefacts and oscillating

artefacts in the image. Backward diffusion can retain local

high gradients and thus enables preservation of edge details

and fine textures in the image. The diffusion coefficient can be

locally adjusted via image features (e.g. edges, textures and

moments). Thus, the FAB method enables adaptive control of

forward diffusion and backward diffusion processes based on

the local features in the image. The formulation of FAB is

defined as follows,

@f ði; j; tÞ

@t
¼ div

�
cð rf
�� ��Þ rf

�
;

f ði; j; 0Þ ¼ f0ði; jÞ;

cð rf
�� ��Þ ¼ 1

1þ ð rf
�� ��=kfÞ

n �
�

1þ ½ð rf
�� ��� kbÞ=!�

2m
;

ð4Þ

where (i, j) denotes the coordinates of a pixel in the 2D image

domain, t represents the evolution time (iterations), div½. . .�
is the diffusion operator, cð. . .Þ is the diffusion coefficient,

research papers

1452 Yuqing Zhao et al. � An iterative image reconstruction algorithm J. Synchrotron Rad. (2018). 25, 1450–1459

Figure 1
Schematic depiction of the IL-PCI setup at BL13W at Shanghai Synchrotron Radiation Facility (SSRF). Here, a white beam was monochromated by a
double-crystal monochromator, and the sample was illuminated on the rotation platform. When the transmitted beam passed through the sample, the
density variation resulted in phase shifts. Finally, a projection image, containing a mix of phase shifts and attenuation coefficients, could be recorded by
the detector in the image plane and subsequently displayed in the image acquisition system. For tomographic scans, the sample can be rotated from 0� to
180� to acquire the projection images from various views.



f0 represents the image f at the initial time, and rf is the

gradient of the image f. The parameter kf is the maximum

value in the forward diffusion process, and it controls the

gradient magnitudes for forward diffusion. The parameters kb

and ! define the centre and width of the backward diffusion

process, respectively. The parameter � determines the ratio

between the strength of the forward and backward forces. In

addition, m and n are the exponent parameters for the forward

force and backward force, respectively.

To improve the performance of FAB, we developed the

FAB8 method to replace the original four-neighbour FAB

(FAB4). Here, let rf d
i;j, and d = E, W, S, N, SE, SW, NE, NW

define the gradients of eight neighbours in eight directions

(see Fig. 2), and the definitions are expressed as follows,

rf E

i; j
¼ fiþ1; j � fi; j;

rf W

i; j
¼ fi�1; j � fi; j;

rf S

i; j
¼ fi; jþ1 � fi; j;

rf N

i; j
¼ fi; j�1 � fi; j;

rf SE

i; j
¼ fiþ1; jþ1 � fi; j;

rf SW

i; j
¼ fi�1; jþ1 � fi; j;

rf NE

i; j
¼ fiþ1; j�1 � fi; j;

rf NW

i; j
¼ fi�1; j�1 � fi; j:

ð5Þ

Let c center
i;j define the diffusion coefficient of the central

difference of the image f in some pixel (i, j), and c d
i;j, d = E, W,

S, N, SE, SW, NE, NW define the diffusion coefficients of the

gradients of eight neighbours in eight directions, which are

formulated as follows,

c center
i; j ¼ c

fiþ1; j � fi�1;j

2

����
����

2

þ
fi;�þ1 � fi; j�1

2

����
����

2
 !1=2

; ð6Þ

c d
i j ¼ c rf d

i j

�� ��� �
: ð7Þ

To improve the computational stability of FAB in space-

discrete diffusion form, a modified space-discrete FAB diffu-

sion of the framework of Weik et al. (2009) was adopted, and

the fluxes can be expressed as follows,

�d
i; j ¼

c d
i; j þ c center

i; j

2

� �
rf d

i; j: ð8Þ

The continuous nonlinear diffusion in equation (4) can be

discretely presented via eight nearest neighbours and the

discrete partial differential equations (PDEs) solution (Gerig

et al., 1992) can be formulated as follows,

f t
¼ f t�1

þ�t
�
� E
�� W

þ� S
�� N

þ� SE �� SW þ� NE �� NW
�
; ð9Þ

where �t is the time step that ranges from 0 to 0.25, and f t

denotes the updated image of the tth iteration in the FAB

diffusion process.

