
research papers

1780 https://doi.org/10.1107/S1600577518010895 J. Synchrotron Rad. (2018). 25, 1780–1789

Received 10 April 2018

Accepted 29 July 2018

Edited by R. W. Strange, University of Essex, UK

Keywords: M-BLANK; X-ray fluorescence;

strokes; window binning; Xpress 3 electronics.

A comparison of parametric and integrative
approaches for X-ray fluorescence analysis
applied to a Stroke model

Andrew M. Crawford,a* Nicole J. Sylvain,b Huishu Hou,b Mark J. Hackett,c,d

M. Jake Pushie,b Ingrid J. Pickering,a Graham N. Georgea and Michael E. Kellyb

aGeology, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada, bDivision of

Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon,

Saskatchewan S7N 0W8, Canada, cCurtin Institute for Functional Molecules and Interfaces, Department of Chemistry,

Faculty of Science and Engineering, Curtin University, Kent Street, Bently, Western Australia 6102, Australia, and
dCurtin Health Innovation Research Institute, Curtin University, Kent Street, Bently, Western Australia 6102, Australia.

*Correspondence e-mail: andrew.crawford@usask.ca

Synchrotron X-ray fluorescence imaging enables visualization and quantifica-

tion of microscopic distributions of elements. This versatile technique has

matured to the point where it is used in a wide range of research fields. The

method can be used to quantitate the levels of different elements in the image

on a pixel-by-pixel basis. Two approaches to X-ray fluorescence image analysis

are commonly used, namely, (i) integrative analysis, or window binning, which

simply sums the numbers of all photons detected within a specific energy region

of interest; and (ii) parametric analysis, or fitting, in which emission spectra are

represented by the sum of parameters representing a series of peaks and other

contributing factors. This paper presents a quantitative comparison between

these two methods of image analysis using X-ray fluorescence imaging of mouse

brain-tissue sections; it is shown that substantial errors can result when data

from overlapping emission lines are binned rather than fitted. These differences

are explored using two different digital signal processing data-acquisition

systems with different count-rate and emission-line resolution characteristics.

Irrespective of the digital signal processing electronics, there are substantial

differences in quantitation between the two approaches. Binning analyses are

thus shown to contain significant errors that not only distort the data but in some

cases result in complete reversal of trends between different tissue regions.

1. Introduction

Cells, tissues and organs all contain a variety of bulk, trace and

ultra-trace elements – the metallome – in addition to organic

constituents. In most cases, interconnected homeostatic

mechanisms maintain these elemental concentrations, often

within narrow limits. Relevant concentrations range from 10–

100 mM for bulk elements (e.g. P, K, Na and Fe in red blood

cells) to 100 mM–3 mM for trace elements (e.g. Zn, Mg, Ca and

Fe in other cell types) to 1–20 mM for ultra-trace elements (e.g.

Cu, Ni, Mn and Se in blood) (Herring et al., 1960a; Sham-

berger, 2003). These concentrations are perturbed under

various conditions and disease states (Herring et al., 1960b;

Kakkar & Makkar, 2009), and these variations can be clini-

cally diagnostic.

There are several methods that can sufficiently measure

cellular- and tissue-specific elemental compositions; these

include mass spectrometry (MS), metal-specific organic

fluorophores and intrinsic X-ray fluorescence (XRF) (Penner-
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Hahn, 2014; McRae et al., 2009; Pushie et al., 2014). Fluor-

escent probes have informed studies on the subcellular tran-

sition metal cations Zn (Fierke & Thompson, 2001; Wang et

al., 2012; Kikuchi et al., 2004) and Cu (Yang et al., 2005) as well

as others, and can have excellent sensitivity. Unfortunately, in

order for fluorescent probes to function they must interact

with the metal of interest, meaning they only detect the labile

(free) metal ions, and also have problems detecting para-

magnetic ions as a result of intersystem crossing (Penner-

Hahn, 2014). Moreover, since fluorescent probes must bind

the metals to report on metal content, this can disrupt metal

homeostasis and all competitive binding equilibria must be

taken into account to accurately calculate the total biological

content. MS methods can have great to exquisite sensitivity.

For example, multi-element detection using inductively

coupled plasma MS (Miyashita et al., 2014; Mueller et al., 2014;

Ho & Chan, 2010) or quadrupole MS detection (Groombridge

et al., 2013) can detect as few as 105 atoms per cell, whereas

time-of-flight MS has weaker sensitivity. Unfortunately, MS

methods for cell/tissue analysis can be challenging owing to

incomplete vaporization/ionization, the need for vacuum

conditions and variable ionization efficiencies for different

elements caused by matrix effects.

