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Sirepo, a browser-based GUI for X-ray source and optics simulations, is

presented. Such calculations can be performed using SRW (Synchrotron

Radiation Workshop), which is a physical optics computer code, allowing

simulation of entire experimental beamlines using the concept of a ‘virtual

beamline’ with accurate treatment of synchrotron radiation generation and

propagation through the X-ray optical system. SRW is interfaced with Sirepo by

means of a Python application programming interface. Sirepo supports most of

the optical elements currently used at beamlines, including recent developments

in SRW. In particular, support is provided for the simulation of state-of-the-art

X-ray beamlines, exploiting the high coherence and brightness of modern light

source facilities. New scientific visualization and reporting capabilities have been

recently implemented within Sirepo, as well as automatic determination of

electron beam and undulator parameters. Publicly available community

databases can be dynamically queried for error-free access to material

characteristics. These computational tools can be used for the development

and commissioning of new X-ray beamlines and for testing feasibility and

optimization of experiments. The same interface can guide simulation on a local

computer, a remote server or a high-performance cluster. Sirepo is available

online and also within the NSLS-II firewall, with a growing number of users at

other light source facilities. Our open source code is available on GitHub.

1. Introduction

We present an easily accessible and convenient approach to

performing scientific simulations without the need of multi-

platform installation and maintenance. Our novel framework,

Sirepo, provides the combination of a browser interface with

a back-end server able to serve many different software

packages. We discuss in detail a recently implemented inter-

face with SRW, a high-accuracy general physical optics

computer code for synchrotron radiation (SR) source and

X-ray optics calculations and simulation of experiments

(Chubar & Elleaume, 1998; Chubar et al., 2002, 2013a), which

was previously integrated with the Igor Pro package (https://

www.wavemetrics.com) and Python.

There are other X-ray optics codes and interactive frame-

works in the field. URGENT (Walker & Diviacco, 1992) is a

computer program for calculating undulator radiation with

spectral, angular, polarization and power density character-

ization. SPECTRA (Tanaka & Kitamura, 2001) is a SR

calculation code. WavePropaGator (WPG) (Samoylova et al.,

2016) is an interactive framework for X-ray free-electron laser

optics design and simulations. SHADOW3 (Sanchez del Rio

et al., 2011) is an open-source ray-tracing code for modeling

optical systems. ShadowOui (Rebuffi & Sánchez del Rı́o,
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2016) is a visual environment for X-ray optics and synchrotron

beamline simulations. Orange Synchrotron Suite (OASYS)

(Rebuffi & Sanchez del Rio, 2017) is an open-source graphical

environment for optics simulation software used at synchro-

tron facilities, based on Orange 3 (https://orange.biolab.si)

workflow software.

In addition to SRW, Sirepo supports simulations with the

following codes: SHADOW3 is mentioned above; Elegant is a

code for simulation of charged-particle accelerators (Borland,

2000); Warp is used for simulation of high-intensity charged-

particle beams and plasmas in both the electrostatic and

electrodynamic regimes (Grote et al., 2005; Friedman et al.,

2014); Hellweg simulates traveling wave electron linacs with

beam loading (Kutsaev, 2010). The source code of Sirepo

could be extended to support codes from different scientific

domains such as condensed matter physics and material

science, chemistry and biology, and other areas making use of

codes requiring complex and at the same time flexible input

and comprehensive output in the form of interactive visuali-

zation, raw data files and unified exchange format.

The Sirepo interface to SRW provides the advantages of the

Python and Igor Pro interfaces while avoiding their limita-

tions, resulting in an open-source multi-user browser-based

GUI with the SRW–Python interface on the server-side.

This enables portable and reproducible simulations with a

minimum of installation and configuration. Key advantages of

a browser-based GUI and cloud computing include immediate

access to computational resources, sharing information for

collaborative work, etc. The publicly available server (https://

sirepo.com) allows users to start using SRW (and other codes)

immediately without a local installation.

This paper focuses on the browser interface Sirepo which

is built on top of the SRW code. The latter code is being

developed independently; however, the authors make efforts

to make both codes as compatible as possible. The existing

versions of the codes are still evolving, and the code and

documentation will be updated in the future.

2. Software environment

Sirepo is a distributed system, which involves a front-end, i.e.

a JavaScript client accessible via a browser, and a back-end

service, running on an isolated server computer or on a cluster.

A typical workflow is as follows: a user prepares a simulation

in a browser using the JavaScript GUI on a desktop computer/

laptop or even a mobile device, then an HTTP(s) request

is sent via network to the Sirepo back-end server. The server

then processes the request and executes corresponding

simulations within a computing environment, and finally the

calculation result is returned via network to the same user’s

interface in the browser and is visualized in the form of

interactive plots with corresponding data files. We discuss all

of these steps and their implementation.

2.1. SRW library

SRW provides unique capabilities to simulate a whole SR

beamline starting from source to a sample/detector position,

and even entirely simulate some types of experiments making

use of the high brightness and coherence of modern SR

sources. The code is able to generate data on spectral, spatial

and polarization characteristics of the radiation in the near-

field and far-field approximations produced by a relativistic

electron beam traveling in external magnetic fields of arbitrary

configuration. It uses rapid numerical algorithms for different

types of SR, including bending-magnet radiation (from central

parts and edges), undulator and wiggler radiation. For these

calculations the modeled or measured magnetic field can be

used. The computation can take into account electron beam

emittance and energy spread.

SRW is used at many light source facilities to calculate the

spectral performance of insertion devices, taking into account

details of their magnetic design and, if necessary, magnetic

field errors. It is used for high-accuracy physical-optics-based

simulation of SR propagation through optical elements, taking

into account their eventual imperfections, and optimization

of entire optical schemes of beamlines dedicated for infrared,

UV and X-ray spectral ranges. SRW is also used for the

simulation of some types of experiments with SR, electron

beam diagnostics, optical element quality characterization and

other applications.

The SRW core code is written in C++. The initial version of

the code was interfaced with Igor Pro (WaveMetrics) and

recent versions also include a Python interface. Various

simulations of a beamline can be carried out either using the

basic Python interface or a dedicated ‘virtual beamline’

application programming interface (API). The Python version

of SRW supports sequential and parallel simulations. There

are three main types of parallelization used in SRW:

(i) Message passing interface (MPI) parallelization imple-

mented via the Python bindings for the MPI libraries in

the mpi4py Python package (https://mpi4py.readthedocs.io).

This enables efficient parallelization of computations on

isolated servers and high-performance computer clusters.

