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The sagittal-bent Laue monochromator can provide an ideal way to focus high-

energy X-ray beams. However, the anticlastic curvature induced by sagittal

bending has a great influence on the crystal performance. Thus, characterizing

the bent-crystal shape is very important for predicting the performance of the

bent-crystal monochromator. In this paper the crystal profile is measured by

off-line optical metrology and on-line X-ray experiments. The off-line results

showed that the bent-crystal surface could be well fitted to a saddle surface apart

from a redundant cubic term which was related to the different couples applied

on the crystal. On-line characterization of the meridional and the sagittal

radius of the bent crystal includes double-crystal topography and ray-tracing

measurement. In addition, the double-crystal topography experiment could be

used as a quick diagnostic method for the bending condition adjustment. The

sagittal radius of the bent crystal was characterized through a ray-tracing

experiment by using a particularly designed tungsten mask. Moreover, rocking

curves under different bending conditions were measured as well. The results

were highly consistent with analytical results derived from the elastic theory.

Furthermore, radii along different vertical positions under various bending

conditions were measured and showed a quadratic relationship between the

vertical positions and the meridional radii.

1. Introduction

The sagittal-bent double-Laue crystal monochromator was

proposed by Zhong et al. (2001a,b) to focus high-energy

(>30 keV) X-ray beams in the horizontal direction, especially

for wiggler and bending-magnet sources with wide horizontal

incident area. It is well known that, owing to the elastic

property of single Si crystal, sagittal bend can induce anti-

clastic bending in the meridional plane (Chukhovskii et al.,

1994; Timoshenko & Goodier, 1969). Furthermore, because of

the changing orientation and the spacing of lattice planes

caused by bending, the width of the rocking curve is broa-

dened (Albertini et al., 1976; Suortti et al., 1992) by about one

order of magnitude. Thus, taking the anisotropic mechanical

property of single-silicon crystal into consideration, by

choosing appropriate lattice plane, crystal thickness and

asymmetry angle (angle between the reflection plane and the

surface normal) it is possible to obtain the optimal rocking-

curve width. Rather than restraining the anticlastic bending in

other diffraction geometries (Koyama et al., 1992; Pascarelli et

al., 1996; Feng et al., 2008; Nisawa et al., 2013), sagittal-bent

Laue crystals utilize the anticlastic bending to match the

Rowland circle in the meridional plane. In doing so, it is

possible to take advantage of the wider angular acceptance
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and the higher photon flux with less reduction in the energy

resolution.

Crystal-profile characterization consists of measuring two

radii of curvatures corresponding to orthogonal directions.

This can be done off-line by optical metrology such as by using

a long trace profiler (LTP) or interferometer (Feng et al., 2008;

Shi et al., 2011). However, in practice one would like to change

the bending curvature to achieve different focusing conditions.

This requires on-line feedback on the adjustment. In this

paper, we present the measurement of anticlastic curvature

using double-crystal X-ray topography (Jacobs & Hart, 1977;

Bowen & Tanner, 1998). This experiment was conducted at

the 4W1A beamline of Beijing Synchrotron Radiation Facility

(BSRF). White beam was delivered to the experiment hutch.

A channel-cut crystal was used to obtain a 20 keV mono-

chromatic beam. An asymmetrically cut Si (220) crystal was

used to expand the incident X-ray beam to the tested crystal.

Fig. 1(a) gives an illustration of the double-crystal topography

experiment setup after the monochromatic beam. As bending

induced the lattice-plane-orientation variation, only a small

portion of the crystal slab satisfies Bragg’s condition when

exposed to large X-ray beams, thus only one small stripe

appears on the CCD. By rocking the bent crystal, a series of

stripes appear successively on the CCD plane and merge to a

known ‘zebra stripes’ pattern (Jacobs & Hart, 1977; Martinson

et al., 2017). The pattern of zebra stripes provides a way to

monitor the crystal profile uniformity during the adjustment.

Typical zebra stripe patterns are illustrated in Fig. 1(b).

