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Full angular rotational projections cannot always be acquired in tomographic

reconstructions because of the limited space in the experimental setup, leading

to the ‘missing wedge’ situation. In this paper, a recovering ‘missing wedge’

discrete algebraic reconstruction technique algorithm (rmwDART) has been

proposed to solve the ‘missing wedge’ problem and improve the quality of the

three-dimensional reconstruction without prior knowledge of the material

component’s number or the material’s values. By using oversegmentation,

boundary extraction and mathematical morphological operations, ‘missing

wedge’ artifact areas can be located. Then, in the iteration process, by updating

the located areas and regions, high-quality reconstructions can be obtained

from the simulations, and the reconstructed images based on the rmwDART

algorithm can be obtained from soft X-ray nano-computed tomography

experiments. The results showed that there is the potential for discrete

tomography.

1. Introduction

Combined with computed tomography (CT), high-resolution

microscopy tools such as the electron microscope (EM) and

transmission X-ray microscope (TXM) have been developed

to obtain three-dimensional reconstructed structures.

However, in many situations, the ‘missing wedge’ problem

(Zhuge et al., 2017) is inevitable. For instance, due to the

morphological limitation of the specimen carrier, tilt series

projection images cannot be acquired under full rotation. In

the cases of the EM and soft X-ray microscope, mesh grids are

used as the specimen carriers. It is difficult to obtain high-tilt-

angle projection images because the samples are blocked by

the mesh grids when imaging at a high tilt angle (Zhuge et al.,

2017). In addition, full-rotation tilt series projections cannot

be acquired because of radiation damage due to the longer

exposure times for full-rotational tilt series projections (Dent

et al., 2014). Thus, it is impossible to collect high-tilt projection

images during CT data acquisition, resulting in ‘missing

wedge’ artifacts in the subsequent reconstruction process.

Many reconstruction methods have been developed to solve

the artifacts caused by the ‘missing wedge’ problem (Guan &

Gordon, 1994; Panin et al., 1999; Liang et al., 2013). Iterative

reconstruction algorithms are commonly used to address

projection data in an angle-limited range, and they can slightly

reduce the ‘missing wedge’ problem. The total variation (TV)

based method is able to provide relatively high fidelity

reconstructions on the basis of an iterative algorithm (Liang et

al., 2013; Panin et al., 1999). Recently, the Discrete Algebraic
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Reconstruction Technique (DART) was reported and shown

to be capable of calculating very high quality reconstructions

using very few projections (Batenburg & Sijbers, 2011;

Batenburg et al., 2010). The DART method with total varia-

tion regularization (Zhuge et al., 2016, 2017) and soft

constraints (Bleichrodt et al., 2014; van Aarle et al., 2012) was

proposed to achieve high-quality reconstructions. However,

two types of prior knowledge are still required in order to

obtain high-quality reconstructions with the DART method.

One is that a sample consists of a limited number of materials,

and the other is that sparse boundaries exist between mate-

rials (Batenburg et al., 2009, 2010; Batenburg & Sijbers, 2007,

2011; Nemeth, 2015). Liang et al. proposed a method

(mDART) based on DART to improve the ‘missing wedge’

situation without the need of prior knowledge and acquired

high-quality reconstructions, but it requires manual segmen-

tation (Liang et al., 2016).

The typical DART method contains a segmentation process.

In general, to acquire an accurate segmentation using the

DART method, prior knowledge of the material component’s

number and the material’s values are necessary. In this paper,

an advanced DART algorithm (rmwDART) is proposed to

solve the ‘missing wedge’ situation by computing the multi-

gray-level tomographic reconstruction without the use of any

prior knowledge. The automatic oversegmentation strategy

was applied to the reconstructed image for each iteration

because oversegmentation does not need prior knowledge of

the sample for segmentation since it just oversegments the

image. Generally, for image processing, oversegmentation will

produce inappropriate segmentation because it will over-

segment the artifact areas into too many small regions

resulting in uncertainty. In this paper, this ‘disadvantageous’

feature of oversegmentation becomes an exploitable advan-

tage, and a method that combines the oversegmentation

strategy, boundary extraction and mathematical morpholo-

gical operations is proposed to locate the artifact areas. Thus,

this method does not require knowledge of the values of

different materials and the number of gray value levels. The

recovery of these areas was then achieved by applying the

simultaneous algebraic reconstruction technique (SART).

This method helps to improve the accuracy of the artifact

areas and to further improve the reconstruction quality. The

simulation and sample experiment’s details are described in

the following sections.

2. Algorithm

The main reconstruction program of rmwDART contains four

main steps in an iteration loop: the initialization of the total

variation-based simultaneous algebraic reconstruction tech-

nique (SART-TV), the oversegmentation, the redistribution

of regions and the calculation of the regional values, and the

positioning and updating of artifact areas. A flowchart of

rmwDART is shown in Fig. 1, where ‘i’ is the iteration number.

2.1. SART-TV reconstruction initialization

Typically, an initial reconstruction is required as input data

before the main iterative reconstruction process of rmwDART

proceeds. Usually, algebraic reconstruction methods can be

used to conduct the initial reconstruction. In this paper, the

SART-TV method was used to conduct the initial recon-

struction. Let x = (xj) 2 R n denote a two-dimensional image,

where n is the number of the pixels. The line integral of the

linear absorption coefficient p (Natterer, 1986) from the

measured projection data can be represented by

p ¼Wx ð1Þ

where W = (wij) is the m � n projection matrix, and m is the

total number of the measured detectors.