2.4. Pseudocode for SART-FAB8 algorithm

By combining the FAB8 method with the SART recon-

struction, we developed the SART-FAB8 algorithm for

IL-PCCT. In summary, the pseudocode of the SART-FAB8

algorithm was presented as follows.

2.5. Low-dose noise model in projections for the simulation

To analyze the robustness to low-dose noise of the proposed

algorithm, the low-dose noise was introduced into the

projection data and the corresponding image reconstructions

were performed. Inspired by the previous work (Liu et al.,

2012; Bian et al., 2017), the low-dose noise in projections

can be modelled as a combination of the Poisson-distributed
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Figure 2
Illustration of gradients of eight neighbours. Blue solid lines represent
gradients of four neighbours, and blue solid lines and blue dotted lines on
the diagonal represent gradients of eight neighbours. Here, east (E), west
(W), south (S), north (N), southeast (SE), southwest (SW), northeast
(NE) and northwest (NW) denote eight directions.



photon noise and Gaussian-distributed electronic noise, as

shown in equation (10),

~IIi ¼ Poisson I0 exp �~yyið Þ
� �

þGaussian mie; �
2
ie

� �
; ð10Þ

where ~IIi is the simulated noisy measurement for detector

element i at a projection view and I0 represents the incident

X-ray intensity, ~yyi is the logarithmic transform of ~IIi, mie and �2
ie

are the mean and variance of the background electronic noise,

for detector element i. In this study, the X-ray exposure level

I0 was set to 1.0 � 105, and mie and �2
ie were set to 0 and 10,

respectively, for low-dose noisy projections simulation.

2.6. Parameter selection for the SART-FAB algorithm

The backward diffusion process is considered as an ill-posed

problem due to its computational instability. To tackle the ill-

posed problem in FAB, Gilboa et al. (2002) showed that three

conditions should be fulfilled, and these conditions are

formulated as follows,

(i)

max
rfj j< kf

rf
�� �� cð rf

�� ��Þ	 

> max

kb�!< rfj j< kbþ!
rf
�� �� cð rf

�� ��Þ	 

;

(ii)

kf � kb � !; for any 0<!< kb � kf;

(iii)

� � kf=2ðkb þ !Þ; for any 0<!< kb � kf:

In this study, the mean absolute gradient (MAG) is imple-

mented to adaptively tune the parameters in FAB according

to local gradient information for the image. However, the

performance of the FAB method also depends on constant

coefficients in MAG-based parameters, such as kf, kb, ! and �.

As for the selection of constant coefficients in MAG-based

parameters in the most general case, generally, when being

adopted to reconstruct some objects with much noise,

considering that the parameter kf stands for the strength of

smoothing force, a larger coefficient in parameter kf would

have a better denoising effect; when being adopted to

reconstruct some objects with fine edge details and textures,

considering that the parameters kb and ! control the range of

preservation of edge details and fine textures, a larger coeffi-

cient in paramete kb would guarantee clearer edge details and

textures; as for the balance parameter �, which is the ratio

between the the strength of forward diffusion and backward

diffusion, it can be tuned according to actual needs. Since an

optimal set of constant coefficients in MAG-based parameters

will enable the best performance of FAB and, inspired by

previous work (Tsiotsios & Petrou, 2012; Yang et al., 2015), on

the basis of satisfaction of the above three conditions, the

optimal constant coefficients can be found in the following

way. First, the constant coefficient of one parameter was

continuously changed using different scales while fixing the

other parameters to generate different image reconstructions.

Second, the errors between the above reconstructed results

and the reference image were calculated, i.e. the root mean

squared error. Finally, the optimal constant coefficient can be

determined using the minimal reconstructed error. The other

optimal coefficients and parameters can also be found using

this method. After trial and error, we obtained the best

performance for the cases with and without noise using the

following two sets of parameters: (i) one set for the case

without noise: kkmax = 10, kf = 1 � MAG, kb = 1.6 � MAG,

! = 0.5 � MAG, � = kf /4(kb + !), n = 4, m = 2, �t = 0.15;

(ii) the other set for the case with the low-dose noise: kkmax =

10, kf = 1.4 � MAG, kb = 2.4 � MAG, ! = 0.8 � MAG,

� = kf /3(kb + !), n = 4, m = 2, �t = 0.15. In general, the first set

of parameters can be used to reconstruct many objects from

the noise-free projections, including some simulations and

practical applications; in this work, these parameters were

used for the simulation in the noise-free case and practical

experiment. For the simulation in the low-dose noise case, the

second set of parameters were adopted. Although the above

two sets of parameters cannot fit to all objects, the optimal

parameters for the other reconstructed object can also be

determined in the above-mentioned way.