(ii) Open multi-processing (OpenMP) parallelization is

used for time-dependent simulations for XFEL applications

(https://github.com/SergeyYakubov/SRW/tree/openmp).

OpenMP is used for parallelization within one multi-core

server, using the shared memory multi-threading approach,

while MPI is used for parallelization between computational

nodes.

(iii) Open computing language (OpenCL) parallelization,

utilizing graphics processing units (GPUs), was tested on an

example of the SR calculation in collaboration with the

Canadian Light Source. This work is still in progress.

One of these parallelization methods can be used at a time.

We also note that some parts of the OpenMP and OpenCL

parallelization implementation of SRW will be incorporated

into the main SRW source code in the future.

2.2. Server-side implementation

The server-side (back-end) of Sirepo is based on Flask

(http://flask.pocoo.org), which is a lightweight framework

for web development with Python (https://www.python.org).
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Flask depends on the Werkzeug toolkit, a Python utility

library for the Hypertext Transfer Protocol (HTTP) and Web

Server Gateway Interface (WSGI), allowing fast development

of high-quality secure web applications. In our production

environment, we use an industry-standard Nginx HTTP(s)

server as a reverse proxy. It allows scalable and reliable

solutions to be built thanks to its event-driven (asynchronous)

architecture.

To exchange data between the server and clients we use

JavaScript Object Notation (JSON), a lightweight data-inter-

change format supported by many programming languages.

Since Sirepo is intended to be used by many scientists within

a single facility or around the World, it is critical to have a

reliable job management system. For that purpose, we use

Celery (http://www.celeryproject.org) and RabbitMQ (https://

www.rabbitmq.com). Celery provides an asynchronous job

queue for executing long-running simulations and provides

cluster management. Celery uses RabbitMQ as a message

broker, which provides the communication between the web

server and the cluster of back-end execution servers.

Parallel execution of CPU-intensive calculations with SRW

and other codes is implemented by means of MPI, which is the

technology used to run scientific codes in parallel across a

cluster of computational nodes on a network. For quality

assurance, we use the Pytest (https://docs.pytest.org) frame-

work allowing for exercising and testing individual features of

the Python implementation.

2.3. Client side implementation

The Sirepo client (front-end) is based on Hypertext Markup

Language (HTML5) which is a language used for structuring

and presenting web content. It involves JavaScript, Cascading

Style Sheets (CSS3), Scalable Vector Graphics (SVG) and

other libraries. CSS3 is a style sheet language used for

describing the presentation of a document written in a markup

language. For more consistent rendering, we use Bootstrap, an

HTML, CSS3 and JavaScript framework for developing cross-

platform web applications. We also use AngularJS, a structural

framework for dynamic web applications. For data visualiza-

tion, we use the D3 (http://d3js.org) JavaScript graphics library,

which is used to generate interactive plots in a browser. D3

supports large datasets with dynamic behavior, proving to be

both powerful and relatively easy to integrate into the

AngularJS framework.

In Sirepo, visual data are represented as so-called ‘reports’,

which can show interactive one-dimensional (1D) and two-

dimensional (2D) plots. These reports have menus, where

parameters of various calculation types can be controlled. The

reports can also export data in the form of images with

specified resolution, or the corresponding raw data, as well as

the Python source code used to perform the calculation.

We implemented support for ‘heatmaps’ (i.e. 2D image

plots) of intensity distributions and other data. The mouse or

keyboard or touchscreen can be used to interactively zoom

and pan the plot for better detail. Zooming could be

performed for both axes simultaneously (if the cursor hovers

over the heatmap area) or independently (if the cursor hovers

over a corresponding 1D ‘cut’ below or on the right). The line

plots allow the user to find the coordinates of a specific point,

which can be useful for finding minima and maxima as well as

any intermediate values of functions that are plotted. With the

cursor hovering over a line, a mouse click causes the coordi-

nates of the closest local maximum to appear in the widget,

together with (if applicable) the full width at half-maximum

(FWHM), a frequently used quantity to estimate the beam

size, the width of a harmonic, etc. The location of the marker

can be changed via the keyboard’s left/right and up/down

buttons. The range of the plot can be dynamically changed

using the scroll wheel of a mouse. In the following sections,

these and other functions will be illustrated.

2.4. Sirepo interface details

Sirepo can be used in any modern browser, with SRW

running on a remote server or a cluster, including cloud-based

dynamically allocated virtual machines (VMs). With this

modern interactive JavaScript GUI, expert users can at any

time export a valid Python script for an individual simulation/

report for further specialization and command-line execution.

Cloud-based SRW is actively used at the publicly available

website https://sirepo.com. Two high-performance servers with

Sirepo/SRW installations are available and routinely used at

National Synchrotron Light Source (NSLS-II) at Brookhaven

National Laboratory (Rakitin et al., 2017) by users and

scientists on the campus network.

Both single-electron (one-pass and usually fast) and multi-

electron (often long-running) simulations have been imple-

mented. A special manager allows users to organize simula-

tions, i.e. create new ones from scratch, copy an existing one,

delete, rename and group different simulations in folders, as

illustrated in Fig. 1. Once a simulation is selected, a user can

enter either the corresponding Source or the Beamline page,

which will be discussed in detail in the next section (see Fig. 2).

Authentication on Sirepo servers is implemented by means

of the OAuth 2.0 authorization framework, and Sirepo

currently accepts GitHub (https://github.com) logins for users.

This feature enables a persistent workspace, storing all of

user’s simulations under one account, no matter which

browser or device are used for their creation. In ‘expert’ mode,

users can see the ‘user’ icon in the upper-right corner of the

interface (see Fig. 1), which allows users to authenticate

themselves.

Fig. 2 displays commonly used controls of the various

‘reports’. Detailed parameters of the reports can be found by

computer programs
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Figure 1
Simulations page of Sirepo.
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Figure 2
Typical Source (a) and Beamline (b) pages of Sirepo.



clicking on the ‘pencil’ edit icon. The parameters for each

report are logically and intuitively grouped for users’ conve-

nience: basic frequently changed parameters are usually

placed on the ‘Main’ tab, while other more specific parameters

are placed in separate tabs. The reports rerun automatically

when the user clicks the ‘Save Changes’ button. The para-

meters menu of each report has the ‘question mark’ button

which opens a new browser tab, showing the associated online

Wiki page at GitHub; https://github.com/radiasoft/sirepo/wiki)

with a detailed explanation of a particular report, where

applicable. Users have the capability to download a raw data

file and images in the report in three different resolutions by

means of the ‘Cloud-Download’ button. Users can also mini-

mize individual reports by clicking on the ‘triangle’ icon in the

upper-right corner; in this case, the corresponding calculation

for the report will not be performed, speeding up subsequent

simulations.

