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Novel developments in X-ray sources, optics and detectors have significantly

advanced the capability of X-ray microscopy at the nanoscale. Depending on the

imaging modality and the photon energy, state-of-the-art X-ray microscopes are

routinely operated at a spatial resolution of tens of nanometres for hard X-rays

or �10 nm for soft X-rays. The improvement in spatial resolution, however, has

led to challenges in the tomographic reconstruction due to the fact that the

imperfections of the mechanical system become clearly detectable in the

projection images. Without proper registration of the projection images, a severe

point spread function will be introduced into the tomographic reconstructions,

causing the reduction of the three-dimensional (3D) spatial resolution as well as

the enhancement of image artifacts. Here the development of a method that

iteratively performs registration of the experimentally measured projection

images to those that are numerically calculated by reprojecting the 3D matrix

in the corresponding viewing angles is shown. Multiple algorithms are

implemented to conduct the registration, which corrects the translational and/

or the rotational errors. A sequence that offers a superior performance is

presented and discussed. Going beyond the visual assessment of the

reconstruction results, the morphological quantification of a battery electrode

particle that has gone through substantial cycling is investigated. The results

show that the presented method has led to a better quality tomographic

reconstruction, which, subsequently, promotes the fidelity in the quantification

of the sample morphology.

1. Introduction

Ever since the discovery of X-rays in 1895 (Röntgen, 1895),

imaging has been identified as a key area for X-ray applica-

tions. While the penetration capability of X-rays facilitates the

non-invasive visualization of the specimens’ internal structure,

their short wavelength also makes it possible to achieve high

spatial resolution that is better than the diffraction limit in

conventional light microscopy. When X-ray microscopy is

implemented at advanced X-ray facilities, e.g. synchrotrons,

many different imaging modalities have been demonstrated.

With the use of novel X-ray focusing optics (Chang &

Sakdinawat, 2014), e.g. Fresnel zone plates, a spatial resolution

at tens of nanometres has been demonstrated in both the

full-field mode (Andrews et al., 2009) and scanning mode

(Nazaretski et al., 2017) for hard X-rays. The imaging resolu-

tion can be further pushed down to �10 nm in the soft X-ray

regime (Chao et al., 2005). Going beyond the real-space
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imaging, when the coherent property of the incoming X-rays is

utilized to encode the structural information into the far-field

diffraction patterns (Miao et al., 2015), the imaging resolution,

in principle, can reach to the X-ray wavelength level, although

there are other factors, such as the dynamic range of the

detector and the scattering power of the sample, that set the

practical limit of the spatial resolution for coherent diffractive

imaging. Thanks to all the novel developments in X-ray

sources, optics, detectors and different imaging modalities

(Liu et al., 2013), high-resolution X-ray microscopy has

become very popular and successful. It has opened vast

scientific opportunities in many different research fields.

The tomography technique is one of the most important

developments in this field as shown by the Nobel Prize in

Physiology or Medicine in 1979 (Physiology or Medicine 1979

Press Release, 1979). In a tomographic scan, three-dimen-

sional (3D) data are acquired through recording the projec-

tion images (two-dimensional data) in different view angles

(�). Numerical algorithms (Liu et al., 2007) are then used to

reconstruct the tomographic data into a 3D volume that

represents the structure of the sample in the 3D Cartesian

space (x, y and z axes). The reconstructed 3D volume is

usually subjected to further segmentation (Kaira et al. 2018),

visualization and quantification (Liu et al., 2016), which is

often a key to link the imaging data to the functionality of

the sample.

In the tomographic data processing pipeline, there are many

steps to prepare the projection images before they are fed into

the tomographic reconstruction engine. The alignment of the

projection images to a common rotation axis (not necessarily

the real rotation axis) is a critical step that could greatly affect

the quality of the final 3D volume. In a traditional tomography

system, we often need to determine the amount of a static

offset of the rotation axis with respect to the center column of

the projection images (Donath et al., 2006). The method for

such static offset correction can be as simple as trial-and-error

(Gürsoy et al., 2014) or analysis of an image-pair recorded in

reverse viewing angles (Yang et al., 2015); it can also be much

more sophisticated involving novel machine-learning algo-

rithms (Yang et al., 2017). In the case of nanoscale X-ray

tomography, the alignment of the projection images becomes

more complicated. This is because, when imaging at nanoscale

resolution, the mechanical imperfections of the imaging

system become clearly detectable, resulting in random jitters

of the projection images. Depending on the image acquisition

time, the thermal drift of the system could also become an

issue that causes further misalignment. Without proper

correction to compensate the image jittering, a severe point

spread function will be introduced into the reconstructed 3D

volume, degrading the reconstructions’ quality significantly.