2.7. Quantitative assessment of the reconstructed images

Three quantitative metrics, including universal quality index

(UQI), peak signal-to-noise ratio (PSNR) and root mean

squared error (RMSE), are adopted to quantitatively assess

the quality of reconstructed images. The UQI can be used to

evaluate the pixel-to-pixel similarity between a reconstructed

and reference image, which yields a value between 0 and 1 that

increases with increasing similarity (Wang & Bovik, 2002).

PSNR is a traditional measure of image quality, and a larger

value indicates better quality. RMSE is used to evaluate the

reconstruction accuracy based on error sensitivity, and a

smaller value means more accuracy.

(i) UQI is widely used and defined as follows,

UQIðx; yÞ ¼
2 Covðx; yÞ

�2
x þ �

2
y

� � 2uxuy

u2
x þ u2

y

� � ; ð11Þ

where x is the reference image, y is the reconstructed image

and ux and uy are the means of x and y, respectively; �2
x and �2

y

denote the variances of x and y, respectively; and Covðx; yÞ is

the covariance between x and y.

(ii) PSNR is defined as follows,

MSEðx; yÞ ¼
1

M � N

XM

i¼ 1

XN

j¼ 1

xi; j � yi; j

� �2
; ð12Þ

PSNRðx; yÞ ¼ 10 log10

Peak2

MSE

� �
; ð13Þ

where MSE is the mean square error function, and the size

of the reconstructed and the reference images are M � N;

xi; j represents the pixel intensity of the reference image in

some pixel (i, j), yi; j represents the pixel intensity of the

reference image in some pixel (i, j); and Peak is the largest

pixel value in the normalized image, e.g. in the case of eight-bit

pixel representation it is 255.

research papers

1454 Yuqing Zhao et al. � An iterative image reconstruction algorithm J. Synchrotron Rad. (2018). 25, 1450–1459



(iii) RMSE is defined as follows,

RMSEðx; yÞ ¼
1

M � N

XM

i¼ 1

XN

j¼ 1

xi; j � yi; j

� �2

" #1=2

: ð14Þ

3. Simulation experiment

3.1. Simulations

To evaluate the performance of the SART-FAB8 algorithm,

the standard Sheep–Logan phantom was utilized (Fig. 3a).

In this experiment, semi-circular angle scanning based on

parallel-beam geometry was used to simulate the process of

IL-PCI, and a Sheep–Logan phantom image with a matrix size

of 512� 512 pixels was used to simulate the phase information

distribution of the sample (Langer et al., 2009; Yang et al.,

2015). The detector is modelled as a straight-line array with

724 elements, and the size of the reconstructed images is 512�

512 pixels. The 60 uniformly distributed projections without

noise and with noise over �-view were used to simulate few-

view projections and low-dose noisy few-view projections,

respectively; the low-dose noise added into few-view projec-

tions was introduced in detail in x2.5. Here, in order to reduce

the effects from the FBP sampling errors, the missing 300-view

projections were compensated by interpolation between the

acquired 60-view projections, and then the compensated

projections were used for the FBP. As the stopping criterion,

the total iteration number of 20 was selected for SART,

SART-FAB4 and SART-FAB8 algorithms according to the

convergence curves, as shown in Fig. 6. Here, the FBP, SART

and SART-FAB4 algorithms were used for comparison with

the SART-FAB8 algorithm, and all parameters were optimally

chosen for the best performance, which were introduced in

detail in x2.6. All experiments were conducted using the

MATLAB programming language on a desktop PC platform

equipped with Intel(R) Core(TM) i5-4460 CPU at 3.2 GHz

and 16 GB RAM.