In many cases, SRW simulations involve additional files,

e.g. magnetic measurement data for a tabulated undulator, or

mirror surface height profile errors. Such files are either pre-

defined in Sirepo or can be uploaded by a user. In that case a

simulation cannot be exported as a single Python file. For that

purpose, we implemented exporting of a zip-archive with

Python, JSON and all related data files [Fig. 3(a)], ‘Export as

Zip’ menu item). Also, an advanced exporting feature of a

self-extracting simulation in HTML format was implemented

[Fig. 3(a), ‘Self-Extracting Simulation’ menu item] to allow a

one-click importing to a remote server [Fig. 3(b)].

The same menu provides a way to export the Python script

used for execution of the simulation corresponding to the

report [Fig. 2(a), see drop-down menu in the Intensity Report,

‘Export Python Code’ menu item]. This allows the end user to

run an SRW simulation from the command line and extend the

simulation script with capabilities not yet supported by the

GUI. Hence, the expert user is benefited by the GUI just as

much as the novice user, and the GUI never inhibits or limits

what an X-ray scientist can do with SRW. As an accompanying

tool, we have implemented exporting a single JSON file, which

fully defines the simulation [Fig. 3(c), ‘Export JSON Data File’

menu item). This assures portability of Sirepo simulations.

To provide a robust mechanism for sharing the simulations

across multiple installations of Sirepo and SRW, we comple-

mented the exporting capabilities with advanced import

features. The Wiki pages describe in detail the process

of sharing (backing up) a simulation (https://github.com/

radiasoft/sirepo/wiki). Sirepo accepts import of correctly

formatted ‘Virtual Beamline’ Python scripts, as well as

previously exported JSON files.

When a user imports a Python script, optional command-

line arguments can be provided (for instance, to select the

desired beamline layout to import). Import of a previously

exported simulation in the form of a zip-archive can be

performed in the same manner.

Magnetic measurement data for a tabulated undulator can

be imported at the Source page of Sirepo, while the mirror

surface height profile error can be uploaded at the Beamline

page.

Below we explain a typical workflow for simulations using

Sirepo and SRW.

3. SR calculations

The following types of SRW calculations are supported in

Sirepo: trajectory of electrons traveling through an arbitrary

magnetic field, single-electron SR spectral flux per unit surface

area, spectral flux of radiation by finite-emittance electron

beam per unit surface area or within a finite aperture, SR

power density distributions, fully or partially coherent radia-

tion propagation through beamline optics. SRW users typically

start by setting up the parameters of an SR source, which

involves the parameters of the electron beam and the

magnetic field source (e.g. an ‘idealized’ or ‘tabulated’ undu-

lator, or a bending magnet), or a Gaussian radiation beam

(e.g. from a free-electron laser). The next step, which is

optional, consists of checking the trajectory of the relativistic

electrons traveling through the magnetic field (important for

insertion device sources).
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Figure 3
Export options in Sirepo: (a) the drop-down menu in the simulations list
showing export options of a zip-archive, self-extracting simulation, and
Python source code, (b) appearance of the exported self-extracting
simulation dialog and (c) the ‘cog wheel’ menu showing export option of
a JSON data file.



Particular characteristics of interest include the resulting

radiation spectrum: the single-electron spectrum, the flux

through a finite aperture, as well as monochromatic intensity

and power density distributions at some distance from the

source. Thus, the Source page of Sirepo enables users to

specify all the parameters of the source and perform such SR

calculations, described in detail in the following sub-sections.

Alternatively, users can define the source approximately as a

coherent Gaussian beam.

3.1. Electron beam parameters

To define or edit the parameters of the electron beam, users

can click on the ‘pencil’ button in the heading of the Electron

Beam widget at the Source page. Fig. 4 shows the menu for the

parameters of the electron beam. In Sirepo there are a number

of predefined ‘electron beams’ with nominal parameters

(electron beam current, vertical and horizontal emittance, etc.)

from existing light source facilities. Those parameters are

dynamically obtained from SRW to ensure their correspon-

dence to the base code. One can either use the predefined

parameter values, or tune the parameters as necessary – in this

case a user-defined copy of the beam will be created, which

will be shared across all user’s simulations.

The electron beam is by default defined by the Twiss

parameters as shown in Fig. 4, but can also be defined by the

second-order statistical moments (RMS size, RMS divergence,

etc.). The Position tab allows one to specify the longitudinal

position for which the electron beam parameters (in parti-

cular, first- and second-order statistical moments) are defined.

This is required for unambiguous definition of electron

trajectories. The longitudinal position is calculated auto-

matically for an idealized undulator and corresponds to a

location before the undulator.

3.2. Undulator parameters

After the parameters of the electron beam are set, one

needs to define parameters of a device producing magnetic

field, which is often an undulator for a modern light source

facility. SRW supports the definition of either a sinusoidal

undulator magnetic field or a tabulated field versus long-

itudinal position, which can result from magnetic simulations

or measurements. The second method provides a more accu-

rate method to simulate undulator radiation spectra and

predict their realistic performance, e.g. at different magnetic

gap values. This method is now routinely used for commis-

sioning of NSLS-II beamlines. In agreement with SRW, in

Sirepo, an undulator source can also be defined either as an

‘idealized undulator’ or a ‘tabulated undulator’. Fig. 5 shows

the layout of the dialog for defining parameters of the idea-

lized undulator while an example of a tabulated undulator is

shown in Fig. 2(a).

In the case of the idealized undulator, users ‘tune’ the

radiation spectrum by changing either the deflecting para-

meter K or the amplitude of the magnetic field (the para-

meters are mutually dependent and are recalculated

interactively if one of them changes). In the case of the

tabulated undulator, users can tune the spectrum by changing

the undulator gap. In that case the magnetic field is calculated

by interpolation from a set of fields tabulated for different gap

values. It is possible to either use one of the predefined

archives with sample magnetic measurement data in a special

ASCII format or to upload a new archive in the same format.

3.3. Electron Trajectory Report

The Electron Trajectory Report provides a convenient and

straightforward way to verify the trajectory of electrons

traveling through the magnetic field of an insertion device,

which helps to characterize, for example, the quality of its
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Figure 5
Input dialog for idealized undulator parameters.