Basically, the CT reconstruction process can be interpreted

by computing the solution x to min Wx� p
�� ��. The SART

method can be expressed as follows,

x
ðkþ1Þ
j ¼ x

ðkÞ
j þ �

Pp
i wij pi �

Pn
h wih x

ðkÞ
h

� �.Pn
h wih

h i
Pp

i wij

; ð2Þ

where xj
(k) denotes the jth pixel of the current reconstruction,

xj
(k+1) denotes that of the next iteration, � is the relaxation

parameter, and p is the number of total detectors at each

angle.

Generally, TVm-based methods can be expressed as

follows,

min xk kTV; such that p ¼ Wx: ð3Þ

Here, TV is the l1-norm of the gradient image, and it can be

expressed as

xk kTV ¼
X

i;j

xðiþ 1; jÞ � xði; jÞ½ �
2
þ xði; jþ 1Þ � xði; jÞ½ �

2
� �1=2

:

ð4Þ

Thus, the SART-TV method can be expressed as

x̂x ¼ arg min
x

�
Wx� p
�� ��2

2
þ �TVðxÞ

�
; ð5Þ
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Figure 1
Flowchart of rmwDART.



where TV( . . . ) represents the TVm norm, and � is the weight

for controlling the trade-off between the SART and TVm

norm.

2.2. Oversegmentation

Since the automatic oversegmentation strategy does not

need prior knowledge of the material component number or

the linear absorption coefficient values of the material, it was

applied to the image reconstruction in each iteration. After

the input image is set or the artifact areas are updated, over-

segmentation will be applied to the image reconstruction. This

means that many small regions will be segmented in the

‘missing wedge’ areas. Because the values of the missing

wedge areas are smooth instead of discrete in angle-limited

reconstructions, the oversegmentation method would segment

these areas into many small regions, which is necessary. This is

because only these segmented small regions will be retained

after subsequently applying the boundary extraction and

mathematical morphological operations. Therefore, the over-

segmentation method is very helpful in locating the missing

wedge areas precisely. To reach the goal of oversegmentation,

the thresholding segmentation method was chosen since it has

fast processing and adequately meets the requirements. For

thresholding segmentation, the thresholds must be selected.

The procedures for computing the image’s thresholds are as

follows,

hsðxÞ ¼
1

3
hðxÞ þ

P1=2

i¼�1=2

hðxþ iÞ

" #
;

hðxþ 1=2Þ ¼ hðxÞ þ
�
hðxþ 1Þ � hðxÞ

�
=2;

ð6Þ

yðxÞ ¼
�

max½hsðiÞ� j x� w1 � i � xþ w1

�
; ð7Þ

y1ðxÞ ¼
yðxÞ; if y 0ðiÞ ¼ 0; 8 i 2 x� w1=2; xþ w1=2

� �
;

0; otherwise;

	
ð8Þ

�
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 �
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 �
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 ��
; ð9Þ

�
xvj xvðiÞ ¼ min

x2 xpðiÞ; xpðiþ1Þ½ �
hsðxÞ
� ��

; ð10Þ

h(x) is the histogram of an image, where x is the grayscale

value and h(x) is the count number of the grayscale value x.

Equation (6) smooths the histogram from h(x), and the

smoothed histogram is denoted as hs(x). Equations (7)–(9)

represent the process of peak-picking from the smoothed

histogram hs(x). w1 is a very important parameter in

rmwDART because 2w1 represents the peak-picking resolu-

tion in the peak-picking process. cthr is a non-negative constant

for filtering the small peaks, which could be considered the

noise counts. In this paper, cthr is set to 2.5. {xp} is the point set

of the peak locations in the histogram. According to the point

set {xp} and the smoothed histogram hs(x), the locations of the

minimal counts between two adjacent peak locations in {xp}

are considered the point set of the threshold values {xv} by

equation (6). Then, thresholding segmentation is applied on

the image with the threshold values {xv}. w1 directly deter-

mines the degree of oversegmentation. By choosing a very

small peak-detection parameter 2w1, it can make the process

of peak-picking more sensitive, thereby detecting more peaks

and thresholds, which finally leads to the oversegmentation

result.

2.3. Redistribution of regions and calculation of the regional
values

After the image is segmented into a regionalized image by

oversegmentation, the regional connectivity and the regional

values (corresponding to the linear absorption coefficient of

the region) of the image are calculated, and the image regions

are redistributed. A flowchart of this step is shown in Fig. 2,

and it contains three substeps: the evaluation of the regional

connectivity, the redistribution of the image regions, and the

calculation of the regional value. The regional connectivity is

a state in which adjacent image regions are connected. It

represents the connectivity of two adjacent regions. Let the

connectivity threshold Tc, n represent the detection resolution

of two regional values. If the difference between two adjacent

regional values is smaller than Tc, n, then these two regions

would still be regarded as the same substance and should be

connected into one region; otherwise, these two regions are

regarded as two different regions (corresponding to two

different substances). In this paper, the four-connected

neighborhood is used to determine whether two regions are

spatially adjacent. Then, according to the regional connec-
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Figure 2
Flowchart of the ‘Redistribution of regions and the calculation of the
regional values’ step.



tivity, the image regions are redistributed. Therefore, Tc, n is

another important parameter in rmwDART. After calculating

the regional connectivity of the image, the image regions are

redistributed. Let xs represent the redistributed regional

image, and the unknown regional values are then computed by

solving the linear equations Wxs = p using the LSQR (sparse

equations and least squares) method (Paige & Saunders,

1982a,b).