3.2. Experimental results

Four images from 60-view noise-free projections and four

images from 60-view noisy projections were reconstructed

using FBP, SART, SART-FAB4 and SART-FAB8 algorithms,

as shown in Figs. 4(a)–4(d) and 4(i)–4(l). Among the recon-

structed images, the images reconstructed using the FBP

algorithm are worst, and are seriously affected by a large

number of streak artefacts and low-dose noise, indicating that

the FBP algorithm has a poor ability to deal with few-view

projection data for the cases with and without noise [Figs. 4(a)

and 4(i)]. The images reconstructed using the SART algorithm

are better than those of the FBP algorithm, where the streak

artefacts and low-dose noise are effectively reduced. However,

the edges and textures of the image are affected by the low-

dose noise and oscillating artefacts due to the loss of high-

frequency information in the few-view projections [Figs. 4(b)

and 4( j)]. The reconstructed images of the SART-FAB4

[Figs. 4(c) and 4(k)] and SART-FAB8 [Figs. 4(d) and 4(l)]

algorithms are better than those using the FBP and SART

algorithms, where the streak artefacts, oscillating artefacts

and low-dose noise are effectively reduced, implying that the

SART-FAB4 and SART-FAB8 algorithms can suppress streak

artefacts, oscillating artefacts and low-dose noise. Never-

theless, in contrast with SART-FAB4, the reconstructed

images of SART-FAB8 have clearer edges and are closer to

the true image.

3.3. Assessments

To compare the accuracy of the four reconstruction algo-

rithms, horizontal profiles of the same position in Figs. 4(a)–

4(d) and Figs. 4(i)–4(l) are utilized, as shown in Fig. 5. It is easy

to see that the profiles of the SART-FAB8 algorithm are

closest to the true result in the cases with and without noise.

Additionally, the UQI, PSNR and RMSE values of the

reconstructed images were further calculated, and the

computation times of the four reconstruction algorithms were

also computed, as shown in Table 1. As seen from Table 1, the

computation times of the SART-FAB8 algorithm are longest

in the cases with and without noise; however, the quality of

the images reconstructed using the SART-FAB8 algorithm is

obviously the best.

To qualitatively evaluate the convergence performance of

the SART, SART-FAB4 and SART-FAB8 algorithms in the

cases with and without noise, the RMSE-based convergence

curves of the above-mentioned methods are presented (Fig. 6).

As seen in Fig. 6, the SART, SART-FAB4 and SART-FAB8

algorithms converged before the iterations reach 20, with the

convergence rate of the SART-FAB8 algorithm being fastest.
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Figure 3
Phantom used for evaluating CT reconstruction algorithms. (a) True
Shepp–Logan phantom image. (b) Magnified image of the green
rectangle regions in (a).

Table 1
Quality metrics for the reconstructed Sheep–Logan images in Fig. 4.

Method UQI PSNR (dB) RMSE Time (s)

Noise-free FBP 0.9053 21.7293 0.3320 0.3120
SART 0.9363 23.7194 0.2216 77.5998
SART-FAB4 0.9577 26.8583 0.1215 93.4211
SART-FAB8 0.9790 27.3615 0.1023 107.6200

Noise-added FBP 0.8790 20.7825 0.3702 0.4836
SART 0.9032 22.5036 0.3298 144.8783
SART-FAB4 0.9476 24.2517 0.2201 182.2993
SART-FAB8 0.9663 25.7206 0.2032 206.4626



4. Real experiment on IL-PCI data

4.1. Data acquisition

An experimental ex vivo rat maxilla

sample was provided by the Dental

Hospital of Tianjin Medical University,

and its IL-PCI data were collected at the

BL13W1 beamline in SSRF, China. In

this experiment, the SDD was 0.8 m,

and the energy of the monochromatic

beam was set to 33 keV. A charge-

coupled device (CCD) camera system

with a 36 mm � 5 mm field of view

(FOV) was used as the imaging

detector, and the effective pixel pitch

was 9 mm � 9 mm. The full projection

dataset (959-view projections) within a

180� CT scan range was acquired with

an exposure time of 10 ms per projec-

tion, and the size of the projection

image is 3992 � 513 pixels. In addition,

ten dark-current images were used to

calibrate dark noise in projections while

20 flat-field images were used to cali-

brate white-field signals in projections

(Chen et al., 2012; Baumann, 2014).