Figure 4
Input dialog for electron beam parameters.



shimming and to better understand the resulting radiation

spectrum (see the Trajectory Report in Fig. 2a).

3.4. Single-electron radiation reports: spectrum and intensity

The Single-Electron Spectrum Report is presented in Fig. 6.

The plot shows the zoomed seventh harmonic of the undulator

radiation spectrum presented in Fig. 2(a), generated from

tabulated magnetic field data. The harmonic shape is impacted

by magnetic field errors.

The 2D image plots in Sirepo are used extensively for the

Intensity and Power Density Reports, showing the intensity

and power density distributions correspondingly at a distance

from the source. Users can also see 1D cuts of the plots. Fig. 7

demonstrates the Intensity Report of the Source page,

showing the single-electron intensity distribution. The Inten-

sity Report in Fig. 2(a) depicts the corresponding multi-elec-

tron distribution, which was obtained from the single-electron

distribution by convolution (disregarding the contribution

from the electron beam energy spread). This type of fast

simulation can usually give a reasonable estimate of the

resulting multi-electron intensity distribution. However, a

more accurate multi-electron intensity distribution, taking

into account the energy spread, can also be computed using

the same method that is applied for partially coherent multi-

electron calculations (see x4).

As seen in Fig. 2(a) (on the 1D cut at the bottom of the 2D

image plot of the Intensity Report) and Fig. 6, the coordinates

of the marker are shown right above the plot along with the

corresponding FWHM value (if it can be computed). In Fig. 6,

X corresponds to the photon energy and Y corresponds to the

intensity value at that particular point. The plot can be

zoomed by scrolling the mouse wheel. For users’ convenience,

the photon energy is displayed in the title of the plot, while the

location where the intensity is observed is shown next to the

name of the report.

3.5. Partially coherent/multi-electron calculation reports:
Spectral Flux (per unit surface area)

The Spectral Flux Report supports two types of calculations

used mainly for undulator radiation. The first type is an

approximate fast calculation of the spectra which ignores

errors of the magnetic field. The second type is an accurate

but time-consuming calculation using the method of macro-

particles, that is particularly useful for realistic simulations

taking into account magnetic field errors and other effects.

The report is designed to perform a long-running parallel

simulation involving a large number of ‘macro-electrons’,

traveling in a (possibly imperfect) magnetic field of an undu-

lator, and to accurately predict the spectral performance. The

interactive report is updated periodically to visualize the most

recent data from the multi-electron calculation performed by

SRW [see the lower-left report in Fig. 2(a)]. The progress bar

shows the current progress of the calculation in terms of the

number of macro-electrons used.

3.6. Brightness

The Brightness Calculation Report was recently added to

allow the comparison of brightness at different facilities. The

classic formulae were given by Kim (1989) with correction due

to electron beam energy spread elucidated by Tanaka &

Kitamura (2009). We implement a variant on Tanaka’s form-

alism that has already been included in the Igor Pro interface

to SRW. In addition to the inclusion of the energy spread

effects on undulator radiation spectral flux, angular diver-

gence and effective source size, the possibility of taking into

computer programs
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Figure 6
Single-Electron Spectrum Report showing the zoomed seventh harmonic
of the undulator radiation spectrum presented in Fig. 2(a).

Figure 7
The Intensity Report from the simulation of Fig. 2(a), showing the single-
electron intensity distribution. The corresponding report in Fig. 2(a)
shows the multi-electron intensity, estimated by convolution from the
single-electron distribution, disregarding energy spread.



account a deviation from undulator resonant frequency is also

included in the calculation method implemented in SRW

(Nash et al., 2018). This is not accounted for in the results of

Tanaka et al., and this energy detuning is an important effect

since most undulators operate at a detuned photon energy in

order to maximize flux.

4. Radiation propagation simulations

The calculation of radiation wavefront propagation through

an optical system is very important for understanding beam-

line operation at a light source facility. In the SRW code, such

calculations are performed using high-accuracy physical-

optics-based methods. The central part of this method consists

of propagating a fully coherent radiation wavefront through

a set of optical elements, using Fourier optics. This fully

coherent wavefront corresponds to emission from a single

macro-electron (Chubar & Elleaume, 1998). This calculation is

usually fast (lasting from seconds to minutes). The calculation

of characteristics of propagated partially coherent radiation is

carried out by averaging of the single-electron characteristics

over the phase-space volume of the electron beam. This is

usually a CPU-intensive calculation, which is executed in SRW

using parallel processing.

The ‘Beamline’ page (Fig. 2b) provides users with means to

simulate optical beamlines. A number of utility functions and

libraries were created to facilitate application of the general

‘thin element’ transmission-function-based propagator for

different types of refractive and diffractive optical elements.

Such elements include perfect and imperfect compound

refractive lenses, zone plates, special coherence probes, masks,

etc. This approach is also applied to miscellaneous samples for

the simulation of coherent scattering experiments.

The Sirepo interface to SRW is designed to be easy to use

and intuitive. Default values for electron beam, magnetic field

source and beamline components are selected to give physi-

cally meaningful results. In adjusting the parameters and

building up a beamline, however, the user is required to have

some knowledge of the different elements and X-ray propa-

gation in order to arrive at an accurate result. In particular,

grid sizes, precision parameters and propagation parameters

must be adjusted to ensure adequacy of the calculations. A

number of dedicated physical optics propagators for different

types of reflective optics and crystals have been developed in

SRW recently (Sutter et al., 2014; Canestrari et al., 2014a,b).

These propagators were extensively benchmarked and

extended by including various options and imperfections of

the optical elements. All these propagator options are avail-

able in Sirepo via dedicated menus, dialogs, widgets and Wiki-

pages of documentation. Some automation is available for

different methods of wavefront propagation. The propagation

parameters may be adjusted in a convenient dialog, but some

care is required in their settings. These parameters are docu-

mented in the Sirepo Wiki (https://github.com/radiasoft/

sirepo/wiki/SRW-Propagation-Parameters ) along with each of

the beamline elements and reports. This documentation is

under development, and will continue to improve. We also

foresee improved automation of parameter setting, although

some expertise in this area will likely remain necessary.

Fig. 8 depicts all optical elements available in Sirepo at the

time of this writing. The optical elements are organized in the

following groups: refractive optics and transmission objects

[lens, compound refractive lens, fiber, aperture, obstacle,

‘pepper-pot’ (mask) and samples], mirrors (planar, circular/

elliptical cylinders and toroids), elements of monochromator

(crystal and grating), and finally a watchpoint. A user can set

up a beamline as a sequence of optical elements using a drag-

and-drop editor. To add a new element, the user can drag it

from the toolbar menu and drop it anywhere in the beamline.