In contrast to these methods, XRF is always detectable,

requires no reporter probes (i.e. fluorophores), suffers

minimal matrix effects, is sensitive to both bound and free

metal ions and does not require vacuum conditions for almost

all elements (Z > 12); this makes XRF an ideal tool for

interrogating the biological metallome.

The use of synchrotron-based X-ray fluorescence imaging

(XFI) to map the elemental composition of individual cells,

tissues and organs can have a spatial resolution as low as tens

of nanometres and is commonly used for studies of transition

metals (Penner-Hahn, 2014; McRae et al., 2009; Pushie et al.,

2014; Paunesku et al., 2006; Punshon et

al., 2013; Ortega et al., 2009; Vogt &

Ralle, 2013; Zhao et al., 2014; West et al.,

2014), and recently the use of XRF has

been extended to include flow cyto-

metry (Crawford et al., 2016; Crawford

& Penner-Hahn, 2018).

In synchrotron XRF, a sample is

bombarded with a focused beam of

photons with sufficient energy to excite

core shell electrons, creating an elec-

tron–hole pair. Following ionization,

outer-shell electrons relax to fill the core

hole, resulting in the intrinsic emission

of a photon (in the X-ray regime) with

energy equivalent to the difference in

energy between the two bound states.

As such, the emission spectrum

recorded by a solid-state energy-

dispersive detector in an XRF (XFI if

one is performing imaging) experiment

(e.g. Fig. 1) comprises a series of peaks

attributable to well defined X-ray

emission lines and scatter together with a background signal.

Even though X-ray emission lines are intrinsically Lorentzian

in shape (Heckel & Scholz, 1987; Gunnink, 1977; Brunetti,

2013) with a full width at half-maximum (FWHM) of �10 eV,

the experimental peak shape will be much broader as a result

of Poisson statistics associated with electron–hole pair

production when each photon strikes the detector, a function

which is Gaussian with a FWHM of approximately 100 eV.

The resulting peak is a Lorentzian–Gaussian convolution with

a FWHM of �120 eV. Approaches to the processing and

analysis of XRF data historically have used two main techni-

ques to extract counts from the X-ray emission spectrum. A

comparison between these two techniques is the subject of

this paper.

1.1. Window binning

Integrative analysis, referred to herein as window binning

(or just binning), is the simplest approach to XRF data

analysis and is performed by summing all of the counts that

are in an energy region of interest (ROI) corresponding to a

specific elemental emission line. For example, this is repre-

sented in the inset in Fig. 1, where the Ca K� (3.692 keV)

emission is approximated as the total integrated counts

striking the detector in the region between points ‘a’ and ‘b’.

These integrated regions from each pixel of a sample can then

be converted from fluorescence counts to elemental mass with

reference to the corresponding integration for a standard,

correcting each, if necessary, for the background counts.

Window binning benefits from the fact that it is fairly

straightforward and fast, only requires the single-channel

analyzer values (SCAs, i.e. the integrated ROI sums) from

data collection (just the reported integrated counts, not the

full spectra), and is almost always performed directly at the
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Figure 1
Fitted spectra sum of the full X-ray emission spectrum from mouse brain tissue presented in Fig. 3.
The green, black, red and blue dashed lines correspond to the background, fit, and K and Ca K line
emissions, respectively. The solid black, green and blue lines represents the raw X-ray fluorescence,
blank (or background) corrected X-ray fluorescence and various other fitted emission lines,
respectively. Inset: a close up of both the K and Ca K line emissions, showing both the fitted spectra
as well as how window binning using the ROI from channel a to channel b would be applied for Ca
K� quantitation. The K K� and Ca K� are in the same region of interest and thus the K emission
will bleed into the Ca signal if the two signals are not properly deconvoluted.



beamline. In addition, it has not always been practical to

process and save to disk the entire emission spectrum from

each pixel with the image. However, as demonstrated below,

this window-binning approach only works for the simplest

samples because of peak overlap; the inset in Fig. 1 highlights

the resulting peak overlap, in that the ROI for the Ca K� line

also contains the K K� and background fluorescence in a

relative ratio of 1:20:20.

1.2. Fitting

Parametric analysis, referred to as fitting, is a more robust

approach to the analysis in which the entire emission spectrum

for each pixel is fit to a series of equations modeling the

emission lines, background and scatter (Fig. 1). Doing so

allows for complete deconvolution of overlapping lines

(e.g. Ca K� and K K�, Cd L-lines and K K-lines). However,

this approach takes longer, requires the full energy-resolved

spectrum at each pixel and is more computationally

demanding. A number of programs are available to decon-

volute the emission spectrum in this way, including MAPS

(Vogt, 2003), PyMca (Solé et al., 2007), AXIL (Janssens et al.,

1996), GeoPIXE (Ryan et al., 1995, 2010, 2014), PyXRF (Li et

al., 2017) and M-BLANK (Crawford, 2015, 2018).