The regional connectivity is based on the values of adjacent

regions. Theoretically, after calculating the regional values,

new regional values are generated. This generation means

that the regional connectivity probably also changed, so the

regional connectivity and the regional distribution should be

renewed. However, after the renewal of the regional connec-

tivity and the regional distribution, the image regions are

changed, and so the regional values should also be renewed.

Therefore, to acquire a stable distribution of the image regions

and their regional values, this process of calculating the

regional connectivity and regional values will be repeated

more than once. However, after the first calculation, the

changes in the regional connectivity and regional values are

small because the oversegmentation will overly segment each

region, which can avoid misconnections. Therefore, only a

very few iterations are needed to reach a stable result, and

five sub-iterations are used in this paper. Since the regional

distribution and the regional values will probably change

and become stable in the sub-iterations, in order to avoid

misconnections between adjacent regions due to the relatively

unstable regional values in the initial sub-iteration, Tc, n is set

to be relatively small in the initial sub-iteration, and then

it gradually increases in the subsequent sub-iterations. A

discussion about this is detailed in x3.2.2. In this paper, the

connectivity threshold is set to be the following,

Tc;n ¼
�
Tc;1;Tc;2;Tc;3;Tc;4;Tc;5

�
¼
�
1; 1:5; 2; 3; 4

�
� 10�3; n 2 ½1; 5�; ð11Þ

and the four-connected neighborhood was used to judge the

spatial pixel connectivity. Because Tc, n represents the detec-

tion resolution of the regional values, the parameters of the

five sub-iterations and Tc, n can be adjusted by users. However,

as Tc, n decreases, the time consumption for solving the linear

equations will also increase. Therefore, in the simulation

experiment of this paper, to balance the detection resolution

and the time consumption, Tc, n was set to be 0.001, 0.0015,

0.002, 0.003 and 0.004.

2.4. Update on the located artifact areas

After the regional connectivity and regional values are

calculated, if the stop criterion is not yet met, the next step is

the positioning and updating of the artifact areas. A flowchart

of this step is shown in Fig. 3, and contains five substeps:

boundary extraction, erosion operation, dilation operation,

SART updating and Gaussian smoothing.

First, the differential gradient is used in the regionalized

image to extract the boundaries of all regions. Then, mathe-

matical morphology operations are applied on the extracted

boundaries. The mathematical morphology operations used in

this paper contain the erosion and dilation operations. Over-

segmentation would segment many small regions that only

occupy a few pixels or less in the ‘missing wedge’ artifact areas.

When operating the erosion operator on the boundaries, some

of the boundaries in the ‘missing wedge’ artifact areas would

be retained, while the other boundaries in the non-artifact

areas are eroded. This procedure helps to locate the positions

of ‘missing wedge’ artifact areas and subsequently focuses on

recovering these areas. Furthermore, it does not affect the

other boundaries during the image reconstruction process.

The utilized erosion operator is operator {1} in the ‘Positioning

and updating of artifact areas’ in Fig. 3. Because the image

boundaries are eroded, the dilation operator is then used on

the eroded image boundaries to recover the size of the artifact

areas.

In this paper, the dilation operators {1}, {2 3} and {4 0} were

used in rmwDART, as shown in Fig. 4. Typically, using the

dilation operator {1} can roughly recover the artifact areas.

However, the dilation operators {2 3} and {4 0} can recover

finer artifact areas in two opposite directions and improve the
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Figure 3
Flowchart of the ‘Positioning and updating of artifact areas’ step.

Figure 4
Three different dilation operators. The gray arrows represent the
different directions of the dilation effect by different dilation operators.



efficiency. Therefore, for the dilation operators {2 3} and {4 0},

two iterations are applied for each (after the one-time itera-

tion for the operator {1}).

The SART method is then applied to update the values of

the located artifact areas while the values of the non-artifact

areas remain unchanged. Subsequently, a Gaussian filter with

a standard deviation of 0.5 pixel is applied on the updated

artifact areas. The filtered updated artifact areas are then

recombined with the non-artifact areas into an output image.

Because the updated areas do not include the areas with clear

boundaries, the reconstruction error will not affect the areas

with clear boundaries. This means that the quality of the whole

reconstruction can be improved by reducing the reconstruc-

tion error.

When the remainder of i divided by 5 equals {1 2 4}, the next

iteration starts from the oversegmentation step, and, when it

equals {3 0}, the next iteration starts from the connectivity

calculation step. This process means that when a new iteration

for the next dilation operator begins, an oversegmentation

step must be applied. In the case with two iterations, the

oversegmentation procedure is used only one time. When the

stop criterion is met, the iteration process stops and the

resulting reconstructed image is output. In this paper the

maximum iteration number was set to be the stop criterion.

