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Facing the technical problem of pulse distortion caused by frequent resetting

in the latest high-performance silicon drift detectors, which work under high-

counting-rate conditions, a method has been used to remove false peaks in order

to obtain a precise X-ray spectrum, the essence of which eliminates distorted

pulses. Aiming at solving the problem of counting-loss generated by eliminating

distorted pulses, this paper proposes an improved method of pulse repairing. A
238Pu source with activity of 10 mCi was used as the measurement object, and

the energy spectrum obtained by the pulse repairing method was compared with

that obtained by the pulse elimination method. The ten-measurement results

show that the pulse repairing method can correct the counting-loss caused by the

pulse elimination method and increase peak area, which is of great significance

for obtaining a precise X-ray energy spectrum.

1. Introduction

In recent years, energy-dispersive X-ray fluorescence tech-

nology has been developing toward high counting rate and

high energy resolution. To obtain a pulse signal with high

signal-to-noise ratio (SNR) and low trajectory loss in the

context of high counting rate, most semiconductor detectors

have integrated the switch reset preamplifier internally

(Jakobson & Nemirovsky, 1995, 1997; Sun et al., 2005). The

output signal of the preamplifier is a series of pile-up pulses

with fast exponential rising edge. When the pulses accumulate

to a certain level, the last pulse will jump to zero and then the

next round of pile-up starts. If we directly filter and shape the

rising stacking pulses, counting-rate losses will occur due to

pulse amplitude overflow. In order to obtain a precise spec-

trum with good energy resolution and high counting rate, we

need to amplify and digitize the output nuclear signal and then

filter and shape it properly (Morse, 2010). In previous research

we have proposed a method to remove false peaks by elim-

inating distorted pulses (Tang et al., 2018). After further

research, we find that the method of eliminating distorted

pulses can be used to eliminate false peaks, but there is a

counting-rate loss defect.

In view of the above defect, this paper, which is based on

the previous research results described by Tang et al. (2018),

proposes a new method of pulse repairing to repair the

distorted negative exponential signal. The trapezoidal/trian-

gular shaping result of the repaired negative exponential

signal is in good agreement with the shaping result of a

complete negative exponential signal. Finally, this method

guarantees the counting rate successfully and increases peak
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area. The feasibility and accuracy of the method is verified by

simulation and experiment. The results show that this method

can effectively improve the counting rate and the peak area,

and enhance the detection accuracy of weak elements in

complex samples.

2. Circuit description

In nuclear electronics, preamplifiers are usually divided into

three types, i.e. the current-sensitive, charge-sensitive and

voltage-sensitive preamplifier. For mathematical models of the

output signal, however, the preamplifier is further divided into

a resistance capacitance coupled preamplifier and a switch

reset preamplifier (Sun et al., 2005). The switch reset pream-

plifier is widely used in semiconductor detectors because of its

advantages of high signal-to-noise ration (SNR) and small

ballistic loss; a circuit diagram of a switch reset preamplifier is

shown in Fig. 1. The amplifier usually adopts a FET trans-

conductance operational amplifier with low noise, but whose

bandwidth and input capacitance are usually large, which is

not conducive to obtaining a high SNR. Therefore, the choice

of parameters for the feedback resistance usually requires a

compromise.

The switch reset preamplifier circuit comprises an opera-

tional amplifier, an integral capacitor and an analog switch,

whose principle is that the output current of the semi-

conductor detector is integrated in the feedback capacitance

Cf, for an integral time t, and the integral results are stored in

the holding capacitor Cf to be measured by the follow-up

measurement circuit. Finally, we will obtain a voltage, which is

proportional to the current and integral time. The length of

the integral period is controlled by an artificially set time

sequence, which is set according to the request of the input

current and the signal acquisition speed. Because the integral

effect is equivalent to low-pass filtering, the switch reset

preamplifier circuit has a good restraining effect on high-

frequency noise, especially for periodic interference and noise,

such as AC 50 Hz. Therefore, an amplifying circuit that adopts

this kind of design can maintain a good noise performance

without additional filtering networks (Zhen et al., 2002).