1.3. Detector electronics

A comparison of these two approaches would be incom-

plete without also discussing changes at the level of data

acquisition. The detector pre-amplifier pulse-train is typically

fed to digital signal analyzer electronics (Pushie et al., 2014)

which quantifies the pulse heights, converting them to an

energy spectrum such as that shown in Fig. 1. As described

above, the processed peak is quite broad (Lorentzian–Gaus-

sian convolution, FWHM > 100 eV) leading to spectral

overlap of many emission lines (e.g. K K� with Ca K�). The

widths of processed peaks contain contributions that are

inherent to the detector and the pre-amplifier which repre-

sents an inherent resolution, but in addition to these there

are also contributions (broadening) from the digital signal

processing electronics. Newer digital signal processing elec-

tronics have more sophisticated and considerably faster pre-

amplifier pulse-train handling, which can result in narrower

peak shapes and therefore better spectral resolution.

Here we compare the results of binning and fitting analyses

of XFI data. We also compare two major types of digital signal

processing electronics, with the newer electronics showing a

30� increase in processing rate, leading to increased count

rates, narrowing of the detector response function and

decreased overlap of emission lines. To the best of our

knowledge, except for the analysis methods reported by

Alfeld & Janssens (2015), neither comparison has been

formally presented. The comparisons are demonstrated using

XFI data from post-photothrombotic stroke mouse brains,

which contain a range of endogenous elements, with many

overlapping fluorescence peaks distributed across a broad

concentration range. This distribution is typical of almost all

biological samples and tissues.

The goal of the present work is twofold. First, we highlight

the errors associated when data are not completely decon-

volved, and show that such errors are sample dependent and

variable at the level of the pixel. Second, we show that

incomplete deconvolution can lead to erroneous results,

which, in the case presented, leads to an apparent reversal of

observed trends of elemental distribution between anatomical

regions.

2. Experimental

2.1. Sample preparation

Animal tissue used in this study was from an 11-week old

male Balb/c photothrombotic stroke (PT) mouse model,

following previously described methods (Winship & Murphy,

2008; Caine et al., 2016; Hackett et al., 2016). All experimental

and surgical procedures were approved by the University of

Saskatchewan’s Animal Research Ethics Board, and followed

the guidelines of the Canadian Council on Animal Care.

Tissue was harvested following anaesthetization with 5%

isofluorane and decapitation 72 h after the induction of the

stroke. The head was frozen in liquid nitrogen immediately

after decapitation to avoid artifacts arising from postmortem

biochemical alterations (Hackett et al., 2011, 2012, 2015). The

brain was chiseled out from the frozen head in a �20�C

chamber. Coronal sections of the brain, 30 mm thick,

containing the central region of the infarct, were collected

onto ‘metal-free’ plastic Thermanox coverslips, and allowed to

air dry prior to XFI data collection.

2.2. XFI data collection

Elemental maps of brain sections were obtained using XFI

performed at the Stanford Synchrotron Radiation Lightsource

(SSRL) experimental stations 2-3, 10-2 and 14-3, as previously

described (Caine et al., 2016). We used an incident 12.5 keV

X-ray beam with the beam size defined by either a 50 mm pin-

hole aperture (for 10-2) or a pair of KB-mirrors (for 2-3 and

14-3) (Kirkpatrick & Baez, 1948). The incident beam was at

45� to the sample mount; the sample was raster scanned

through the beam with 30 mm steps and a beam exposure of

200 ms. X-ray fluorescence spectra were collected using a

Vortex single-element silicon drift detector, positioned at 90�

to the incident beam. Data were collected at 10-2 using DXP

electronics, whereas the data from 2-3 and 14-3 were collected

using Xspress 3 electronics at mean count rates of 10 kcounts

s�1 and 630 kcounts s�1, respectively. Reference foils of 6 mm

thickness, containing known elemental areal concentrations,

were measured for mass calibration purposes: P (GaP,

47.0 mg cm�2); S (CuS, 95.1 mg cm�2); K (KCl, 98.9 mg cm�2);