3. Result and discussion

3.1. Simulation results and analysis

Five simulated images were used to test rmwDART and are

shown in Fig. 5. The size of all images is 256 � 256 pixels, and

they are multi-gray phantoms. Phantom 1 is the classic Shepp–

Logan phantom. Phantoms 2 and 3 contains 14 and 15 gray

levels, respectively. Phantoms 4 and 5 are composed of many

homogeneous circles, each of which has a different value in the

image, and they contain 50 and 101 gray levels, respectively.

Simulation experiments on phantoms 1–5 were also tested in

the work of Liang et al. (2016).

The projections of phantoms 1–5 were acquired. The

projection length of the projections is 367 pixels, which is

about the length of the diagonal line of the image. The angular

ranges of the projections are (a) 0–138�, (b) 0–138�, (c) 0–120�,

(d) 0–90� and (e) 0–90�. These angular ranges were chosen

to demonstrate the maximum capability of rmwDART. The

SART-TV reconstructions of these five images are shown in

Fig. 6. The total number of iterations for the SART-TV

reconstruction was 500 times.

Fig. 5(a) is used to explain rmwDART’s procedures in one

loop. First, the SART-TV reconstruction initialization is

shown in Fig. 6(a). The histogram h(x) of Fig. 6(a) is shown in

Fig. 7(a). Fig. 7(b) is the smoothed histogram hs(x) from h(x).

Then, hs(x) is scanned using a scanning window with a width of

2w1 [see equation (7)], and the maximum counts in the scan-

ning window were recorded in y(x). The result of y(x) is shown

in Fig. 7(c). As shown in Fig. 7(c), the count platforms were

generated on the isolated count peaks after the scanning.

Then, y(x) was scanned by a smaller scanning window with a

smaller width of w1 in equation (8), and only the platforms

with widths no smaller than w1 were kept and the width of the

platforms decreased in y1(x). The resulting smaller platforms

of y1(x) are shown in Fig. 7(d). In equation (9), after filtering

the noise counts, the peak locations {xp} where hs(x) and y1(x)
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Figure 5
Five different images used to test rmwDART. (a) Phantom 1 is the classic Shepp–Logan phantom containing seven gray levels. (b) Phantom 2 is the
modified phantom with 14 gray levels. (c) Phantom 3 has 15 gray levels. (d) Phantom 4 is composed of many homogeneous circles with 50 gray levels.
(e) Phantom 5 is composed of many homogeneous circles with 101 gray levels.

Figure 6
SART-TV reconstruction images of the five test images. The number of iterations for the SART-TV reconstruction was 500. The angular ranges for the
projections of phantoms 1–5 are as follows: (a) 0–138�, (b) 0–138�, (c) 0–120�, (d) 0–90� and (e) 0–90�, respectively.



coincide were acquired. As shown in Fig. 7(e), the red line

represents the peak locations {xp}, and hs(x) and y1(x) coincide

at the same place. If the distance between two isolated peaks is

smaller than the peak-picking resolution, the platform of the

peak with the smaller count in y1(x) will not coincide with the

peak itself in hs(x), which means that this smaller peak will not

be picked. When the distance between two isolated peaks is

larger than the peak-picking resolution, these two isolated

peaks in hs(x) will coincide with their own platforms in y1(x),

and thus these two isolated peaks are picked. Then, the

locations of the minimal counts between two adjacent peak

locations in {xp} were acquired using equation (10). The

threshold values {xv} are these minimal count locations, and

the result of {xv} is shown in Fig. 7( f). In this segmentation

procedure, the peak-picking resolution 2w1 is set to be 0.5% of

the grayscale value range in the histogram. The image is then

segmented with these threshold values {xv}. After the over-

segmentation step, the segmented image is shown in Fig. 8(a).

The image was segmented into 871 regions.

The boundaries extracted from the segmented regionalized

image are shown in Fig. 8(b). It can be seen that many small

regions assembled in the ‘missing wedge’ artifact areas. Then,

in the ‘Redistribution of regions and the calculation of the

regional values’ step, the connectivity thresholds were set by

equation (7), and the calculated image after this step is shown

in Fig. 8(c), which is much better than that in Fig. 6(a).

However, the boundaries of some regions still need to be

improved. In the procedure of calculating the regional values,

300 iterations of the LSQR method were applied. Then, in the

next step, the outline of the extracted boundaries from the

calculated image (Fig. 8c) was acquired, as shown in Fig. 8(d).

After applying the erosion and dilation operations on the

extracted outline of the boundaries, the areas that need to be

updated are shown in Fig. 8(e), which were mostly coincident

with the ‘missing wedge’ artifact areas. Then, 15 iterations of

the SART method and Gaussian smoothing were applied to

update the values of these areas. Finally, the higher-quality

reconstruction was obtained and is shown in Fig. 8( f). At this

point, one loop iteration of rmwDART had been completed.