The program then pops up a parameter dialog to specify

details about the optical element and its exact longitudinal

position with respect to a source. Depending on the type of the

element, the parameter dialog may have several tabs with

basic and advanced parameters.

When the user drags and drops a watchpoint in between the

existing elements, after clicking the ‘Save Changes’ button a

new Intensity Report for the added watchpoint will appear.

Any optical element and watchpoint can be temporarily

disabled, as demonstrated by the darker watchpoint element

in the beamline definition area of Fig. 2(b). This is done by

clicking the ‘PowerOff’ button, which appears when hovering

the cursor over the element. Below we will illustrate the

definition of the main optical elements currently implemented

in Sirepo.

4.1. Optical element parameters

4.1.1. Refractive optics and transmission objects. Trans-

mission objects are typical in Fourier optics. Here, we briefly

describe the related optical elements available in Sirepo.

A lens is an idealized optical element which has no aber-

rations and is characterized by focal lengths in the horizontal

and vertical planes. It changes the quadratic terms of the phase

of the radiation electric field.

For a compound refractive lens (CRL) (Snigirev et al., 1996)

element (see Fig. 9), the values of the refractive index

decrement and the attenuation length of the material are

dynamically accessible from the Center for X-ray Optics

(CXRO) online database (http://henke.lbl.gov/optical_

constants), a widely used resource with a comprehensive
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Figure 8
Optical elements available on the Beamline page of Sirepo.



database related to X-ray interactions with matter. The

refractive index decrement and the attenuation length

strongly depend on the type of material and the photon energy

of interest, therefore the possibility to dynamically query the

CXRO database helps users to obtain the parameters auto-

matically. The detailed description of this feature is available

on our Wiki (https://github.com/radiasoft/sirepo/wiki). The

focal length of the CRL is calculated as well, allowing scien-

tists to more easily estimate the configuration of the CRL for

their needs.

The Fiber optical element, which can be used for testing

X-ray beam coherence (Kohn et al., 2001), has been imple-

mented and used in SRW for some time (Chubar et al., 2001,

2013b) and has recently been made available in Sirepo. The

refractive index decrement and the attenuation length para-

meters are obtained automatically by the same method that is

used for the CRL.

The Aperture and Obstacle optical elements can be used

separately or together to simulate slits, which are extensively

used in beamlines. Users can place rectangular and circular

apertures and obstacles, with specified sizes and transverse

positions.

The Mask (‘pepper-pot’) element can be used as a wave-

front Hartmann sensor for X-rays (Idir et al., 2017). This

element is being developed as part of a collaboration with the

Metrology group at Brookhaven National Laboratory

(BNL).1 We are currently working on improving the Mask

implementation before it is available to users.

For many types of experiments (elastic scattering, trans-

mission microscopy, etc.) samples can be represented as

transmission objects. More details on the Sample optical

element and an example are provided in x4.3. A height profile

(e.g. of a mirror) can also be represented as a transmission

object. Fig. 10 demonstrates the optical path difference

describing the quality of a mirror surface.

4.1.2. Mirrors. The orientation of mirrors and gratings can

be defined via grazing angle and/or via coordinates of the

normal and tangential vectors to the mirror surface at its

center point, in the frame of the incident beam. The vector

coordinates are updated automatically whenever the grazing

angle value is changed by the user.

Planar, circular/elliptical cylindrical and toroidal mirrors

are available. In SRW, mirror propagators are implemented

using the stationary phase method, which allows one to take

into account (error-free) surface shape and orientation of

the mirror in the frame of the incident beam (Canestrari et

al., 2014b). Users can also add 1D and 2D height profiles

(e.g. metrology data) describing imperfections of the mirror

surfaces. The optical path difference can be visualized to

better understand the surface quality of a mirror as demon-

strated in Fig. 10.

4.1.3. Crystals and gratings. Perfect crystal and grating

optical elements are available in Sirepo for the simulation of

monochromators for hard and soft X-rays. Individual crystals

are used as parts of double-crystal monochromators – optical

elements, used in most hard X-ray beamlines, in which dyna-

mical diffraction on single crystals is used to cut a narrow

bandwidth from a wide spectrum of synchrotron radiation. In

SRW, the crystal propagator for the radiation electric field

is implemented based on the Zachariasen formulae (Zachar-

iasen, 1945; Sutter et al., 2014). Options of the propagator for

Bragg reflection and transmission geometries are available,

while the one for the Laue geometry is still under develop-

ment. Fig. 11 depicts the parameters of the Crystal optical

element in Sirepo.
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Figure 9
The menu of the CRL.

Figure 10
The optical path difference of a 2D mirror height profile due to surface
errors, defined as a ‘transmission’ object (modifying only the radiation
phase in this case).

1 DOE FWP grant DE-SC0012704.



Based on the specified photon energy, the material and

Miller’s indices, the crystal reflecting planes’ d-spacing and

the real and imaginary parts of the crystal polarizability/

susceptibility �0, �h (chi-zero, chi-h) are automatically

obtained by programmatically accessing the API provided by

the X-ray Server (http://x-server.gmca.aps.anl.gov/x0h.html).

Any change in the photon energy, material or Miller’s indices

will trigger a new request to the server and the corresponding

fields will be populated by the newly received values. Any

change of the angles, the d-spacing or the components of the

crystal polarizability results in a recalculation of the compo-

nents of the normal and tangential vectors by Sirepo to

correctly orient the crystal for the particular energy and

material, providing a helpful tool for beamline scientists

attempting to simulate beamlines with crystal mono-

chromators. Our Wiki (https://github.

com/radiasoft/sirepo/wiki) demon-

strates the use of this feature.

Gratings are often used to generate

angular dispersion in a polychromatic

incident soft X-ray beam, which allows

for the creation of an efficient mono-

chromator, e.g. by installing a slit at

some distance after the grating. Calculation of the wavefront

propagation through gratings in SRW also utilizes the

stationary phase (or the ‘local ray-tracing’) method (Canes-

trari et al., 2014a). Parameters of the grating element can be

configured via its menu (Fig. 12). The grating may be defined

to have a variable line/groove spacing, with the groove density

as a function of longitudinal position defined by a fourth-order

polynomial.