Ca (CaF2, 56.8 mg cm�2); Mn (Mn, 47.1 mg cm�2); Fe (Fe,

56.0 mg cm�2); Cu (CuS, 95.1 mg cm�2); and Zn (ZnTe,

45.8 mg cm�2) (Micromatter, Vancouver). At each pixel, the

full XRF spectrum along with the SCA fluorescence lines for

P, S, Cl, K, Ca, Mn, Fe, Cu, Zn and elastic scatter were

recorded.
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2.3. Digital signal processing electronics

Two major types of electronics designed for handling the

pre-amplifier pulse-train are compared herein: DXP (X-ray

Instrumentation Associates, Hayward CA, USA) and Xspress

3 (Quantum Detectors, Chilton Oxfordshire, UK). DXP

electronics use a simple trapezoidal filtering of the pre-

amplifier pulse-train to give an X-ray emission spectrum.

Xspress 3 use a more sophisticated fitting process aided by

considerably faster processors to quantify the pulse-train,

with an increase of some 30� in processing speed over DXP

(Xspress 3: Technical Datasheet, http://quantumdetectors.

com/wp-content/uploads/2013/08/Xspress-3-Datasheet.pdf;

Farrow et al., 1995, 1998). This gives rise to increased

maximum count rates and narrowing of the FWHM [data

presented herein show a 30% decrease (96 eV versus 136 eV)

at the K K� energy, 3312.4 eV, for Xspress 3 relative to DXP]

of peaks in the X-ray emission spectrum with a corresponding

decrease in the overlap of features. We note in passing that

although DXP electronics are very widespread indeed, that

DXP and Xspress 3 represent different generations of digital-

pulse processing electronics, and that both companies offer

similar and competitive new technology such as the XIA

FalconX and QD Xspress 3.

2.4. Binning of X-ray fluorescence

For binned analyses, the total integrated counts were

converted to mass by comparison with the same binned

fluorescence lines collected for a reference foil. As such, the

binned values for each element were immediately analyzed

without further refinement or processing using the program

SMAK (Webb, 2011) written by Sam Webb at Stanford

Synchrotron Radiation Lightsource.

2.5. Fitting of XFI data

Fitting analyses of XFI data were carried out using the data

fitting program M-BLANK (Crawford, 2015, 2018). Briefly,

and as described in more detail in the following sections,

sample and non-sample pixels were identified automatically.

The blank, or mean spectrum calculated from all non-sample

pixels, was then subtracted from the spectrum of each pixel

and the resulting spectra were then fit using linear least

squares. This is identical to the blank spectrum being used as

the background function during linear least squares fitting

with its amplitude constrained to unity. In line with other XRF

fitting programs, no data preparation of any kind was

performed prior to fitting. Following fitting, each sample

image was visually inspected to verify that appropriate sample

and blank regions had been identified.

2.6. Conversion of fitted counts to mass

The same standard measurements used to convert binned

counts to mass were also used to convert fitted counts to mass

with the exception that the full energy spectrum was fitted for

each standard and the total area under the curve for each

element was used (rather than just a window of unfitted

counts). As shown in Fig. 2, the counts were divided by the

fluorescence yield based on the excitation energy and then fit

to a first-order polynomial. Although discussed elsewhere

(Crawford, 2015; Crawford et al., 2016; Crawford & Penner-

Hahn, 2018), normalization by fluorescence yield significantly

accounts for the exponential aspect of the calibration curve,

with the result being fitted to a first-order polynomial because

the correction is not perfect. The corresponding values for all

elemental emissions were then interpolated or extrapolated

from the fit. The resulting values were then multiplied by

the corresponding fluorescence yield to give the theoretical

response calibration of the detector in units of normalized

counts per areal concentration. Importantly, unless corrected,

attenuation of fluorescence by sample and standards makes

areal concentrations semi-quantitative for elements �Z < 20.

Such self absorption can be corrected for; however, since

corrections were not applied for binning analyses, they were

not applied for fitting analyses either.

2.7. Separation of sample and non-sample

Sample and non-sample pixels in each image were auto-

matically separated in an iterative process using an ROI

centered on the K K� emission line (it had the greatest

sample-to-background ratio in the brain sections employed) to

generate a raw sample image (Crawford, 2015; Crawford et al.,

2016; Crawford & Penner-Hahn, 2018). Initially, all pixels with
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Figure 2
Mass calibrations for fitted datasets. (Top) The ratio of fitted counts
normalized by incident-beam intensity divided by areal concentration
and then normalized by theoretical fluorescence yield fit with a first-order
polynomial. (Bottom) The fluorescence-normalized calibration curve
from the first-order polynomial (from top) multiplied by the associated
element’s fluorescence yield to create the pseudo exponential calibration
curve. The integrated (binned) normalized counts were overlaid. Because
binning does not account for the entire area under a given element’s
fluorescence curve, the values are about �22% less than the values from
fitting. Thus, the values were adjusted to yield the theoretical integrated
counts at 100%. The inset is a close up of the 2 keV to 4 keV region.



intensities greater than 0.2� the maximum K signal were

defined as ‘sample’. Each iteration began by calculating the

mean, �xx, and standard deviation, �, of the non-‘sample’ pixels.