As shown in Fig. 2, the output signal of the switch reset

preamplifier is a series of rising pile-up pulses. When the step

pulses are piled up to a certain extent, the feedback capaci-

tance charging is completed, and then switch S1 will control

the feedback capacitance to discharge and reset. At the same

time, the output pulse of the preamplifier jumps from the peak

value to zero, and then a new round of pulse pile-up begins.

Considering that the output signal of the preamplifier is rising

and jumping frequently, if we directly amplify the signal and

digitalize it, the result will cause impulse overflow and

counting-rate loss. Therefore, before nuclear signals experi-

ence the shaping process in a field programmable gate array

(FPGA), step signals need to be transmitted into negative

exponential signals by a capacitance resistance (CR) differ-

ential circuit, which can not only complete the signal conver-

sion but also filter high-frequency noise (Wang et al., 2018).

The step signals and the negative exponential signals trans-

mitted by the CR differential circuit are shown in Fig. 2. As

shown in this figure, the jumping time of each pulse is uncer-

tain, so the last step pulse is likely to be a distorted pulse,

whose holding time is insufficient; then, this distorted pulse

passes through the CR differential circuit and a distorted

negative exponential pulse will be generated. If we directly

eliminate the distorted negative exponential pulses without

repairing them, false peaks caused by the distorted pulse will

appear in front of the full energy peak in the final spectrum,

and at the same time the count rate would be reduced.

3. Pulse repairing method

In the previous research results (Tang et al., 2018), high-

resolution real-time pulse shaping adopts a trapezoidal/trian-

gular shaping method. For the distorted negative exponential

pulses, because the shaping results are affected by the moment

of reset, based on the time of pulse distortion, the pulse shape

discrimination unit will distinguish whether the distorted

pulses should be eliminated or not. When the pulse counting

rate is high, the reset frequency is also high, and then the
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Figure 1
Switch reset preamplifier circuit.

Figure 2
Output signal of the step signal after the CR differential circuit.



number of distorted pulses will also increase. If the quantity of

distorted pulses discarded increases, the whole counting rate

will decrease. Therefore, based on the method which elim-

inates all distorted pulses, a new method for repairing

distorted pulses is proposed to ensure the counting rate while

eliminating false peaks.

In the classic spectroscopy system, a preamplifier integrated

in the detector will usually follow a high-pass filter (pole-zero

cancellation, CR differential circuit), which will generate a

negative exponential pulse with short rise time and expo-

nential tailing (Jordanov et al., 1994a). After the next stage

of magnification, a high-precision analog-to-digital converter

(ADC) digitalizes the negative exponential pulse and then

both the location and repairing process of the distorted pulses

will be completed in the FPGA.

Theoretically, when we need to repair the pulses with

exponential features, the best method is to calculate the value

of the next sampling point by using an exponential function

expression. The decay trend of the pulse repaired by this

method is only controlled by the time constant �, so the

repairing result is basically the same as the original pulse.

However, it is difficult to realize the iteration and calculation

in the exponential form in the FPGA, especially when � is

unknown. Therefore, this paper also proposes a multi-order

successive approximation method to repair the distorted

pulse, which can adjust the velocity of decay by the order of

the successive approximation method. The two repairing

methods will be introduced in detail in the following.

3.1. s restoration method

The expression for the negative exponential signal is shown

in equation (1) (Zhou et al., 2017),

v nð Þ ¼ A exp �n TCLK=�
� �

¼ A exp � n� 1ð ÞTCLK=�
� �

exp �TCLK=�
� �

: ð1Þ

Here, v(n) always equals zero for n < 0, TCLK is the sample

frequency and � is the decay time constant. In view of the

limited space here, the focus of this paper is repairing of the

distorted pulse and comparison of the actual measurement

results after the repairing. Jordanov et al. (1994b) and

Jordanov (1994) describe the recursive algorithm derivation of

the trapezoid/triangular shaper in detail, which realizes the

transformation from a digital negative exponential pulse to a

symmetric trapezoidal pulse by delay line, adder/subtractor

and accumulator.