Through analysing the rocking angles and the corresponding

stripe intervals, we can calculate the anticlastic radius of

curvature. To obtain the sagittal-bending information, we

used a ray-tracing measurement in the horizontal direction.

Considering the limited space of the 4W1A experiment hutch,

this experiment was conducted at the BL09B beamline of

Shanghai Synchrotron Radiation Facility (SSRF). These

studies provide a rapid feedback on the on-line adjustment of

the bending conditions.

2. Mechanical design of the sagittal bender

The bender is designed according to the four-roller fixed-

height exit bending mechanism (Yoneda et al., 2001). Two

rotation arms are set symmetrically. On each arm two rollers

are mounted for applying torque to the crystal. The distance

between the rotation axis (OA and OB in Fig. 2a) and the

centre of the crystal is 20 mm, which is equal to the distance

from the rotation axis to the midpoint of the two rollers (E and

F in Fig. 2a) on the same side. This design ensures a fixed

centre for the bent crystal when changing its bending radius.

Fig. 2(b) shows an engineering drawing of the instrument. The

benders were equipped with two picomotors (New FocusTM,

8322NF), one for changing the bending radius and the other

for adjusting the sample crystal twist. By adjusting the bend

motor, the arms rotate around the axes oppositely to change

the bending radius. The twist modification is achieved through

adjusting the parallelism of the two roller pairs. The twist

motor is mounted on one arm so that altering the bending

radius will not influence sample distortion.

As shown in Fig. 1(a), the Laue crystal is rectangular in

shape and was cut from a polished silicon (100) wafer with a

size of 110 mm � 70 mm and a thickness of 0.67 mm. The long

side is parallel to ½110� and the short side is parallel to ½110�. In

this experiment the symmetric (220) diffraction plane and the

asymmetric (111) diffraction plane with an asymmetry angle

� = 35.3� were used.

3. Off-line surface measurement

The fairly large difference between the sagittal radius and the

meridional radius makes it impossible to adopt commercial

interferometer products to measure the bent-crystal surface

profile directly. To solve this problem, we have developed two
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Figure 1
(a) Schematic of the double-crystal topography measurement. The
asymmetric crystal is Si (220) with an asymmetry angle of 82� which
results in a magnification factor of 13.1. The measured lattice plane of the
tested bent crystal is also (220). (b) A typical zebra stripe pattern
produced by merging stripes at different pitch angles. Each stripe
indicates the satisfaction of Bragg’s law. The adjacent stripes correspond
to a change of 5 arcsec in diffraction angles.



different techniques. One is the wavefront-matching technique

and the other is the angle-stitching technique. The wavefront-

matching technique is used to match the tested surface and

the reference parabolic cylinder wavefront. The parabolic

cylinder wavefront is produced by inserting a cylindrical lens

into the interferometer optical path. On the other hand, the

angle-stitching technique is used to stitch the sparse areas of

the interference fringes gathered from different tilt angles

in the sagittal direction. A self-collimator (Möller-WEDEL

OPTICAL GmbH, Elcomat 3000) is used for high-precision

angle measurement. By using the appropriate algorithm one

can derive the tested bent crystal surface. A Zygo Verifire

QPZ interferometer was used. A large number of experiments

have proven that both techniques can achieve high-precision

surface measurement. In this paper we show results of the

angle-stitching technique.