A class of algorithms based on the concept of ‘tomographic

consistency’ (Guizar-Sicairos et al., 2015) has been proposed

and applied to the high-resolution X-ray and electron tomo-

graphic reconstructions (Gürsoy et al., 2017). While excellent

reconstruction quality has been shown, there is room for

further improvement. In particular, the alignment of the

experimentally measured projection images (the target/

moving images) with those that are numerically calculated

by reprojecting the 3D matrix in the corresponding viewing

angles (the reference/fixed images) can be implemented with

different image registration algorithms, which all have their

own pros and cons. There is often a trade-off between the

efficiency and the accuracy that needs to be considered for

optimal performance.

Herein, we present a hybrid tomographic image alignment

method that involves several image registration algorithms.

We systematically evaluate the characteristics of different

registration algorithms and proposed a specific sequence that

offers the optimal performance in the presented case studies.

Going beyond the visual assessment of the reconstruction

results, we look into morphological quantification of battery

electrode particles that have gone through substantial cycling.

Finally, we demonstrated the application of the proposed

method to analyzing samples with more significant morpho-

logical complexities (e.g. a small piece of shale rock). The

presented method has led to better quality in the tomographic

reconstruction, which, subsequently, promotes the fidelity in

the quantification of the sample morphology.

2. Results and discussions

Fig. 1 shows the hybrid tomographic image alignment work-

flow. After acquiring the two-dimensional projection dataset,

the projections are used to reconstruct a first, rough 3D

representation of the object (step a). The reconstructed 3D

volume is converted to a set of calculated projection images

(step b). Following image registration steps (step c) are

comparisons between the calculated projection images (fixed

reference images) and the original projections (moving

images). The resulting set of aligned projections is used as an

input for the next iteration (step d), where the new calculated

projection images are again compared with the originals for

alignment. In the early iterations, the challenge originates

from the fact that the experimentally measured projection

images and the numerically reprojected images are very

different in their image quality. The goal of the first few

iterations is, therefore, to efficiently center the experimental

projection images, whereas the accuracy is not the focus at this

stage because the reprojected reference images are of poor

resolution anyway. As the iteration continues, we expect to see

improvements in the quality of the reconstructed 3D matrix

and, thus, in the reprojected reference images. The precision of

implemented registration algorithms for aligning the experi-

mental projection images to the reprojected reference images

becomes more important as the iteration continues. We have

employed several registration algorithms in our approach

including (1) reverse projection registration (RP) (Yang et al.,

2015), (2) the center of mass alignment (CM) (Azevedo et al.,

1990; Hogan et al., 1993), (3) phase correlation alignment (PC)

(Foroosh et al., 2002), (4) the scale invariant feature transform

(SIFT) (Lowe, 2004) and (5) the intensity-based automatic

image registration (IAIR) available in Matlab’s image-

processing toolbox (Mathworks, 2018).
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Since the strength and the weakness of the registration

algorithms are different, the sequence of executing algorithms

should be carefully selected for different stages of the itera-

tions. For example, the RP method is effective for determining

the static offset of the rotational axis with respect to the center

column of the projection images. It is, however, not capable of

correcting the random image jitter. The RP method also relies

on the availability of the projection images in reversed viewing

angles, which could be limited by a missing wedge caused by

the experimental geometry. The CM method is computation-

ally efficient. It, unfortunately, has limited precision and is

only applicable when the sample is smaller than the field-of-

view (FOV) in the horizontal direction. The PC method shows

a good balance between the efficiency and the precision,

whereas SIFT and IAIR are both more computationally

intensive but more precise. In our implementation, SIFT and

IAIR correct both the translational and the rotation errors.

One downside of the SIFT and IAIR methods is the weak

robustness for the registration of lower-quality images.