After phase retrieval using the PAD-BA

method, the 192-view projections were

evenly chosen from the full projection

dataset, and then a sinogram with 192�

3992 pixels was generated for few-view

CT reconstruction of the proposed
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Figure 5
Horizontal profiles of Shepp–Logan phantom images reconstructed using four reconstruction algorithms based on 60-view noise-free projections (left)
and 60-view noisy projections (right). The black solid line represents the profile from ground truth; the purple dotted line represents the profile from the
FBP algorithm; the red dot-dashed line represents the profile from the SART algorithm; the green dashed line denotes the profile from the SART-FAB4
algorithm; and the blue solid line denotes the profile from the SART-FAB8 algorithm. The profiles were located at the pixel position from the 210th to
310th column and 410th row, as shown in the red line at the upper-left corner of Fig. 5.

Figure 4
Reconstructed images of the Shepp–Logan phantom using the FBP (a) and (i), SART (b) and ( j),
SART-FAB4 (c) and (k), and SART-FAB8 (d) and (l) algorithms from noise-free and noisy 60-view
projections. Panels (e)–(h) and (m)–(p) are magnified images of the green rectangle regions in
panels (a)–(d) and (i)–(l), respectively. The red arrow denotes streak artefacts, the blue arrow
denotes oscillating artefacts and the green arrow denotes low-dose noise. The pixel values of the
above grey-scale images were normalized to the range [0, 255]. The display window is [0, 180].



algorithm. In this work, the missing 767-

view projections were compensated by

interpolation between the acquired

192-view projections, and then the

compensated 959-view projections were

used to evaluate the performance of the

FBP algorithm in few-view CT recon-

struction.

4.2. Experimental results

Fig. 7 depicts reconstructions of

the rat maxilla sample using the FBP,

SART, SART-FAB4 and SART-FAB8

algorithms. Here, the reconstructed slice

of the rat maxilla sample with the full

projection dataset using the FBP algo-

rithm is utilized as the reference image,

as shown in Fig. 7(a). Fig. 7(b) is a

reconstructed slice of rat maxilla sample

with the compensated 959-view projec-

tions using FBP algorithm, and

Figs. 7(c)–7(e) are reconstructed slices

of rat maxilla sample with 192-view

projections using the SART, SART-

FAB4 and SART-FAB8 algorithms,

respectively. Fig. 7(b) shows that the

slice reconstructed using the FBP algo-

rithm has poor image quality; the

textures, fine structures and edges are

severely affected by streak artefacts and

blur, and the subsequent image analysis

(i.e. image segmentation, texture

analysis and structure measurement) is

influenced. Fig. 7(c) indicates that the

SART algorithm has the potential to
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Figure 7
Reconstructed images of rat maxilla sample using four reconstruction algorithms. The image
reconstructed from the full projection dataset using the FBP algorithm is chosen as the reference
image (a). The image reconstructed with the compensated 959-view projections using FBP (b), and
images reconstructed with 192-view projection data using SART (c), SART-FAB4 (d) and SART-
FAB8 (e) algorithms are shown. ( f ) Horizontal profiles of the same position [shown by the red line
in (a), which crossed through an alveolar fossa] in (a)–(e). The two right-hand subgraphs in (a)–(e)
are magnified images of the green rectangle regions and red rectangle regions in (a)–(e). Pixel
values of the above grey-scale images were normalized to the range [0, 255]. The display window
is [0, 200].

Figure 6
Comparisons of the convergence performance of different iterative reconstruction algorithms based on 60-view noise-free projections (left) and 60-view
noisy projections (right). The red line with circles, green line with triangles and blue line with rectangles represent the SART, SART-FAB4 and SART-
FAB8 algorithms, respectively.



reduce streak artefacts, but a poor ability to preserve the

textures, fine structures and edges using few-view CT recon-

struction. From Figs. 7(d)–7(e), it can be seen that the image

qualities (e.g. textures, fine structures and edges) have been

improved significantly compared with the FBP and SART

algorithm, suggesting that the SART-FAB4 and SART-FAB8

algorithms can preserve the textures, fine structures and edges

using few-view CT reconstruction. Comparing Figs. 7(d) and

7(e), we can see that the latter has fewer artefacts and clearer

detailed features (e.g. textures, structures and edge details),

indicating that the SART-FAB8 algorithm yields a better

reconstruction result than the SART-FAB4 algorithm.