After filtering the high-frequency roughness, which is of

little concern to this application, the measured surface fits well

to a saddle surface (Fig. 3). As illustrated in Fig. 3, the main

part of the measured surface is a hyperbolic paraboloid

(saddle surface) with the fitted centre of the surface at xc =

15.68 mm and yc = 4.96 mm. The radii of curvature around the

centre point are Ry = 40.23 m in the y direction and Rx =

1.69 m in the x direction, corresponding to the meridian radius

Rm and the sagittal radius Rs of the sample crystal, respec-

tively. In addition, the surface total translation f is negligibly

small, of the order of 10�4 mm, and the coefficient c of the xy

term is 2.72 mm�1 which shows a negligible x–y coordinate

axis rotation (see Appendix A). Thus, the main hyperbolic-

paraboloid surface can be written as z = (y � yc)
2 /2Ry �

(x � xc)
2 / 2Rx + c(x � xc)(y � yc) + f. It is interesting to point

out that after subtracting the saddle surface a regular cubic

surface z = a(x � xc)
3 with a = 1.30 m�2 remains. This can be

explained by the unequal couples applied on each end of the

crystal slab. If we treat the crystal slab as a beam, which is a

fair assumption to the first order, the system could be treated

under the framework of the Euler–Bernoulli beam theory

(Young & Budynas, 2002). Because of the different couples on

each end, the shape of the beam can be expressed as (Sutter et

al., 2012, 2017)

z ¼
ðC1 þ C2Þ

4EI
x2
þ
ðC1 � C2Þ

6LEI
x3; ð1Þ

where C1 and C2 are the different couples, E is Young’s

modulus of the crystal, I is the moment of inertia and L is the

beam length. The equation above clearly shows that the cubic

curve occurs when two couples C1 and C2 are different. Thus,

we can infer that the cubic term of the measured surface is

caused by the minor difference between the couples applied

on each end of the crystal slab.

4. Double-crystal topography measurements

4.1. Method and experiment

The beamline geometry is vertical bouncing and a side view

of the double-crystal topography experiment setup is illu-

strated in Fig. 1(a). A highly asymmetrical flat crystal is placed

in front of the tested bent crystal. By asymmetrical cut, the

incident area is expanded on the bent-crystal surface. If the

tested crystal is flat, at Bragg’s angle of the lattice plane, the

diffracted X-ray beam from the tested crystal will form a large

bright area on the detector. After bending, the intrinsic

anticlastic deformation gives rise to the lattice-plane-orienta-

tion variation. As a result, the diffracted X-ray beam on the

detector is the only stripe which satisfies Bragg’s law. The

stripe on the detector moves with the rocking of the tested

crystal. Thus a series of single stripes obtained at different

pitch angles merge to a zebra pattern which can be viewed as

a strain contour mapping (Fig. 1b). The obtained field of view

covered the whole working design area [30 mm (H) � 10 mm

(V)] of the bent-crystal monochromator.

The experiment was conducted at 4W1A beamline of BSRF.

White beam was delivered to the experiment hutch. Fig. 4

gives a side view of the experiment setup. As shown in the

figure, the experiment has two modes. The Si (111) channel-

cut monochromator provides 20 keV monochromatic beam

for each mode. The upper optical path (upper case) is the

double-crystal X-ray topography experiment. The asymmetric

crystal is Si (220). The asymmetry angle is 82� with an asym-

metry factor of b = 13.1, which supplies 13� magnification of
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Figure 2
(a) Schematic of the bending mechanism when the crystal is bent. OA and
OB are the rotation axes of two arms, E and F are on the midpoint of two
pairs of rollers. By setting OAOB = 2OAE = 2OBF, the centre of the crystal
can be approximately fixed when changing bending radii. (b) Assembly
engineering drawing of the sagittal bender.
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Figure 3
(a) Surface profile of the measured bent crystal using a stitching interferometer. The high-spatial-frequency data are filtered. (b) The main part of the
fitted hyperbolic-paraboloid surface (saddle surface). The surface equation is z = (y � yc)

2 / 2Ry � (x � xc)
2 / 2Rx + c(x � xc)(y � yc) + f. (c) The regular

cubic term of the fitted measured surface is z = a(x � xc)
3. This term can be explained by the unequal couples applied on each end of the crystal slab.

(d) The fitting errors of the measured surface.