4.2. Simulation example: propagation of radiation from
source to sample

Along with some textbook examples, Sirepo implements

a number of predefined virtual beamlines: the CHX, HXN,

SRX, FMX, SMI and ESM beamlines of NSLS-II (https://

www.bnl.gov/ps/beamlines) and the SXR beamline of LCLS at

SLAC (https://lcls.slac.stanford.edu/instruments).

The following text covers several levels of simulations which

Sirepo allows to perform using a simplified hypothetical

beamline. Fig. 13 shows the beamline layout as defined via

Sirepo. Each watchpoint element produces a separate inten-

sity report at the distance where the watchpoint is introduced

to the beamline. We will pay attention to the initial intensity

report (at 20 m from the source) and the intensity reports

corresponding to the watchpoints ‘Before SSA’ (50 m from the

source) and ‘At Sample’ (90 m from the source) in all simu-

lations described below.

The beamline example uses the idealized undulator source.

We tuned the undulator to produce the fundamental harmonic

at 1.6 keV with the ‘NSLS-II Low Beta Day 1’ predefined

electron beam parameters (see Fig. 4 and Table 1), and for
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Figure 11
Parameters of the Crystal optical element.

Figure 12
Parameters of the Grating optical element.

Figure 13
Definition of a simplified hypothetical beamline of the simulation example in Sirepo/SRW.



our simulation we have selected the fifth undulator radiation

harmonic with the photon energy of 8 keV. This photon

energy value and the longitudinal position of the first optical

element can be defined in a dialog activated through the

‘Initial Wavefront’ button. For simplicity, the monochromator

is not included in these simulations, and the radiation is

assumed to be perfectly monochromatic.

The rectangular aperture associated with beam slit ‘S1’ is

located 20 m downstream from the source, and has the size of

1 mm � 1 mm (h � v). To focus the beam at the Secondary

Source Aperture (SSA), located 50 m from the source, we

employ a beryllium CRL. The SSA size is 15 mm � 10 mm

(h � v). A watchpoint ‘Before SSA’ is used to observe the

intermediate intensity distribution as a wavefront propagates

through the preceding optical elements. The second part of the

beamline (downstream from the SSA) is designed to utilize

a pair of elliptical mirrors in Kirkpatrick–Baez geometry

(Kirkpatrick & Baez, 1948) to produce a sub-micrometre

X-ray beam spot at a sample position �90 m from the source.

The vertically focusing mirror ‘VKB’ is located at a distance

of 89.15 m from the source, while the horizontally focusing

mirror ‘HKB’ is at 89.65 m. Both mirrors have a grazing

incidence angle of 3.6 mrad. This system allows for focusing

the beam to a size of �100 nm in the horizontal and vertical

planes at the sample.

Here, we guide the reader through fully and partially

coherent SRW simulations of the beamline. We also present

fully incoherent simulations of the same beamline, using

the geometrical ray-tracing approach implemented in the

SHADOW3 code, which is also available in Sirepo. Fig. 14

displays the intensity distributions at three locations: 20 m

(initial intensity), 50 m (‘Before SSA’) and 90 m (‘At Sample’)

from the source, resulting from different types of calculations.

The first row corresponds to a single-electron (fully coherent)

SRW simulation. The second row corresponds to a multi-

electron (partially coherent) SRW simulation. The third row

corresponds to a fully incoherent SHADOW3 simulation.

The single-electron simulation is usually finished within a

few minutes. By default, Sirepo performs these fast single-

electron simulations; however, if the user wants to perform a

more realistic multi-electron simulation, taking into account

the distribution of electrons over the phase-space volume of

the emitting electron beam, then the ‘Partially Coherent’ tab

on the Beamline page can be used. These partially coherent

simulations require more computing resources, and can run in

parallel from a few minutes to a few days, depending on the

parameters of the simulation and available resources. The

corresponding results for our test case can be observed in

Fig. 14 (second row). The intensity plot is interactive and is

updated periodically to show the latest results. The presented

intensity distributions were obtained after about 30 min of

execution using 21 cores of a multi-processor system,

converging after averaging of about 5000 macro-electrons.

The corresponding SRW simulation example can be found in

Sirepo (https://sirepo.com/srw#/beamline/LA5qG1J1).

The equivalent SHADOW3 beamline was recreated in

Sirepo (https://sirepo.com/shadow#/beamline/wsGlwMqv).

The resulting initial intensity distribution and intensity

distributions ‘Before SSA’ and ‘At Sample’ are displayed in

Fig. 14 (third row). This ray-tracing calculation lasted a few

minutes. It can be seen that the results are comparable with

ones obtained from SRW partially coherent simulations. This

is also illustrated by Table 2, where the spot sizes obtained

by the different simulations are listed. The relatively good

agreement between the partially coherent calculations with

SRW and the incoherent SHADOW3 calculations are

explained by a relatively low degree of coherence of the

radiation in this case, in particular in the horizontal plane,

where the intensity distributions are mainly dominated by the

contributions from the finite-emittance electron beam.

The absence of significant slit diffraction in this example

makes the results of the partially coherent and incoherent

simulations relatively close, even in the vertical plane, where

the degree of the radiation coherence is relatively high. The

existing differences between some spot dimensions are in part

due to the use of an incoherent Gaussian beam as the source

for the SHADOW3 simulations, rather than starting with

undulator radiation. A more detailed comparison between

results of partially coherent simulations with SRW and inco-

herent simulations with SHADOW3, for different optical

schemes, with different degrees of source coherence and

different contributions from slit diffraction, has been

previously presented by Canestrari et al. (2014b).

4.3. Simulation of X-ray scattering from experimental
samples

Simulation of radiation scattering by experimental samples

is important for experiments at light source facilities (Chubar

et al., 2017).

In collaboration with the Center for Functional Nanoma-

terials (CFN) of BNL, we started implementation of a Sample

library in SRW and created the corresponding Sample optical

element in Sirepo (Fig. 15). Users can provide an electron

microscope image or a NumPy file describing a real or virtual

experimental sample, together with specified spatial resolution

of the image and thickness of the sample. The material of the

sample can be specified in a drop-down menu, and the

refractive index decrement and attenuation length of the

material can be obtained automatically from the above-

mentioned CXRO online database, the same way it is done for
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Table 1
Electron beam parameters of the ‘NSLS-II Low Beta Day 1’ predefined
beam.