For a more thorough evaluation of

the registration algorithms imple-

mented in this work, we adopt the

strategy of numerical simulation (Fig. 2).

Two different sub-regions with known

lateral offset are cropped from an arbi-

trarily selected raw projection image,

which contains two particles of battery

cathode materials. Different degrees of

noise (including Poisson noise, Gaussian

noise and salt & pepper noise) and

blurring (Gaussian) are applied to these

two sub-regions, respectively, before

they are subjected to the image regis-

tration. This approach simulates the

task of step c illustrated in Fig. 1. The

calculated amount of offset (�x and

�y) is compared against the known true

values, and the errors are used to

quantify the quality of the image regis-

tration algorithms. As shown in Fig. 2(b),

although the CM method is very robust

against the poor quality of the input

images, its precision is certainly below

satisfactory. The PC method is robust

against the noise in the image, but its

performance is not very stable as illu-

strated by the irregular pattern in the

upper part of the corresponding map.

SIFT is the least robust method, but it

offers good precision when the input

data are of good quality. IAIR, on the

other hand, performs rather well

although it is the most computationally

intense method. Taking the character-

istics of these registration algorithms

into consideration, we have proposed

a sequence (CM5–PC15–SIFT10–IAIR20)

that shows the best performance in our test to be presented

below.

In the experimental demonstration, we present the results

acquired using the transmission X-ray microscope at beamline

6-2c of Stanford Synchrotron Radiation Lightsource

(Andrews et al., 2008), whose nominal spatial resolution is

�30 nm. We conduct nano-tomographic investigation of

the battery electrode’s secondary particles (LiNixMnyCozO2,

NMC). These particles are loaded into a quartz capillary of

diameter 100 mm, which is significantly larger than the FOV

(�30 mm). For quantitative assessment of reconstruction

quality, we first run the registration through many iterations

until it reaches convergence regardless of which algorithm is

used. We then use the reconstruction results as the ground

truth and compare the reconstructed slices at each iteration

against it by calculating the mean squared error and normalize

it to the corresponding value at the initial iteration. The

definition of the relative reconstruction error after ‘ite’

iterations (� ite) is shown in equation (1) for clarification. In
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Figure 1
Schematics of the iterative projection image registration workflow for nanoscale X-ray tomographic
reconstructions. Step a is the initial tomographic reconstruction without registration of the
projection images. Step b is the reprojection of the 3D matrix in different viewing angles. Step c is
the registration of the raw data to the reprojected images. As indicated in the inset, several
registration algorithms were implemented to conduct step c. Step d is the tomographic
reconstruction of the registered images. Several tomographic reconstruction algorithms are also
implemented for this step as well.



equation (1), I ite
i;j denotes the intensity at pixel (i, j) in the

reconstructed result after ‘ite’ iterations. I GT
i;j denotes the

corresponding pixel intensity in the ‘ground truth image’,

� ite ¼

�X
i; j

I ite
i; j � I GT

i; j

� �2

�1=2. �X
i; j

I 1
i; j � I GT

i; j

� �2

�1=2

: ð1Þ

Fig. 3 shows the reduction of the relative reconstruction error

as a function of the iteration number. It is clear that the

performance of the image registration method is not optimal

when any single registration algorithm is involved in the

iterations. Although some of them rapidly improve the result

in the first few iterations, they quickly reach a local minimum,

which hinders further improvements. The sequence that

combines multiple algorithms (the hybrid method), on the

other hand, shows significant advantages in quality.

It is worth mentioning that X-ray attenuation by the

capillary’s absorption adds an intensity background to the

projection images. This background also changes as a function

of the viewing angle, complicating the image registration. For

example, the CM method does not work in this scenario

because the capillary background offsets the center of mass of

the image significantly. As a result, background subtraction

was performed prior to feeding the data into the image

registration and reconstruction workflow. The projection

images before and after the capillary background removal are

shown in Fig. 4. The corresponding intensity line profile is
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Figure 2
Evaluation of the precision and the robustness of different image registration algorithms with added imperfections. (a) Proposed simulation strategy: two
sub-regions with known lateral offset are cropped from an identical image. After applying noise and/or blurring effects on the sub-regions, they are
registered using four different algorithms. The calculated amounts of image offset (�x and �y) are then compared against the known true values. (b) The
performance of different algorithms (from left to right: center of mass, phase correlation, scale invariant feature transform, and intensity-based
automatic image registration) as a function of artificially induced noise and image blurring. Registration results with error smaller or equal to 1 pixel are
labeled as ‘excellent’; results with error between 1 and 2 pixels are labeled as ‘satisfied’; results with error between 2 and 5 pixels are labeled as ‘fair’;
results with error larger than 5 are considered as ‘failed’.