Figure 4
Schematic of the experimental setup at 4W1A (BSRF). The upper case shows an enlarged beam path with an asymmetric crystal Si (220), for the
measurement of the zebra pattern. The lower case is the setup for the rocking-curves measurement with a pencil beam, where the asymmetric crystal was
moved out and the bent crystal was down to the beam height of the channel-cut Si (111).



the tested crystal’s exposure area. The parameters of the

tested bent crystal have been described before. In the double-

crystal X-ray topography experiment, the (220) lattice plane

of the bent crystal was chosen. Thus, the outgoing beam was

horizontal. A CCD with 6.5 mm� 6.5 mm pixel size was used to

record the zebra stripe patterns. The lower optical path (lower

case) was designed to measure the Si (111) rocking curves

under different bending conditions. This case consists of a

channel-cut monochromator and the tested bent crystal. A

photodiode was used to measure the rocking curves. The

asymmetry crystal and the tested bent crystal can be moved up

and down by electro-motors when switched from one case to

the other.

The anticlastic radius of curvature can be calculated by

Rm ¼
�s

�� cosð�� �BÞ
; ð2Þ

where �s is the stripe interval on the CCD, �� is the fixed

rocking step, � is the asymmetry angle of the diffracted lattice

plane and �B is Bragg’s angle.

4.2. Results and discussions

Fig. 5 gives the zebra stripe patterns measured at the upper

mode and the rocking curves at the lower mode under the

same bending conditions. From Fig. 5(a) we can see that the

stripe moves when rotating the tested bent crystal. Therefore,

from equation (2) we can calculate that the central radius of

curvature in the meridian plane is about 152.73 m. From

Fig. 5(b) we find that, owing to the vertical translation of the

tested bent crystal, the peaks of the rocking curves varied.

From the varied rocking-curve peaks and the fixed vertical-

translation steps, we can also use equation (2) to calculate

the meridian radius of curvature. Here, �s in equation (2)

is written as �h, which means that the vertical height differ-

ence of the adjacent strips and �� is the interval of the

rocking-curve peaks. The calculated radius is about 159.11 m.

These two measurements are within the accepted error of

5–10% for the meridian radius of curvature Rm determination.

Thus, we believe that these two methods could both be applied

to the measurement of Rm. Although both methods can

measure the radius of curvature in the meridian direction, we

have to point out that the zebra stripe patterns provide quick

on-line feedback to the adjustment of different bending

conditions.

When rotating the bent Laue crystal with a fixed angle, the

vertical position of the sample which satisfies Bragg’s law

changes. Fig. 6 shows the calculated meridian radii of curva-

tures with respect to the rotation angles of the bent Laue
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Figure 5
(a) Zebra stripes pattern measured at the upper case by rotating the test bent crystal with a fixed angle of �� = 12 mrad. (b) Rocking curves measured at
the lower case. The peaks of the rocking curves varied when we changed the vertical height of the tested bent crystal by �h = 2 mm at each time.

Figure 6
The calculated meridian radii of curvature with respect to the rotation
angles of the bent Laue crystal under different sagittal bending
conditions. Rs1–Rs4 represent four sagittal bending radii. When rotating
the crystal, the vertical positions of the sample that satisfy Bragg’s law
also change.



crystal under different sagittal bending conditions. The radii

at different rotation angles can be fitted to a quadratic curve.

These results show that the anticlastic radius of curvature has

a quadratic relationship with the rotation angles (different

vertical positions) rather than a fixed value under real bending

conditions.

Furthermore, if we plot the different meridian radii and the

corresponding rocking-curve widths (FWHMs) in one figure,

we can see a linear relationship between the rocking-curve

width and the reciprocal of the anticlastic radius 1/Rm (Fig. 7).