4.3. Result analysis

To assess the accuracy of four different reconstruction

algorithms, the position labelled with the red line in Fig. 7(a),

which crossed through the alveolar fossa, was utilized, and the

horizontal profiles of the corresponding positions in Figs. 7(a)–

7(e) are shown in Fig. 7( f). In Fig. 7( f), it can be seen that the

profile and intensity of alveolar fossa using the SART-FAB8

algorithm is closest to the reference image, demonstrating that

the accuracy of the SART-FAB8 algorithm is the highest. By

comparison, the reconstructed image using the FBP algorithm

is the worst; distortions caused by insufficient projection data

may impair the analysis and judgement of doctors or

researchers, which suggests that the SART-FAB8 algorithm

has important value in the case of few-view CT reconstruction.

To quantitatively evaluate the reconstruction results of the

different methods using the same projection dataset (192-view

projections), the UQI, PSNR and RMSE values of the

reconstructed images and the computation times of the four

reconstruction algorithms are provided in Table 2. As seen

from Table 2, when being used to complete the same recon-

struction task, the FBP algorithm takes only a few seconds; the

SART, SART-FAB4 and SART-FAB8 algorithms require

more than 4000 s, and the SART-FAB8 algorithm has the

longest computation time. However, the UQI and PSNR

values of the SART-FAB8 algorithm are obviously the largest,

and, correspondingly, the RMSE value is the smallest. These

quantitative results confirmed that the reconstructed image

from the SART-FAB8 algorithm has the fewest errors and the

best image quality.

5. Discussion and conclusion

In this study, the SART-FAB8 algorithm was proposed for

accurate CT reconstruction under the few-view condition.

This algorithm was applied to reconstruct the Shepp–Logan

phantom and ex vivo rat maxilla data obtained by IL-PCI in

the case of few-view projections, and the FBP, SART, SART-

FAB4 algorithms were adopted as comparision algorithms.

The results indicated that the SART-FAB8 algorithm was an

effective method of dose reduction for IL-PCCT that could

not only reduce streak artefacts and suppress oscillating

artefacts but could also preserve textures, fine structures and

edge details. Compared with the SART and SART-FAB4

algorithms, the SART-FAB8 algorithm had the fastest

convergence speed, which may help to address the large-scale

computation problem in the practical datasets. With the wide

application of IL-PCCT in biological science, it has been

demonstrated that IL-PCCT has outstanding potential to

reveal detailed microstructures inside biological specimens

without injecting contrast agents. In recent years, IL-PCI

experiments have been conducted on conventional X-ray

sources and demonstrated that comparable image quality

could be produced using a benchtop imaging system

(Gundogdu et al., 2007; Zysk et al., 2012; Larsson et al., 2016).

These findings may pave the way for the realization of

preclinical or clinical IL-PCI systems. In principle, IL-PCI can

be used for in vivo imaging, although many challenges still

remain, including the limited field of view, sample motion,

high radiation dose and so on (Sztrókay et al., 2012; Bravin

& Coan, 2012). In fact, this research is underway. We are

currently working to reduce the radiation dose of IL-PCCT

while maintaining acceptable image quality using newly opti-

mized CT reconstruction algorithms. Although the perfor-

mance of our proposed algorithm still requires improvement,

e.g. the proposed algorithm has a long computation time,

which can be overcome by graphics processing unit (GPU)-

based speedup techniques (Tian et al., 2011; Liu et al., 2017), it

is worth mentioning that this algorithm was able to reconstruct

a high-quality slice of rat maxilla using approximately 20% of

the projection data from the full dataset, indicating that this

algorithm is a valuable tool for IL-PCCT in low-dose CT

reconstruction. In further research, reducing the number of

parameters in SART-FAB8 while retaining excellent perfor-

mance will be an important goal. Moreover, further studies

will be performed to assess whether the developed algorithm

also applies for in vivo data.
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