Parameter Value(s)

Energy (GeV) 3
Current (A) 0.5
RMS energy spread 0.89 � 10�3

Horizontal Vertical

Emittance 0.9 nm 8 pm
Beta-function 1.84 1.17
RMS size (mm) 40.69 3.06
RMS divergence (mrad) 22.12 2.61



the CRL (see x4.1.1). Positions of the sample can be specified

relative to the source and the origin of the incident beam

frame.

The Sample library accepts many types of input, i.e. image

files in different formats (TIFF, PNG, JPEG, BMP, etc.) or a

NumPy array file with the data of the sample image.

Python functions have been developed

to implement these new capabilities via

the Python API of SRW and Sirepo. The

Sample image is read by means of the

Python Image Library (https://pillow.-

readthedocs.io) and is converted to a

NumPy array. The area of interest can

then be cropped from the original image

by means of the parameters (see menu in

Fig. 15). Next, a function creates an SRW

transmission object treating the thickness of the material at

each pixel proportional to the gray level of the pixel. The

refractive index decrement and attenuation length parameters

are used along with the thickness of the material in the

amplitude transmission and optical path difference calcula-

tions for each pixel. Finally, the resulting transmission object is
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Figure 14
Initial intensity report (at 20 m) and intensity reports for the watchpoints ‘Before SSA’ (at 50 m) and ‘At Sample’ (at 90 m) (left to right) in Sirepo. The
first row corresponds to the single-electron (fully coherent) SRW simulation, the second to the multi-electron (partially coherent) SRW simulation, and
the third to the fully incoherent SHADOW3 simulation.

Table 2
Comparison of the beam spot sizes (horizontal and vertical FWHM) at different distances (20, 50
and 90 m) from the source for different calculation methods.

At 20 m (mm) Before SSA (50 m) (mm) At sample (90 m) (nm)

Calculation method Horizontal Vertical Horizontal Vertical Horizontal Vertical

SRW (single-electron) 253.6 262.3 4.7 4.5 36.6 92.4
SRW (multi-electron) 1107.0 464.2 42.4 6.0 106.6 118.7
SHADOW3 1032.6 503.8 41.6 6.7 106.4 80.3



used by SRW to perform the wavefront propagation through

the element and a following drift space to obtain a diffraction

pattern at the specified distance from the sample.

Fig. 16 shows the scattering pattern after the coherent

(9.65 keV) radiation propagation through nano-object

samples manufactured at CFN (Lhermitte et al., 2017). In the

figure, input images of both the real sample and the ‘ideal’

sample of the same topology (i.e. concentric rings) are

presented together with their corresponding diffraction

patterns. The patterns are similar in the two cases, except that

the one corresponding to the real sample contains more

‘noise’ (speckles). This is presumably due to the existing

imperfections of the real sample. Analysis of the accuracy of

such diffraction images and speckle patterns is a subject of

ongoing work. The Sample library will be further developed

and expanded, so that it can be used in simulations of coherent

scattering and microscopy experiments at light source facil-

ities.

4.4. Application of Sirepo/SRW at NSLS-II

Sirepo and SRW have been intensively utilized at the NSLS-

II light source facility in many aspects. For instance, spectrum-

based alignment of in-vacuum undulators (IVUs) was guided

by realistic SRW calculations of on-axis undulator radiation

spectra for SRX, CHX, LIX and SMI beamlines (Chubar et al.,

2018). Another example is a study of the coherence properties

in the hard X-ray regime at the CHX beamline. Based on the

commissioning results, a realistic simulation of the whole

beamline, including source and optics, has been performed

leveraging a ‘virtual beamline’ module of SRW code in Sirepo

(Chubar et al., 2017; Wiegart et al., 2017, 2018). This virtual

beamline capability was used to simulate partially coherent

small-angle scattering patterns of samples relevant to the

CHX science case, mimicking ‘detector images’ of real

experiments. Such source-to-detector simulations of experi-

ments allow for an accurate estimation of feasibility of a given

experiment, for an optimization of the beamline setup and

interpretation of experimental results.

5. Performance overhead benchmarking

In order to optimize the Sirepo interface for SRW and to

minimize the total waiting time for simulations, we collected

data regarding the differences between SRW run times when

using the GUI as compared with the command line interface

(i.e. Python scripts). We also measured the distribution of total

user waiting time between different processes, such as calcu-
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Figure 15
Parameters of the Sample optical element.

Figure 16
Concentric rings sample (left) and simulated diffraction pattern created
by it as observed at 4.81 m (right): ‘ideal’ fabrication error-free case
(upper image plots) and the case of a sample object generated for
simulations from a real nano-fabricated sample (lower image plots). The
outermost diameter/size of both samples is �1.35 mm. The simulations
were performed with the NSLS-II CHX beamline layout.



lation, data preparation and data transfer to a client. Effi-

ciencies of three different servers running SRW were tested as

well. It was discovered that for nearly all tested simulations

the user waiting time with the GUI was greater, with some

simulations taking up to three times longer. The difference

was often the result of time spent on data transfer.

First, we measured total user waiting times for single-elec-

tron emission and wavefront propagation simulations via the

GUI and the command line. The waiting times were measured

for three different cases of radiation wavefront sampling, i.e.

resolution, to see whether this affected the GUI and command

line performance differently.

The tests have shown that with the increase in resolution the

GUI performance lagged further behind the command line

performance. With the increase in resolution, the amount of

calculation that is required should reasonably increase by

equal factors, regardless of the interface used. However, a

browser-based GUI must transfer all data from a server, which

contributes to the waiting time, especially for large data sets.

With the increase in resolution, more data need to be trans-

ferred from server to client, increasing the latency. Fig. 17

illustrates a series of data that were collected and averaged;

the vertical bars show the standard error.

To quantify how the data transfer time affected the

performance of the GUI, we compared the calculation time

and the total waiting time for three servers running the same

SRW calculation (Fig. 18).

The ‘Alpha’ server is a single Linux node from a commercial

cloud computing provider, with the Sirepo back-end running

inside Docker. The NSLS-II Docker server is a single blade

running Debian Linux, with 36 cores in two sockets. Here

again the Sirepo back-end was running inside Docker. The

NSLS-II Vagrant server is a standalone host system running

MS Windows with 28 cores, half of which are allocated to a

VirtualBox VM running Sirepo services. From Fig. 18 we see

that the data transfer contributes 25–50% of the total user

waiting time.

Different portions of time spent for data transfer can be

explained by the different server configurations and different

virtualization technologies. For instance, the NSLS-II Vagrant

server was found to spend about half of the user waiting time

on data transfer, which can be explained by larger overhead

from the guest operating system within the VirtualBox

virtualization environment, in contrast to more efficient

containerization via Docker technology, utilized on other

NSLS-II servers and the Alpha. To optimize Sirepo perfor-

mance, the amount of transferred data must be minimized.