In the derivation of the trapezoid/triangular shaping algo-

rithm, d k;l
ðnÞ can be expressed as a consequence of two

identical procedures given by the set of equations

d k nð Þ ¼ v nð Þ � v n� kð Þ; ð2Þ

d k;l nð Þ ¼ d k nð Þ � d k n� lð Þ: ð3Þ

The unit that implements the algorithm of equation (2) or

equation (3) contains two functional elements: a program-

mable delay pipeline and a subtractor.

A digital pole-zero cancellation circuit is realized by

equations (4) and (5), whose output response is r(n). The last

block of the trapezoidal/triangular shaper is an accumulator

which implements the algorithm given by equation (6),

p nð Þ ¼ p n� 1ð Þ þ d k;l nð Þ; ð4Þ

r nð Þ ¼ p nð Þ þM d k;l nð Þ; ð5Þ

s nð Þ ¼ s n� 1ð Þ þ r nð Þ: ð6Þ

The parameter M depends only on the decay time constant �
and the exponential pulse and the sampling period TCLK of the

digitizer, and is given by

M ¼
1

exp TCLK=�
� �

� 1
: ð7Þ

We can conclude equation (8) in the basis of equation (7),

exp �
TCLK

�

� �
¼

M

1þM
: ð8Þ

Then, we obtain the theoretical basis of the pulse repairing,

which is given by

v nð Þ ¼ A exp � n� 1ð ÞTCLK=�
� � M

1þM
: ð9Þ

For values of TCLK=� > 5, the Taylor expansion of equation (7)

can be approximated as

M ’
�

TCLK

� 0:5: ð10Þ

Take any one digitalized distorted negative index signal, as

shown in Fig. 3. By reading the coordinates of the known

sampling points we can calculate the time constant �, the

amplitude A and the sampling period TCLK. Here, � = 100, A =

2000, TCLK = 1, and M ’ � = 100 is known on the basis of

equation (10). In this paper, a complete negative exponential

signal is made up of 1024 sampling points, but the distorted

negative exponential pulses directly jump to zero from the
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Figure 3
Contrast figure of pulse repairing.



250th sample point during the decay process; that is to say, all

the impulse information after the 250th sampling points is lost.

In order to repair the distorted pulses, we employ MATLAB

software and regard equation (9) as a theoretical basis for

repairing. Knowing M ’ � = 100, A = 2000, TCLK = 1, and

substituting these parameters into equation (9) we obtain 774

sampling points, which are all lost sample points caused by

pulse distortion. The repairing result is shown in Fig. 3, which

is consistent with the decay trend of the original pulse.

3.2. Multi-order successive approximation method

The key to the successive approximation method is to select

optimal orders (the essence of this method is to find the ideal

decay speed at which the repaired curve can match the decay

trend of the original curve at the maximum extent). This

method was realized by means of addition and division, whose

implementation process is depicted as follows.

A result is repaired by the first-order successive approx-

imation method,

v1 nþ 1ð Þ ¼
�
v nð Þ þ 0

�
=2: ð11Þ

A result is repaired by the second-order successive approx-

imation method,

v2 nþ 1ð Þ ¼
�
v nð Þ þ v1ðnþ 1Þ

�
=2: ð12Þ

A result is repaired by the mth-order successive approxima-

tion method,

vm nþ 1ð Þ ¼
�
v nð Þ þ vm�1ðnþ 1Þ

�
=2: ð13Þ

This paper assumes that the negative exponential signal vðnÞ

has lost all the sampling points after n. In view of the limited

space here, we only list part of the successive approximation

method; the rest is derived by iterative method, as shown in

equation (13).

Based on equations (11)–(13), we can calculate all lost

sampling points and draw the contrast figure of pulse

repairing, which is repaired by different methods, as shown in

Fig. 3. From this figure we can conclude that the higher the

order of the successive approximation method, the slower the

decay of the curve. The repairing results of the third-order and

the fifth-order successive approximation methods have a fast

decay velocity, which does not match the decay trend of the

original curve. The seventh-order successive approximation

method has a good repairing result, but the decay speed is

slow when the ninth-order successive approximation method

is used. The repairing result of equation (9), which is derived

from the exponential recursive algorithm, is slightly better

than the repairing result of the seventh-order successive

approximation method. In the comparison of the repair effects

that will be discussed in the Experiment tests section (x4), the

X-ray spectrum obtained by the repair of equation (9) and the

seven-order successive approximation method are compared;

the differences between the two repair methods are quantified

on the basis of the comparison results.