Any pixel with an intensity greater than �xxþ 2� was redefined

as ‘sample’. This process was repeated until the ‘sample’

population became self-consistent.

2.8. Calculation of fitting parameters

Fitting parameters (i.e. the energy calibration and the peak

shapes) for the samples were derived from the samples

themselves, not the standards. Sample scans were individually

separated into sample and non-sample pixels and the mean

spectrum for each region was calculated. The mean non-

sample (background) spectrum, which is the blank, was used

to correct the mean sample spectrum to yield the corrected

spectrum, from which fitting parameters were calculated.

3. Results

3.1. DXP electronics

3.1.1. Insufficient deconvolution of overlapping emission
peaks leads to incorrect elemental quantitation and locali-
zation. Fig. 3 shows representative Ca and K images from

binned [Figs. 3(a) and 3(b), respectively] and fitted [Figs. 3(d)

and 3(e), respectively] analyses of mouse brain tissue. The

images from binned analyses for K and Ca are strikingly

similar. In contrast, there is a stark difference between the

binned and fitted images of Ca [Figs. 3(b) and 3(e), respec-

tively]. In fact, the difference is such that the biological

conclusions from each would be the opposite and therefore

conflicting. Fig. 1 illustrates the origin of this difference, where

the K K� peak rests directly above the Ca K� peak. Thus, the

windowed region for Ca cannot avoid the ‘bleed through’ of

the K signal and therefore this artifact cannot be removed

from analyses by binning alone.

Figs. 3(c) and 3( f) show overlays of Ca with K for binning

and fitting analyses, respectively, confirming that these two

approaches to data analysis yield strikingly different results.

Although the fitted data (Fig. 3f) show an anticorrelation, in

that K and Ca are prominent in different regions of the

sample, the binned data (Fig. 3c) suggest the opposite, that Ca

and K are correlated in their localization.

Fig. 3(g) shows the per-pixel correlation plot for binned Ca

as a function of fitted Ca. In the ideal case, if there is no

difference between binning and fitting, this would comprise a

straight line with a slope of unity. Instead, the correlation plot

shows significant deviation from this ideal, with most binned

pixels significantly higher than the corresponding fitted pixels

as a result of contributions from the K signal. The resulting

plot (Fig. 3g) has been separated objectively into three

different groups using expectation maximization (EM), a

Gaussian mixture-based soft-clustering method (Ward et al.,

2013). Though similar to its use by Ward et al. (2013), EM was

used to partition differently correlated regions between two

analytical techniques; we have not used it to characterize the

biological model. Assigning the colors from the plot to the

corresponding pixel indices produces the brain image in

Fig. 3(h). As can be seen, the different correlations obtained

from binned analyses correspond to three distinct regions of
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Figure 3
DXP binned and fitted analyses of Ca and K. Images produced by binned analyses for K (a) and Ca (b), and by fitted analyses for K (d) and Ca (e).
Overlay images of Ca (red) and K (blue) from binned (c) and fitted ( f ) analyses. (g) The correlation plot of binned Ca as a function of fitted Ca with data
regions separated using expectation maximization, a Gaussian mixture-based soft clustering method. (h) The reconstructed image from (g). (i) Bar plot
of [Ca] in the three regions obtained from binning and fitting analyses, in units of mg cm�2. Length scale bars are 500 mm.



the image [labeled in Fig. 3(h) as 1, 2 and 3] indicating

different treatment of Ca fluorescence by binned analyses

depending upon the spatial region of origin. The boundaries of

these regions have been free-hand drawn and overlaid on

Figs. 3(a)–3( f). Importantly, regions 1, 2 and 3, though not

characteristically relevant, happen to coincide with regions of

the photothrombotic model that are readily conceptualized

within the current dogma of ischemic stroke theory (Caine et

al., 2016); healthy tissue, the peri-infarct zone and infarct,

respectively. This should not necessarily be the case as clus-

tering was performed on the correlation between the same

element calculated by two different analytical techniques, not

between different elements within a single analytical tech-

nique. Since these three separate regions mirror the three

regions of the stroke model (Caine et al., 2016), it makes it

impossible to make reliable comparisons between these tissue

regions for Ca (and for any other element where deconvolu-

tion is an issue) if binned analyses are used. Indeed, Fig. 3(h)

demonstrates that quantification of Ca in the three regions

shows not only a change in magnitude but a reversal of trend,

comparing binning with fitting, in that Ca levels decrease

between regions 1 to 3 for binning, but increase for fitting.