Tests were also performed with Sirepo to measure the time

spent by the server on preparation of the results before

sending them to the client (browser), such as conversion of

SRW calculation results to JSON format. This was done by

subtracting the calculation time from the total server time.

Fig. 19 illustrates the results: it is clear that the longest time in

the considered single-electron simulation case is the calcula-

tion. As expected, tests show that the calculation time via the

command line interface is almost identical to the calculation

time of SRW in Sirepo, meaning that the overhead of the

virtual machines is minimal.

The response preparation was found to be reasonable, as

compared with the SRW calculation time. It does not exceed

15% of the total waiting time. The time spent on data transfer

between the Sirepo server and the browser-based GUI

represents the most significant performance overhead

compared with command line execution. However, it is

expected behavior for a distributed system: a browser-based

GUI (client) must wait until the results are transmitted over

the network.

This issue has recently been addressed in Sirepo by means

of limiting the maximum image size being passed from server

to client (see Fig. 20). This is done by resizing the original data

set produced by SRW, using the scipy:ndimage:zoomðÞ
function, when the width of the image is greater than the
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Figure 17
Total user waiting time versus sampling factor of the initial undulator
radiation wavefront in the NSLS-II FMX beamline single-electron
simulation performed on the NSLS-II Vagrant server.

Figure 18
Comparison of the calculation time and waiting time for three different
servers (each simulating the NSLS-II FMX beamline with SRW, using a
sampling factor of 0.7): RadiaSoft’s Alpha server, and two installations of
Sirepo at NSLS-II, one using Docker and the other using the VirtualBox
virtual machine provided via a Vagrant container.



specified amount of pixels (original size is the default value).

The feature was tested on large data files corresponding to up

to 10000 � 10000 pixel images, and showed a considerable

reduction in data transfer time.

The profiling tests described above involved relatively fast,

single-electron fully coherent SRW calculations. In the case of

multi-electron partially coherent calculations, delays due to

the data transfer and other factors relative to the use of Sirepo

are smaller compared with the calculations themselves, even if

periodic updates of plots are sent to the corresponding reports.

The multi-electron partially coherent calculations may be

substantially speeded up via parallel execution. The above

considerations suggest that both Sirepo and command line

(Python) interfaces to SRW would benefit equally from this

speed-up, as it is entirely on the server side. In Sirepo, such

calculations are decoupled from the visualization procedure,

and therefore the speed of the calculation is not affected by

the nature of the distributed system.

Benchmarking of both Sirepo and SRW is an important

topic. As the development is ongoing, we will continue

improving the code and benchmarking the results.

6. Distribution of Sirepo

The software developed for this project has been released

under an open source license and published on GitHub

(https://github.com/radiasoft/sirepo) and other repository

sites. As an out-of-the-box application, Sirepo can be obtained

within a container, either Docker (https://hub.docker.com/r/

radiasoft/sirepo) or Vagrant (https://app.vagrantup.com/

radiasoft/boxes/sirepo).

Docker is an open platform for distributed applications. It

enables rapid deployment of applications to the cloud. Using

Docker on Linux, it is possible to create a file that contains

scientific code(s), plus all required tools and dependencies,

which can then be copied to any Linux server or cluster and

rapidly activated. A user can connect to the container via

console interface, or the software can be accessed remotely

through a web-based user interface. This removes the ‘pain’ of

multi-component software installation on Linux, and enables

all the advantages of cloud-based scientific computing by

providing on-demand access via a local cluster, supercomputer

or commercial cloud provider. Docker-compatible execution

environments are available at many national supercomputing

centers.

Vagrant enables cross-platform containerization of appli-

cations. Just like Docker, it is used to create and configure

lightweight, reproducible and portable Linux development

environments. This is essential for developing and testing

Linux applications on non-Linux computers.

Since our source code resides on GitHub, it provides a way

to efficiently test the code and distribute it via the Python

Package Index (PyPI) and the Docker repositories. This

process is managed using Travis CI, a continuous integration

and continuous delivery platform. After each commit to

the GitHub repository and successful tests in the Travis CI

environment, a new version of the Python-installable package

is uploaded to the PyPI server and a new container is gener-

ated and placed automatically in the Docker repository.

SRW and its Python interface, fully compatible with a given

version of Sirepo, is included in the Sirepo distribution

container. The most recent cross-platform canonical version of

SRW for Python can also be downloaded from a dedicated

SRW GitHub repository (https://github.com/ochubar/SRW);

however, this version is not guaranteed to be fully supported

by Sirepo.

7. Summary

We have presented Sirepo, an open source cloud-computing

framework, which includes a sophisticated browser-based

GUI for X-ray optics simulations. Currently, Sirepo is inter-

faced with popular codes in the fields of synchrotron radiation

source and optics simulations, such as SRW and SHADOW3,

and particle accelerators (Elegant, Hellweg and Warp). Sirepo
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J. Synchrotron Rad. (2018). 25, 1877–1892 Maksim S. Rakitin et al. � Sirepo for X-ray source and optics simulations 1891

Figure 19
Components of the total user waiting time. Total server time is the
aggregate value of the calculation time and the response preparation
time. Total user time is the aggregate value of the total server time and
time for data transfer. The data were gathered on simulations for the
NSLS-II FMX beamline case with a sampling factor of 0.5.

Figure 20
A menu in the Sirepo interface for limiting the size of the resulting image
to be sent to client



is a flexible framework that can be relatively easily integrated

with scientific codes to provide a convenient GUI for simu-

lations in the cloud.

We described in detail the features of the Sirepo interface

for SRW, a program for physical optics simulations. Sirepo for

SRW currently contains predefined textbook examples as well

as simulations of the wavefront propagation through existing

beamlines at NSLS-II and LCLS. Users benefit from both

Source and Beamline simulation pages. In the Source page,

users can simulate and optimize the source of the synchrotron

radiation (e.g. undulator, dipole, etc.). In the Beamline page,

one can construct a ‘virtual’ beamline emulating the layout of

real X-ray or general optical beamlines.

Sirepo utilizes interactive widgets and dynamically accessed

data from community databases for X-ray optics. Based on

benchmarking tests, we have worked to ensure reliability and

to minimize overheads related to the use of Sirepo with large

datasets. Sirepo can have a number of important applications

for light source facilities and in other areas.
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