To demonstrate the effect of three different dilation

operators, three resulting images after different dilation

operations (by the dilation operators in Fig. 4) were used as

examples, shown in Fig. 9. It can be seen that the dilated areas

in Figs. 9(b) and 9(c) are smaller than that in Fig. 9(a), but they

are two different parts of the dilated areas in Fig. 9(a) in two

opposite directions. Using the dilation operators in Figs. 4(b)

and 4(c) can help the convergence by restoring the artifacts in

two opposite directions.
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Figure 7
(a) Histogram h(x) of Fig. 6(a). (b) Smoothed histogram hs(x) from h(x). (c) Maximum counts y(x) in the scanning window. (d) Smaller platforms y1(x).
(e) Peak locations {xp}, where the red line represents the peak locations {xp}, the purple line represents y1(x) and the cyan curve represents hs(x).
( f ) Threshold values {xv}, where the red line represents the threshold values {xv} and the cyan curve represents hs(x).



After 30 iterations of rmwDART, the final reconstructions

of the five test images are shown in Figs. 10(k)–10(o). In

comparison, 100 iterations of mDART and DART were also

applied on the projections of phantoms 1–5. The segmented

images for the segmentation-input of mDART (Liang et al.,

2016) were generated by the oversegmentation method

proposed in this paper. The resulting reconstructions of

DART and mDART are shown in Figs. 10(a)–10(e) and

Figs. 10( f)–10( j).

To quantitatively evaluate the quality of the reconstructed

images in the simulation test, Liang et al. proposed using the

following equation (Liang et al., 2016),

K ¼ i x r
i � xi

�� ��>maxð! _���; 0:003Þ
� ���� ��� ��; ð12Þ

where K is the total number of error

pixels, xi
r is the pixel value of the

reconstructed image, xi is the pixel value

of the original image, �� is the original

images’ minimum interval between two

values, and ! is an indicator that ranges

from 0 to 1. In this case, ! was set as

0.03, which is the same as in Liang et

al.’s work (Liang et al., 2016). As shown

in Fig. 11, the pixel errors K of

Figs. 10(a)–10(e) are 3938, 4174, 7255,

10493 and 16268, respectively; the pixel

errors K of Figs. 10( f)–10( j) are 4835,

6280, 17112, 4692 and 8546, respec-

tively; and the pixel errors K of

Figs. 10(k)–10(o) are 3, 1, 2, 5 and 1,

respectively. As a result, in comparison

with DART and mDART, rmwDART

calculates better reconstructions of the

simulated images of Fig. 3 in ‘missing

wedge’ situations. It should also be

noted that mDART requires an appro-

priate manual segmentation for the

input, and the segmentation result from

the oversegmentation method is prob-

ably not suitable for the mDART

method. This may be the reason why the

mDART method did not perform well

in the above simulation.

As mDART may require an appro-

priate segmentation for the input image,

experiments on mDART with the

appropriate manual segmentation were

assessed using the same phantoms 1–5

as the simulated images, as in Liang et

al.’s work (Liang et al., 2016). The

angular ranges for those mDART

experiments on phantoms 1–5 were (a)

0–147�, (b) 0–145�, (c) 0–130�, (d) 0–

135� and (e) 0–130�, respectively. In

addition, the pixel errors K of these

experiments on phantoms 1–5 were 212,

546, 161, 145 and 1580, respectively. It should be noted that the

projection range used in Liang et al.’s work was larger than

that of this paper. This shows that the above simulation results

of rmwDART are better than those of mDART with the

appropriate segmentation and DART.

The convergence rates of rwmDART for the resulting

reconstructions in Figs. 10(k)–10(o) are shown in Fig. 12; in

this figure the horizontal axis represents the iteration number

and the vertical axis represents the pixel error K. As shown in

Fig. 12, the five reconstruction simulations converged within

15 iterations. The time consumptions for the rwmDART

reconstructions of phantoms 1–5 are shown in Table 1. In this

study, a computer equipped with an Intel i5-4570 CPU and

16 GB RAM memory was used to compute the data. The time

consumption for the reconstructions of phantoms 2 and 3 were
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Figure 8
Procedures of rmwDART in one loop. (a) Resulting segmentation of the input reconstruction of
Fig. 6(a). (b) Resulting boundary extraction from (a). (c) Calculated image after the ‘Redistribution
of regions and the calculation of the regional values’ step. (d) Extracted boundaries image from (c).
(e) Image of the areas that were extracted after applying the erosion and dilation operations on (d).
( f ) Resulting image of one loop iteration of rwmDART.

Figure 9
Explanation of the three different dilation operators. Panels (a), (b) and (c) are the resulting images
from the dilation effect after the dilation operation by the operator in (a) Fig. 4(a), (b) Fig. 4(b) and
(c) Fig. 4(c), respectively.



relatively large, and the convergence rates also show that the

reconstructions of phantoms 2 and 3 converged relatively late.

It shows that, when the error of the iterated reconstruction

is large, rmwDART consumes more time for its calculations.

Compared with the time consumption of 15 iterations and

30 iterations, even if the reconstructions converge, rmwDART

still needs significant time to calculate each iteration.

3.2. Parameters discussion

In rmwDART, w1 and Tc, n are the most important para-

meters since they directly determine the quality of the

reconstruction. Therefore, the effect of different w1 and Tc, n

on rmwDART are tested. Phantom 2 is used as an example to

test the changed parameters, and the angular projection range

and the projection length are the same as in x3.1. The SART-

TV reconstruction in Fig. 6(b) was used as the initialization.