3.1.2. Insufficient deconvolution may lead to decreased
precision. The results herein (considering the samples

employed) suggest that binning can be less precise than fitting.

Fig. 4 shows the histograms for the background pixels of the

scan from Fig. 3 obtained from both binned and fitted

analyses. For P, Cl, K and Ca, the distribution widths asso-

ciated with the binned analyses are wider than those from the

fitted analyses, indicating there may be an apparent increased

signal noise caused by the decreased analytical precision

associated with binned analyses. Ideally, the elemental content

of the background should be fairly constant with an approxi-

mately Gaussian distribution (S) governed by the real

elemental distribution (R), environmental noise (N), Poisson

counting statistics (C) and analytical precision (P), such that

S ¼ ðR2 þ N2 þ C2 þ P2Þ
1=2. Since both the binning and fitting

analyses of Fig. 4 processed identical data, R, C and N are

identical and the only difference between the distributions

obtained from the two analyses can be from analytical

precision, P, which must be larger (poorer) for the binned

data set.

It could be possible that the apparent difference in precision

actually arises from differences in the mass calibrations

between the two analyses. Binned analyses used the mass

calibrations directly from the standards [Fig. 2 bottom, binned

values, (*) with adjusted values, (�) for comparison with the

fitted curve], whereas the fitted analyses used the best-fit curve

to all the standards in order to achieve a better estimate of

each standard’s mass calibration (see above). If the mass

calibration value (units of normalized counts per areal

concentration) is larger for fitting relative to binning analyses,

then this could potentially lead to the resulting observations

shown. This is because a larger calibration value could result

in a smaller absolute range in the spanned values for a given

element. As can be seen from the calibration curve in Fig. 2

(bottom, inset), the adjusted binning calibration ratios for P, S,

Cl, K and Ca are all smaller relative to the fitted calibration

curve (black line). As such, although the decreased distribu-

tion widths (for fitting relative to binning) in Fig. 3 are to be

expected (since we expect increased analytical precision from

fitting relative to binning), this difference may completely or

partly arise from the differences in mass calibrations and it is

difficult to know exactly what portion arises from mass cali-

bration differences and what portion arises from differences in

analytical precision.

3.1.3. Trace elements register incremental amounts from
binning analyses. The histograms for Mn shown in Fig. 4 show

an issue that arises from low counting

statistics. The detector registers an

integer number of pulses proportional

to the total number of photons that

strike the detector area for a given

energy. Normalization of the recorded

fluorescence for a given element is then

performed by dividing by the incident-

beam intensity, which is recorded as

a current between two charged plates

inside an ion chamber immediately

upstream from the sample (I0). If the

total amount of a given element is very

low, such that the total detected fluor-

escence of the element registers a very

low number of counts, then slight

changes in the amount of that element

may not be captured by the detector as

a result of its discrete counting nature.

The apparent subdivision into smaller

peaks in the Mn histogram from binned

data (Fig. 4) thus arises from the integer

nature of counts. This is observed for
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Figure 4
Background distributions: the histograms for the background pixels from the images in Fig. 3
showing binned (red) and fitted (blue) analyses for Mn, P, S, Cl, K and Ca. The inset in each plot
shows the same data except the bars have been replaced by line plots.



Mn because it is present at ultra-trace levels and thus gives rise

to very few counts at the detector. In the current example, the

total number of detector counts (within the data collection

dwell time) was around 10–20 from the entire integrated Mn

K-line spectrum. Because of this, the histogram for the binned

analyses appears in clumps and can be reconstructed by (what

looks like) four individual Gaussian functions. The reason the

values are Gaussian-clustered and not integer-clustered arises

from fluctuations in I0 and dead-time correction handled by

the electronics. This is because dead-time correction leads to

non-integer count readings; and for I0, the readings, though

integers, typically fluctuate or oscillate at a narrow range

(typically �1% during top-up mode) around very large

numbers, and, although this fluctuation is not Gaussian,

subsequent normalization of the dead-time corrected counts

further leads to an apparent non-integer Gaussian-like

distribution in counts.