This relationship can be explained by the mechanical prop-

erties of the bending crystal. The rocking-curve width of a

perfect Si (111) plane Laue crystal at 20 keV is 12.85 mrad

(!0). Compared with the measured width (FWHM), !0 is

very small. Therefore, the dominant influence comes from

the lattice orientation and lattice-spacing variations. Taking

anisotropic mechanical properties of the bent Si crystal into

consideration, the total change in Bragg’s condition caused by

bending is (Zhong et al., 2002; Shi et al., 2011)

��ðTÞ ¼ ���rotðTÞ þ��BðTÞ

¼
T

Rs

n
�
�

S 013 � CS 023ð Þ sin� cos�þ S 063 cos2 �

� CS 023 tan �� �Bð Þ
�

� tan �B S 013 sin2 �þ CS 023 cos2 �þ S 063 sin� cos�
� �o

¼
T

CS 023Rm

B �; �B; S 0ij;C
� �

; ð3Þ

where T is the crystal thickness, Rs is the sagittal radius, Rm is

the meridian radius, � is the asymmetry angle, �B is Bragg’s

angle, S 0ij 	 Sij=S33, Sij are the elastic compliances of the crystal

and C is an empirical parameter in order to give a simple

analytical expression for the change in Bragg condition. Rs and

Rm are connected by C ¼ Rs=ðRm�Þ ¼ Rs=ðRmS 023Þ. In our

measurement ranges, the empirical parameter C is an invar-

iant value. Apart from Rm, all the other parameters in equa-

tion (3) are invariable. Thus, we can see from equation (3) that

the measured rocking-curve width is proportional to 1/Rm

which agrees with Fig. 7.

5. Ray-tracing characterization of sagittal bending

The ray-tracing experiment was performed at beamline

BL09B of SSRF. This beamline is dedicated to X-ray optics

tests. The experiment was conducted with a double-Laue

monochromator configuration (DLM, see Fig. 8). The sagittal

radius of the first crystal was bent to 1.2 m and was measured

by optical metrology before being installed in the optical path.

The second crystal was dynamically bent. The selected beam

energy was 80 keV.

A tungsten mask with equidistant circles was placed at the

end of the beamline vacuum pipe. It divided the incident beam

into a periodic array of segmented beams in the horizontal

direction. A CCD was used to record the DLM reflected beam.

Owing to the beam focusing in the horizontal direction, when

we placed the CCD at different positions a series of images

with a converging trend were obtained. These images allowed

us to calculate the focal distance of the DLM using geometric

optics principles. Fig. 9 shows images of the tungsten mask at

various positions. After a series of image processing, we put

the circles of each image into one identical coordinate system.

By linking the centres of these circles (Fig. 10a), we were able

to extrapolate the image distance of the DLM. Fig. 10(b)

shows the extrapolation results. The extrapolated image

distance is 82 m. For the DLM, the sagittal imaging relation is

(Zhong et al., 2001a)

1

F1

þ
1

F2

¼
1

fs1

þ
1

fs2

¼
2 sin �B sin�

Rs1

þ
2 sin �B sin�

Rs2

: ð4Þ

Note that Rs1 and Rs2 are the sagittal radii of curvature of the

first and second bent crystals, F1 is the distance between the

source and the DLM, F2 is the distance between the DLM and

the focal point, �B is Bragg’s angle and � is the asymmetry

angle. In this experiment the distance between the source and

DLM is about 39 m and the distance from the DLM to the

extrapolated focal point is about 82 m. The sagittal radius of

the first crystal is 1.2 m, Bragg’s angle at 80 keV is 1.416� and

the asymmetry angles of both crystals are 35.3�. Therefore,

using equation (4), we calculated that Rs2 was about 2.0 m.

Since the designed sagittal radius (1.2 m) was not obtained, we

could adjust the bending condition to obtain a smaller radius.
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Figure 7
Relationship between the meridian radii and the rocking-curve widths
(FWHMs) at different bent conditions. Top: relationship between the
measured rocking-curve widths and the meridian radii at different
bending conditions. The mean of Rm and the rocking-curve widths fitted
well in a reciprocal function. Bottom: the rocking-curve width versus the
reciprocal of the anticlastic radius 1/Rm, showing a linear relationship
between them.



Based on the above description, it is fair to assert that the ray-

tracing measurement provides a quick feedback on sagittal-

radius adjustment.