3.3. Method verification

In the last part, we put forward a recursive algorithm and

the seventh-order successive approximation method to repair

the distorted negative exponential pulse. We finally decided to

employ the seventh-order successive approximation method

as the pulse repairing method in this paper. Here, we depict

the comparison of shaping results of a complete negative

exponential signal and a repaired negative exponential signal

by the seventh-order successive approximation method,

shown in Fig. 4. If the comparison results are indeed consis-

tent, the feasibility of the seventh-order successive approx-

imation method mentioned above can be verified.

In the spectral measurement process, the FPGA is the key

to the whole digital nuclear signal processing, which mainly

realizes two processes of pulse repairing and pulse shaping.

Due to limited space in this paper, here we mainly focus on the

study of pulse repairing and verifying the repairing method

through a simulation result of trapezoidal/triangular shaping

(Jordanov, 2003; Menaa et al., 2011). Considering that pulse

shaping has been introduced in our previous research (Tang et

al., 2018), this paper will not introduce the trapezoidal/trian-

gular shaping algorithm in detail.

The two shaping results are given in Fig. 4, which shows that

the shaping results of the same negative exponential signal is

truncated in the attenuation part and is repaired by the

seventh-order successive approximation method. Comparison

of the two shaping results shows that the shaping results of the

distorted pulses have a lower amplitude and a narrower pulse

width than the original pulse, as shown by the green lines of

Fig. 4; on the other hand, the shaping results of the repaired

pulses have the same amplitude and pulse width as the original

pulse, as shown by the red lines of Fig. 4. In addition,

compared with the formula based on equation (9), the
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Figure 4
Triangular shaping results of the distorted negative exponential signal
and repaired negative exponential signal. The black line is the distorted
negative exponential signal. The red line is the triangular shaping result of
the distorted negative exponential signal. The blue line is the repaired
negative exponential signal. The red line is the triangular shaping result of
the repaired negative exponential signal.



seventh-order successive approximation method is easier to

implement in the FPGA and has a higher execution efficiency.

In actual measurements, we will also use the seventh-order

successive approximation method to repair the distorted

pulses, and a comparison of the measured results will be

introduced in the following section.

4. Experimental tests

In terms of actual measurement, the repairing of distorted

pulses is realized in the FPGA. The key to the algorithm is the

determination of the repairing conditions. The repairing

condition used in this paper is different from the eliminating

condition used for removing false peaks (Tang et al., 2018).

Considering that all the sampling points in the distorted pulse

part turn to zero instantaneously, the zero point method is

used to locate the sampling points that need to be repaired. In

all pulse sequences, if the sampling points are equal to zero,

they will need to be repaired by the seventh-order successive

approximation method. If the next point is still zero, it will

continue to iterate until a non-zero sampling point appears,

and then the repaired negative exponential pulse sequence is

shaped in the FPGA.

4.1. Experimental conditions

In order to verify the feasibility of this method, a 238Pu

source with activity of 10 mCi and one kind of copper ore

sample are used as the measurement object on the basis of the

simulation results mentioned above. In the measurement

process, the pulse time constant is set to 3.2 ms, with an ADC

sampling frequency of 20 MHz, a sampling period of 50 ns and

a measurement time of 120 s. For the configuration of the

experimental platform, we use a fast silicon drift detector (fast

SDD) as the detector, with a collimated active area of 25 mm2,

detector thickness of 500 mm and Be window thickness of

0.5 mil.

Fig. 5 depicts a pulse sequence diagram captured arbitrarily

during the actual measurement. In order to facilitate the

observation of the experimental results, we only intercepted

the pulse of a partial channel for analysis and comparison.