3.2. Xspress 3 electronics

Xspress 3 electronics have a faster processing capability,

which results in an observed 30% decrease in peak FWHM

compared with DXP, based on the comparison of the K K�
detector response functions (FWHM: 136 eV and 96 eV for

DXP and Xspress 3, respectively). The resulting spectra,

however, appear to display the same artifacts as those noted

for spectra from the DXP electronics, and, although these

artifacts are less severe, the distortions from incomplete

deconvolution of the K K� and Ca K� peaks can still be seen.

Fig. 5 demonstrates results from an adjacent section to the

tissue in Fig. 3. By comparing the binned images [Figs. 5(a) and

5(b) for K and Ca, respectively] to the fitted images [Figs. 5(c)

and 5(d) for K and Ca, respectively] it can be seen that the

fitted image of Ca (Fig. 5d) shows much more contrast

between the different regions than its binned counterpart

(Fig. 5b). As can be seen from the correlation plot (Fig. 5e) of

fitted Ca versus binned Ca and the resulting clustering image

(Fig. 5 f), two distinct regions still exist when the data are

binned as opposed to fitted. The border of these two regions

was used to define the end of the peri-infarct zone; the border

between the peri-infarct and the infarct was drawn in manually

along the morphological feature in the fitted K image (Fig. 5c)

indicated by the arrows. Although the trend in localization is

no longer reversed [as it was from the DXP analyses, Fig. 3(h)],

a comparison of the areal concentrations from binned and

fitted analyses (Fig. 5g) shows that the shift in concentrations

is still significant and very much distorted when the data are

binned.

Because the artifact arises from the overlap of the K K�
with the Ca K�, one might assume that the central infarct

region of the tissue (region 1) may be free of the artifact, since

K is extremely low in this region; this would appear to be in
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Figure 5
Xspress 3 data analyses and comparisons: (a)–(g) are from an adjacent section to that of Fig. 3 and were collected at BL 14-3; (h)–(k) are based on a high-
resolution image of that same section collected at BL 2-3. (a) and (b) Binned K and Ca images along with their fitted counterparts (c) and (d) from an
adjacent section to the image in Fig. 3. (e) and ( f ) The per-pixel correlations of binned Ca as a function of fitted Ca; the dashed black line indicates a ratio
of 1:1. The partitioned regions have been restructured into the image in ( f ). A third region was partitioned by using the morphological structure in (c),
demarcated by the arrows, as the outline for a second boundary. These regions have been labeled 1, 2 and 3 and are overlaid on (a)–(d) to represent the
healthy tissue, peri-infarct zone and infarct, respectively. (g) A bar plot showing the apparent [Ca] in healthy tissue, peri-infarct zone and infarct from
binned and fitted analyses for the tissue sections represented by ( f ). ( j ) and (k) A close up high-resolution scan of Ca within the infarct (rectangle region
in f ) analyzed using binning ( j ) and fitting (k). (h) Correlation plot of fitted versus binned Ca from ( j ) and (k). (i) Reconstructed image from the
separated cluster from (h). Scale bars: (a)–(d), 500 mm; ( j) and (k), 20 mm. Intensity bars are in units of mg cm�2.



agreement with Fig. 5(e) (the green values have a slope of one

and intercept of zero). However, such an assumption is wrong.

Binned (Fig. 5j) and fitted (Fig. 5k) Ca images were produced

from an additional scan conducted within the region identified

in Fig. 5( f). These two images are different. As can be seen in

the cluster image (Fig. 5i) constructed from the two different

groupings from the correlation plot (Fig. 5h) of fitted Ca

versus binned Ca, a subregion exists inside the image where

the K K� peak is bleeding through into the Ca K� window.

This region is circled in Figs. 5( j) and 5(k) and, as can be seen

in Fig. 5( j), the apparent hotspot of Ca is almost entirely

absent when the data are fitted (Fig. 5k).

4. Discussion

The strong similarity of Ca to K in the binned dataset (Figs. 3a

and 3b) arises from the inability to deconvolute the relatively

large contribution arising from the K K�-line from the Ca K�-

line. This results in the strong K signal dominating the

apparent Ca signal (Fig. 1 inset) in all locations where there is

K. The only potentially valid Ca signal from the binned dataset

is within the infarct; and even there the apparent signal is

much weaker than the binned Ca signal outside the infarct.

This overlap of K K� with Ca K� explains the unexpected Ca

results found by Caine et al. (2016), which we note the authors

had correctly surmised.