6. Conclusion

In this paper, various measurement techniques were employed

to characterize the bent Laue crystal monochromator. Off-line

optical methodology was used to measure the surface of the

bending crystal. From the results of these measurements we

have proven that the surface can be fitted well to a saddle

surface. To measure the meridian radius of the crystal, we used

two techniques: double-crystal topography and rocking-curve

measurement. These two techniques are consistent with each

other. Yet, the double-crystal-topography technique can

provide a quick feedback on the on-line adjustment that the

rocking-curve measurement could barely achieve. Using these

two techniques we measured the relationship between the

rocking-curve width and the meridian radius. The result

conformed to the simple mechanical model under the condi-

tion of small deformation. Furthermore, to characterize the

sagittal bending a ray-tracing measurement was carried out.

Under the framework of geometrical optics, we were able to

extrapolate the image distance of the DLM and then calculate

the sagittal radius.

Apart from the optical methodology measurement, the

double-crystal topography, rocking-curve and ray-tracing

measurements are all on-line methods. This means that these

methods can be used to provide quick feedback on the

adjustment of the bending condition. Although methods

described in this discussion offer quick feedback on the on-

line adjustment, achieving higher-accuracy result is the subject

of ongoing research.
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Figure 8
Schematic of the double Laue monochromator (DLM) configuration at BL09B (SSRF).

Figure 9
Images of the tungsten mask at various distances from the first crystal,
2.4 m (a), 4.1 m (b), 5.5 m (c) and 7.0 m (d).

Figure 10
(a) The measured centres of the dots when the CCD was placed at
different positions from the first crystal. The centres fit well to a straight
line which can be viewed as the light ray. (b) The extrapolated result. The
image distance of this bending condition is 82 m from the DLM.



APPENDIX A
Standard form of the fitted quadric surface

A generic quadric surface has the form z = a1x2 + a2y2 + a3xy +

a4x + a5y + a6 with six independent coefficients a1, a2, a3, a4, a5

and a6. In this paper, we use the form z = (y � yc)
2 /2Ry �

(x � xc)
2 /2Rx + c(x � xc)(y � yc) + f, which also has six

independent coefficients. Thus, these two forms are equiva-

lent. From the forms we used, we can easily figure out that,

after translation transformation

x 0 ¼ x� xc;

y 0 ¼ y� yc;

z 0 ¼ z� f ;

ð5Þ

the formula of the saddle surface can be written as z = y2 /2Ry

� x2 /2Rx + cxy. In matrix form, we have

z ¼ x; yð Þ
�1=ð2RxÞ c=2

c=2 1=ð2RyÞ

� �
x

y

� �
: ð6Þ

Basic linear algebra results show that the real symmetric

matrix can be diagonalized by an orthogonal matrix. The 2� 2

orthogonal matrix can be written as

T ¼
cos � sin �
� sin � cos �

� �
; ð7Þ

and we have

�1=ð2RxÞ c=2

c=2 1=ð2RyÞ

� �
¼ T

�1=ð2pÞ 0

0 1=ð2qÞ

� �
T�1: ð8Þ

This means that, with appropriate orthogonal transformation,

the saddle surface can be changed into a standard form of

z = �x2 /2p + y2 /2q. The orthogonal transformation is

x 0

y 0

� �
¼ x; yð ÞT ¼ ðx; yÞ

cos � � sin �
sin � cos �

� �
: ð9Þ

This means that the x–y plane rotates by angle � around the

origin of the coordinates. �1/(2p) and 1/(2q) are the eigen-

values of the matrix, and the column vectors of matrix T are

the eigenvectors. With the fitted coefficients Ry = 40.23 m, Rx =

1.69 m, c = 2.72 mm�1, the eigenvalues of the corresponding

diagonal matrix for z = y2/2Ry � x2/2Rx + cxy are �0.296 m�1

and 0.0124 m�1, equivalent to p = 1.69 m and q = 40.21 m, and

the rotation angle � is 0.25�. From the calculated results we can

see that the coefficient c means a negligible x–y plane rotation.
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