Figure 3
The quality of the tomographic reconstruction changes as a function of
the iteration number as the dataset is going through the proposed
projection image registration procedure.



shown in Fig. 4(c) to demonstrate the

effectiveness of the capillary back-

ground removal.

For further evaluation of the

presented method, the 3D morpho-

logical information of a substantially

cycled battery cathode particle is shown

in Fig. 5. The primary NMC particles of

�200 nm agglomerate into secondary

particles of �6 mm, which are mixed

with conductive carbon and polymer

binder and, then, casted onto the Al

current collector. Upon electrochemical

cycling, the NMC primary particles

experience anisotropic volume expan-

sion and contraction, which lead to a

build-up of the mechanical strain within

and between the primary particles. The

accumulation of the mechanical strain

eventually leads to the formation of

cracks at the secondary particle level,

reducing the internal ion and electron

conductivity, which eventually trans-

lates into the degradation of the battery

performance (Mu et al., 2018; Liu et al.,

2017; Xia et al., 2018; Ryu et al., 2018). It

is, therefore, of great interest to visua-

lize and quantify the morphological

defects, i.e. the cracks, in the secondary

NMC particles that have gone through a

different cycling history.

As a comparison between the recon-

struction results with and without

projection image registration, the

virtual slices going through the parti-

cle’s center and the corresponding

zoomed central area are shown in

Figs. 5(a) and 5(b). After applying the

iterative projection image registration

with the proposed registration

sequence, significant improvement in

the quality of the tomographic recon-

struction is clearly observed in the

images, and is further confirmed by the

corresponding line profiles shown in

Fig. 5(c), which clearly demonstrates

the enhanced contrast and the reduced

noise. Interconnected crack structure

is observed within the particle, high-

lighting the complicated chemomecha-

nical interplay that occurred in the

particle as it went through repeated

electrochemical cycling (Xu et al., 2018).

While the visual assessment of the

image quality is effective as human eyes

are sensitive to the image artifacts and

the noise, morphological quantification
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Figure 4
Background intensity removal before tomographic reconstruction. Panel (a) is the raw projection
image at a certain angle. Panel (b) is the same image after background removal. Panel (c) shows a
comparison of the intensity profile over the line highlighted in panels (a) and (b). Although the
sharp edge of the capillary wall is still visible, after capillary background removal, the intensity
profile over the area without sample of interest becomes flat.

Figure 5
(a) Tomographic reconstruction results of projection data (left) without alignment, (middle) with
manual alignment and (right) with automatic image registration developed in this work. The
magnified view of the selected regions [marked as black squares in (a)] are shown in panel (b).
(c) Intensity profiles over the lines highlighted in (b). The scale bar in panel (a) is 5 mm.



of the imaging data (Liu et al., 2016) is also valuable because it

can extract the structural information from the data with good

consistency and automation in a statistically meaningful

manner. In the tomographic study of the battery electrode

particles, the information regarding the

cracking induced porosity, surface area

and morphological complexity is critical

to understanding the mechanism of

electrochemical degradation. We,

therefore, show the 3D rendering and

quantification of the reconstructed

volume with and without the presented

alignment procedure (Fig. 6). The

presented automatic alignment method

significantly enhances the image quality

and reduces the artifacts. The improve-

ment in the image contrast (Figs. 6a and

6b) significantly promotes the accuracy

in the image segmentation, which offers

better fidelity in the quantification

results (Fig. 6c). The formation of the

morphological defects in the particle,

i.e. cracks, reduces the particle’s internal

electric conductivity. The cracks also

allow the liquid electrolyte to infiltrate

into the particle, forming a new solid

electrolyte interphase that alters the

ionic diffusion pathways within the

particle. The complicated interplay of

the structural and chemical defects at

the nanoscale could be responsible for

the performance degradation and even

the battery failure.