Qualitatively, image comparisons for any element besides

Ca look more or less the same between binned and fitted

datasets. However, though not shown here, all elements

displayed differential quantitation between the two analytical

techniques across the model regions. The comparison, shown

here of binned and fitted Ca, shows three sub-populations of

differential quantitation between the two techniques for data

obtained from the DXP electronics. This differential quanti-

tation between binning and fitting is very important in the

chosen example dataset, since the three subpopulations

demarcate conceptually relevant regions within the stroke

model, namely the infarct, the surrounding peri-infarct zone

and healthy tissue. The presence of these subpopulations

means that the apparent value from binning is dependent on

what else is there in the pixel and this means that binning

is susceptible to ‘matrix’ effects. Importantly, this means that

quantitative comparisons from the three different regions

cannot be made, i.e. the Ca levels in the infarct cannot be

properly compared with the Ca from either of the other two

regions when binning is employed.

In terms of mass calibration, we only normalized by fluor-

escent yield, which is expected to give a reasonable calibra-

tion. We recognize that additional normalization to the

photoelectric cross section would be of more interest and also

the quantum efficiency of the detector could be taken into

account, allowing for a much more meaningful sensitivity

curve. We note that this could explain especially the reduced

sensitivity for Ga, as a greater part of its radiation passes

through the detector undetected. Accounting for this may

have adjusted the fitted sensitivities slightly; however, the

difference between measured and fitted sensitivity for both K

and Ca is negligible (Fig. 2).

Although the use of new Xspress 3 electronics leads to

narrower peak shapes with decreased overlap of elemental

emissions, the problems persist. While the three subpopula-

tions present in Fig. 3 have been reduced to two in Fig. 5, these

subpopulations still separate the peri-infarct/infarct region

from the healthy tissue showing that these two regions cannot

be compared. Also, although the trend of Ca localization

reflects the fitted observation (the change is in the same

direction), the magnitude of that trend is significantly

decreased for the binned data, indicating that binned analyses

are less sensitive.

Although it might be expected that the impact of K on Ca

might be absent in the infarct since the K is almost completely

absent in that region, convolution artifacts still exist in the Ca

signal from the K signal in the infarct (where the K signal is

weakest) as can be seen in Figs. 5(h)–5(k).

Collectively, the results from Figs. 3 and 5 demonstrate that

(even with faster electronics) the inability of binned analyses

to deconvolute overlapping peaks affects the entire dataset,

and that it affects the data differently across the dataset.

Incomplete peak deconvolution of window-binned data can

lead to erroneous data interpretations not only between Ca

K� and K K�, but for any other elements when emission lines

are close in energy such as Hg L�1 and Zn K�. As such, for

most biological samples quantitative analyses may only be

reliable if full peak-shape deconvolution is performed.

Unfortunately, some emissions (such as the Cd L-lines and K

K-lines) can never be resolved with conventional solid-state

detectors irrespective of any enhancements to detector reso-

lution, because they are quite simply too close to one another

and almost exactly overlap.

In addition to binned analyses having a loss in accuracy for

elements with overlapping emission lines, Fig. 4 demonstrates

that decreased precision can be seen in the larger distribution

widths, and that an additional loss in accuracy can be seen as

binned analyses report incremental amounts for ultra-trace

elements attributed to the integer nature of photon counting.

Where fitting is able to solve for fractional counts, binned

analyses cannot.

5. Conclusions

Fitting gives superior estimation of quantities whereas binning

can result in artifacts. This conclusion is regardless of the

detector electronics used during data acquisition or the fitting

program employed (we expect any of the aforementioned

programs to yield similar results). The potential implications

of artifacts and the consequential erroneous conclusions that

might arise will be sample specific, and will not be constant

across samples.

The artifacts present in analyses based solely on binned

data can impact both apparent localization and apparent

quantitation. Even with the advent of faster detector elec-

tronics with improved electron pulse-train handling, the

inability to deconvolute overlapping peaks still presents
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errors. Although the presence or impact of bleed-through

artifacts was attenuated with the use of new electronics, errors

still arose from binned analyses alone.

The data herein compared XRF data collected using

Xspress 3 and DXP electronics which had energy resolutions

of 96 eV and 136 eV at the K K� energy, 3312.4 eV, respec-

tively; and the bleed-through artifacts from overlapping

emission lines were attenuated for Xpress 3 relative to DXP.

However, XRF experiments using synchrotron facilities are

sometimes performed with an energy resolution far above

200 eV to allow for higher count rates. In such cases, the

differences between fitting and binning will become even more

pronounced.

Ultimately, this work demonstrates that the best practice is

to use properly fitted data and not to rely on binned analyses if

the full XRF spectra are available. In the case that full spectra

are not available, analyses using binned data should be

considered to provide only skeptical semi-quantitative

elemental distributions.
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