3.2.1. Experiments on different w1. 2w1 represents the

peak-picking resolution in the peak-picking process. There-
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Figure 10
Final reconstructions of five test images by different algorithms. (a)–(e) Resulting reconstructions of phantoms 1–5 by DART. ( f )–( j) Resulting
reconstructions of phantoms 1–5 by mDART. (k)–(o) Resulting reconstructions of phantoms 1–5 by rwmDART. The angular range for the projections of
phantoms 1–5 are as follows: (a, f, k) 0–138�; (b, g, l) 0–138�; (c, h, m) 0–120�; (d, i, n) 0–90�; (e, j, o) 0–90�, respectively.

Figure 11
Pixel error K of the resulting reconstructions of phantoms 1–5 by
rmwDART, mDART and DART. The angular range of the projections of
phantoms 1–5 for the reconstructions were 0–138�, 0–138�, 0–120�, 0–90�

and 0–90�, respectively.

Figure 12
Convergence rates of rwmDART for the resulting reconstructions in
Figs. 10(k)–10(o).

Table 1
Time consumption (in seconds) for the rwmDART reconstructions of
phantoms 1–5.

Phantom

1 2 3 4 5

15 iterations 383.05 686.58 574.75 284.27 341.40
30 iterations 722.22 1003.91 874.00 543.95 649.89



fore, w1 directly determines the degree of oversegmentation.

The smaller that 2w1 is set, the higher the degree of over-

segmentation. In the following rmwDART reconstructions

for phantom 2, 2w1 was set to be 0.5%, 2%, 5% and 15%, and

Tc, n is the same as that in x3.1. After applying the over-

segmentation method on Fig. 6(b), the resulting segmentation

images are shown in Fig. 13, and the numbers of regions of

these resulting segmentation images are shown in Table 2.

From the results of Fig. 13 and Table 2, as 2w1 decreases,

Fig. 6(b) is segmented into more regions, and the degree of

oversegmentation becomes higher. As shown in Fig. 13(d),

since the 2w1 of 15% is relatively large, misconnections appear

in the resulting segmentation.

In this study, 90 iterations were used for these rmwDART

reconstructions. The convergence rates for the rwmDART

reconstruction with different 2w1 are shown in Fig. 14(a), and

the time consumption of each iteration for the rwmDART

reconstruction with different 2w1 is shown in Fig. 14(b). The

pixel errors K of the resulting reconstructions and the total

time consumption of the 90-iteration reconstruction are shown

in Table 3. As shown in Fig. 14(a), when 2w1 is small enough,

the degree of oversegmentation is high enough to segment the

image, and then a high-quality reconstruction can be obtained.

For 2w1 = 0.5%, 2% and 5%, the results converged in ten

iterations and obtained very high quality reconstructions.

When 2w1 is not small enough, misconnections appear in the

segmentation, and the reconstruction error can be very large.

For 2w1 = 15%, misconnections appear in Fig. 13(d), the

reconstruction has a large error until the 89th iteration, and it

still does not have a small error at the 90th iteration. For 2w1 =

0.5%, compared with 2w1 = 2% and 5%, the reconstruction

needs a few more iterations to converge. This outcome occurs

because, when 2w1 is very small, many regions are segmented,

and the computer needs more time and iterations to redis-

tribute the regions and calculate the regional values. For

practical applications, a very small 2w1 is recommended, which

will ensure the high degree of oversegmentation, especially

when the computer’s processing capabilities are high enough.

3.2.2. Experiments on different Tc,n. Tc, n is the connectivity

threshold representing the detection resolution of the regional

value. If Tc, n is too large, two adjacent regions that belong to

two different substances may be misconnected. Conversely, if

Tc, n is too small, it may take more iterations or a very long

computational time to connect two adjacent regions that
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Figure 13
Different segmentation effects with different 2w1. (a) 2w1 is 0.5%. (b) 2w1

is 2%. (c) 2w1 is 5%. (d) 2w1 is 15%.

Figure 14
(a) Convergence rates for the rwmDART reconstructions with different
2w1. (b) Time consumption of each iteration for the rwmDART
reconstructions with different 2w1.

Table 2
Number of regions of the resulting segmentations with different 2w1.

2w1

0.5% 2% 5% 15%

Number of regions 1364 378 181 72

Table 3
Pixel errors K and total time consumption of the resulting reconstructions
with different 2w1.

2w1

0.5% 2% 5% 15%

Pixel error K 1 1 1 152
Total time consumption (s) 2287.89 2801.25 2790.62 2215.33



belong to the same substance. In the following rmwDART

reconstruction for phantom 2, 2w1 is the same as that in x3.1.

First, the number of sub-iterations for the redistribution of

regions is discussed. The sub-iteration number is set to 8 and

Tc, n is set to Tc, n = [2, 2, 2, 2, 2, 2, 2, 2] � 10�3. After the

oversegmentation step, the numbers of regions in each sub-

iteration for the redistribution of regions are shown in Fig. 15.

As shown in Fig. 15, after three sub-iterations, the change in

the number of regions becomes very small, and the number of

regions becomes stable. Thus, setting the number of sub-

iterations for the redistribution of regions to five is rational.