The above-discussed case study has

nicely demonstrated the effectiveness

and quality of the presented tomo-

graphic data registration method. In the

following, we show the application of

this method to the study of a more

complicated sample, a small piece of

shale rock with complicated internal

structures. The study of shale is

attracting global research interest due

to the large amount of projected shale

gas/oil production (US-EIA, 2018). The

observation and understanding of the

fine pore network in the shale rock

could critically inform the design of the

shale gas/oil extraction protocols, which

could lead to better efficiency and less

negative environmental impact.

As presented in Fig. 7, the recon-

structed slice with auto-alignment

(Fig. 7c) and that with manual align-

ment (Fig. 7b) are both significantly

better than the reconstruction result

without alignment (Fig. 7a). The auto-

matic alignment once again demonstrates better performance,

as shown by the superior image quality in Fig. 7(c). The

numerically reprojected image from the auto-aligned 3D data

(Fig. 7f) is sharper than that calculated from the manually
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Figure 6
Visualization and quantification of the nanoscale X-ray tomographic data on a battery electrode
particle that has gone through substantial cycling. (a) 3D rendering of the data without proper
alignment (top), with manual alignment (middle), and with auto-alignment presented in this work
(bottom). (b) Intensity histogram plot of the data shown in panel (a). (c) Comparison of the
morphological quantification for the data, shown in panel (a), according to the registration methods.
The scale bar in (a) is 4 mm.

Figure 7
Reconstructed slices through the center of the shale sample without alignment (a) and with manual
(b) or automatic (c) alignment. Panel (d) is the experimentally measured projection image. Panels
(e) and ( f ) are the numerically reprojected images, calculated from the manual and auto-aligned 3D
matrixes, respectively. The scale bar in panel (a) is 2 mm.



aligned 3D data (Fig. 7e). The raw projection image at the

same viewing angle (Fig. 7d) is sharp and, however, rather

noisy. The improvement in the signal-to-noise ratio in Fig. 7( f)

(as shown by the fact that the pyrite particles are more clearly

defined in Fig. 7f than that in Fig. 7d) is achieved because the

3D result retains the contribution of projection images at

different viewing angles. The reprojection of the 3D matrix is,

thus, superior in its signal-to-noise ratio if the quality of the

tomographic reconstruction is ensured. In this case study, our

method is successfully applied to the study of a sample with

much more complicated internal structure, highlighting the

robustness of our method.

3. Conclusion

The alignment of the projection images is a critical step that

can dramatically affect the tomographic reconstruction. When

imaging at nanoscale resolution, the alignment becomes non-

trivial because the imperfections in the mechanical system

become detectable in the imaging data. Random jitter in the

projection images causes a severe point spread function and

image artifacts that hinder the observation of fine morpholo-

gical and chemical features at the nanoscale.

In this work, we developed an iterative image alignment

method that involves several different image registration

algorithms. A specific sequence was developed, showing the

optimal performance in the presented case studies. We

reconstructed the nanoscale X-ray tomographic data of a

battery electrode particle that has gone through substantial

electrochemical cycling. The herein-developed method

successfully registered the projection images and recon-

structed the 3D data with good fidelity, which facilitates more

precise quantification of the particle’s morphology. The

observed formation of the fine cracks in the battery electrode

particle suggested that the interplay of the nanoscale

morphological and the chemical defects are responsible for

the particle degradation. To further evaluate the performance

of our method, we present the application of our method

in a study of a small piece of shale sample, which has a

complicated internal structure. Our result shows significant

improvement compared with manual alignment and highlights

the accuracy and robustness of the algorithm. The developed

method has been implemented in an in-house-developed

software package known as TXM-Wizard (Liu et al., 2012). We

have also implemented a graphical user interface that allows

the user to easily modify/optimize the iteration sequence for

specific applications.

Finally, we point out here that, when conducting the

nanoscale X-ray spectro-tomographic studies (Meirer et al.,

2011; Wei et al., 2018), the registration of the projection images

becomes even more difficult as the X-ray energy is also

scanned in the experiment. The change of X-ray energy will

result in a different absorption coefficient and different

magnification in some cases. The projection image alignment

method developed herein can be readily applied to the

spectro-tomographic datasets thanks to the robustness of the

proposed sequence.
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