Second, the same Tc, n in the sub-iterations is discussed. Tc, n

is set to be the same value in the five sub-iterations, and the

settings for Tc, n are shown in Table 4. Forty iterations were

used for the rmwDART reconstruction. The pixel errors K and

the total time consumption of the resulting reconstructions

with different Tc, n are also shown in Table 4. The convergence

rates for the rmwDART reconstruction are shown in

Fig. 16(a). The time consumption of each iteration for the

rwmDART reconstruction is shown in Fig. 16(b). As shown in

Fig. 16(a), the resulting reconstructions with Tc, n = [5, 5, 5, 5, 5]

� 10�3 and Tc, n = [8, 8, 8, 8, 8] � 10�3 failed to converge, and

the other conditions of Tc, n converged within 35 iterations.

When Tc, n is relatively large, misconnections may appear in

the computing process of the redistribution of regions. Espe-

cially in the initial sub-iteration for the redistribution of

regions, the regional distribution is probably unstable, and this

could lead to a large error in the resulting reconstruction. For

the resulting reconstructions that converged, as Tc, n decreases,

the resulting reconstruction needs more iterations to

converge, and the time consumption of the computations also

becomes greater.

Thirdly, different Tc, n in different sub-iterations are

discussed. As the misconnections may appear in the initial

sub-iteration for the redistribution of regions, Tc, n is set to be

relatively small in the initial sub-iteration, and it gradually

increases in the subsequent sub-iterations. The settings for Tc, n

are shown in Table 5. In this study, 60 iterations were used for

the rmwDART reconstructions. The pixel errors K and the

total time consumptions of the resulting reconstructions with

different Tc, n in different sub-iteration are also shown in

Table 5. The convergence rates for the rmwDART recon-

struction are shown in Fig. 17(a). The time consumption of

each iteration for the rwmDART reconstruction is shown in

Fig. 17(b). Compared with the resulting reconstructions with

Tc, n = [5, 5, 5, 5, 5]� 10�3 and Tc, n = [8, 8, 8, 8, 8]� 10�3, which

failed to converge and resulted in large errors, the resulting

reconstructions with Tc, n = [1, 2, 3, 4, 5]� 10�3 and Tc, n = [2, 3,

4, 6, 8] � 10�3 successfully converged and had very high

quality results. This shows that setting a relatively small Tc, n in

the initial sub-iteration can improve rmwDART reconstruc-

tions. For the reconstructions Tc, n = [4, 8, 12, 16, 20] � 10�4

and Tc, n = [2, 3, 4, 6, 8] � 10�5, as Tc, n increases, the resulting

reconstruction needs more iterations to converge, and the

time consumption for the computations also increases. For

practical applications, a very small Tc, n is recommended, which

can avoid the misconnection during the redistribution of

regions, especially when the computer’s computational

capabilities are high enough.
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Table 4
Pixel errors K and total time consumptions of the resulting reconstruc-
tions with different Tc, n.

Pixel
error K

Total time
consumption (s)

Tc, n = [2, 2, 2, 2, 2] � 10�3 1 1980.83
Tc, n = [2, 2, 2, 2, 2] � 10�4 1 6815.13
Tc, n = [2, 2, 2, 2, 2] � 10�5 1 10034.65
Tc, n = [5, 5, 5, 5, 5] � 10�3 65356 3245.41
Tc, n = [5, 5, 5, 5, 5] � 10�4 1 1755.67
Tc, n = [5, 5, 5, 5, 5] � 10�5 1 6313.53
Tc, n = [8, 8, 8, 8, 8] � 10�3 65444 2655.37
Tc, n = [8, 8, 8, 8, 8] � 10�4 1 1514.18
Tc, n = [8, 8, 8, 8, 8] � 10�5 1 5178.88

Figure 15
Number of regions in each sub-iteration for the redistribution of regions.

Figure 16
(a) Convergence rates for the rwmDART reconstruction with different
Tc, n. (b) Time consumption of each iteration for the rwmDART
reconstruction with different Tc, n.



3.3. Experiments on conditions with noise

To investigate the noise resistance capability of rmwDART,

phantoms 1 and 3 were used as examples to test the conditions

with noise. In this study, Poisson noise was introduced in the

projection data of phantoms 1 and 3, and 30 dB, 25 dB and

20 dB signal-to-noise ratio (SNR) were selected for the

Poisson noise. The angular projection ranges of phantoms 1

and 3, the projection length, 2w1 and Tc, n are the same as in

x3.1. In comparison, mDART and DART were also applied on

these noisy projections, the segmentation input for mDART

(Liang et al., 2016) was generated by the oversegmentation

method proposed in this paper, and the number of iterations

for DART, mDART and rmwDART were 120. The resulting

reconstructions of phantom 1 with different SNRs are shown

in Fig. 18, and the resulting reconstructions of phantom 3 with

different SNRs are shown in Fig. 19. The pixel errors K of

phantoms 1 and 3 with different SNRs are shown in Figs. 20(a)

and 20(b), respectively. The convergence rates and the time

consumption of each iteration for these rmwDART recon-

structions are shown in Figs. 21(a) and 21(b), respectively. As

shown in Fig. 20, the pixel errors K in the resulting recon-

structions with 20 dB, 25 dB and 30 dB SNR by rmwDART are
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Table 5
Pixel errors K and total time consumptions of the resulting reconstruc-
tions with different Tc, n in different sub-iterations.

Pixel
error K

Total time
consumption (s)

Tc, n = [2, 3, 4, 6, 8] � 10�3 16 3625.39
Tc, n = [1, 2, 3, 4, 5] � 10�3 1 1715.66
Tc, n = [4, 8, 12, 16, 20] � 10�4 1 1705.33
Tc, n = [2, 3, 4, 6, 8] � 10�5 1 7435.25

Figure 17
(a) Convergence rates for the rwmDART reconstruction with different
Tc, n in different sub-iterations. (b) Time consumption of each iteration
for the rwmDART reconstruction with different Tc, n in different sub-
iterations.

Figure 18
Resulting reconstructions of phantom 1 with 20 dB, 25 dB and 30 dB SNR
by different algorithms. (a)–(c) Resulting reconstructions using DART.
(d)–( f ) Resulting reconstructions using mDART. (g)–(i) Resulting
reconstructions using rmwDART. The angular range for the projections
of phantom 1 is 0–138�.

Figure 19
Resulting reconstructions of phantom 3 with 20 dB, 25 dB and 30 dB SNR
by different algorithms. (a)–(c) Resulting reconstructions using DART.
(d)–( f ) Resulting reconstructions using mDART. (g)–(i) Resulting
reconstructions using rmwDART. The angular range for the projections
of phantom 3 is 0–120�.



smaller than those of mDART and DART. With respect to the

mDART results, the resulting reconstruction in Fig. 19(d) have

relatively serious distortions. It should also be noted that

mDART requires an appropriate manual segmentation for

inputs, and the oversegmentation method is probably not

suitable for mDART reconstruction. With respect to the

rmwDART and DART results, as the SNR of the projections

decreases, the pixel error K in the resulting reconstructions

also becomes larger because the noise may be amplified by the

gradient operator. For the reconstruction of phantom 3 with a

20 dB SNR, although the pixel error K of the reconstruction

by rwmDART is smaller than that by DART, the difference

between them is not significant. As shown in Fig. 21(a), the

fluctuation is still relatively large after convergence, especially

when the SNR is relatively low. As shown in Fig. 21(b), as the

SNR of the projections decreases, rmwDART needs more

computational time, because the noise may create smaller

single-pixel regions, which will significantly increase the time

consumption.

4. Experiments on a solid oxide fuel cell (SOFC) anode

A SOFC anode was imaged at beamline 4W1A at the Beijing

Synchrotron Radiation Facility (BSRF), China (Yuan et al.,

2012). 180 projection images with an angular range from �89�

to 90� were acquired by 8.4 keV (above the Ni K-edge) X-ray

illumination. The pixel resolution of the image is 14.6 nm [for

displaying the value of the resulting reconstruction in SI units

(mm�1), the projection data should be multiplied by 1000/

14.6]. A sinogram of the projection is shown in Fig. 22(a). The

SART-TV reconstruction of the SOFC anode with the 180

projections is shown in Fig. 22(b). 139 projections with angular

range from �69 to 69� were selected to test the performances

of rmwDART and mDART. The resulting reconstructions of

rmwDART and mDART are shown in Figs. 22(c) and 22(d).

The iteration number for the reconstructions was 140, and the

parameters for rmwDART were the same as above. It can be

seen that the specific detail pointed by the red arrow in

Fig. 22(c) is closer to the full-angle reconstruction in Fig. 22(b)

compared with the result in Fig. 22(d).

5. Conclusion

In this paper, the rmwDART method that aimed to restore

‘missing wedge’ artifacts has been presented. By using the

oversegmentation strategy, prior knowledge of the sample for

segmentation is unnecessary. Through the oversegmentation

method, boundary extraction and mathematical morpholo-

gical operations, positioning at the ‘missing wedge’ artifact

areas is realized. By updating the located areas, the recon-

struction can be impressively improved.

The simulation results on five test images showed that

rmwDART can efficiently help restore the ‘missing wedge’

artifacts and provide high-fidelity multi-gray-level recon-

structions. The important parameters of rmwDART were

discussed. Simulations on noisy data showed the noise resis-

tance capacity of rmwDART. Experimental results on an

SOFC anode also proved the high-quality reconstruction of

rmwDART.
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Figure 20
Pixel error K of the resulting reconstructions of phantoms 1 and 3 with
20 dB, 25 dB and 30 dB SNR by different algorithms. (a) Pixel error K of
the resulting reconstructions of phantom 1. (b) Pixel error K of the
resulting reconstructions of phantom 3. Figure 21

(a) Convergence rates for the rwmDART reconstruction of phantoms 1
and 3 with 20 dB, 25 dB and 30 dB SNR. (b) Time consumption of each
iteration for the rwmDART reconstruction of phantoms 1 and 3 with
20 dB, 25 dB and 30 dB SNR.
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Figure 22
(a) Full-angle sinogram of the projections of the SOFC anode and the selected angular range. (b) Full-angle reconstruction by SART-TV. (c) Resulting
reconstruction by rmwDART with the selected angular range from �69 to 69�. (d) Resulting reconstruction by mDART with the selected angular range
from �69 to 69�.
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