Fig. 5 shows two overlapping peaks and one single peak; a

pulse distortion occurred at the second descending edge of the

second overlapped peaks, as shown by the red lines of the

magnified region, in which the sampling point of the pulse

jumps directly from 250 to 0. According to the repairing

conditions mentioned above, once these zero sampling points

are located, pulse repairing starts, and the repaired pulse is

shown by the black line in Fig. 5, which not only restores all

the sampling points but also restores the decay trend of the

distorted pulse to roughly the same as that of the original

pulse.

The reconstructed pulse sequence is shaped, and the

corresponding spectrum is finally obtained through processing

of the end circuit. Through the accurate analysis of the peak

area of each peak in the spectrum, we can complete the

quantitative analysis of the pulse repairing method, and have

an intuitionistic quantification on the effect of the repairing.

In the previous research (Tang et al., 2018), we drew the

conclusion that the elimination of distorted pulses can remove

false peaks in the whole spectrum. The purpose of this

experiment is to prove that the method of pulse repairing can

improve the counting rate on the basis of the pulse elimination

method. Besides, this experiment also verifies that the

counting value of the full spectrum obtained by the pulse

repairing method is more stable than the pulse elimination

method, and the statistical fluctuation is also reduced on the

basis of more realistic counting.

4.2. Comparison of the repair effect

As mentioned above, equation (9) has the best repair effect.

The decay speed of the seventh-order successive approxima-

tion method is faster than the original curve, but is very close

to the original curve. In order to quantify the repairing effect

of the two methods, equation (9) and the seventh-order

successive approximation are used to obtain two spectra which

will be compared with the original spectrum, whose distorted

pulses will not be processed, as shown in Fig. 6.

The decay speed of the seventh-order successive approx-

imation method is not completely consistent with the decay

speed of the original pulse, resulting in the difference in

amplitude between the repaired pulse shaping and the

complete pulse shaping. As a result, the bottom width of the

characteristic peak is broadened, but the elimination effect of

the false peak, shown in Fig. 6, is not affected. Equation (9)

almost completely fits the decay speed of the original pulse, so

the false peaks are effectively eliminated and the bottom

width of the characteristic peak is not affected.

The time constant of the original pulse, �, is known in the

MATLAB simulation, and the repair formula equation (9) is

easy to implement by simulation. However, in a practical
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Figure 5
Actual measurement pulses of the 238Pu standard source. The red line is
an original pulse sequence which contains a distorted pulse, and the black
line is the repaired pulse sequence.



application the � value of any negative exponential pulse is

uncertain. In order to achieve an effective repair, the � value

of each pulse must be calculated, which is very time-

consuming and increases computational load of the FPGA.

However, the seventh-order successive approximation method

only includes addition and division realized by shift arithmetic

right (SAR), which has high efficiency. Therefore, this paper

adopts the seventh-order successive approximation method as

the best method for pulse repairing.

4.3. Peak area

In the experiment, the 238Pu source was measured ten times

using the pulse repairing and pulse elimination method. We

chose any eight peaks for comparison in the measured spec-

trum. The peak area of the eight peaks was recorded as S1–S8,

as shown in Table 1 and Fig. 7. The size of the peak area is

different in the eight selected peaks, but the comparison

results of the ten measurements show that the pulse repairing

method improves the peak area of each peak, and it has a

more obvious effect on the peak at high counting rates.

Fig. 7 shows the comparison result between the measured

spectrum after the elimination of the distorted pulses and the

spectrum obtained by repairing distorted pulses. If the FPGA

does not repair the distorted pulses but eliminates them

directly, the measurement result is the black line in Fig. 7. The

red line is the measurement result of the pulse repairing

method. Although both pulse repairing and pulse elimination

methods can eliminate the false peaks, we find that the pulse

elimination method will cause a loss of the counting rate.

Therefore, we repair the distorted negative exponential signal

into a complete negative exponential signal, which not only

removes the false peak but also does not cause the loss of the

counting rate. Thus the peak area is larger and more accurate.
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Table 1
Comparison of peak area obtained by the pulse repairing and pulse elimination method.

Measurement Method S1 S2 S3 S4 S5 S6 S7 S8

First Pulse elimination 9827 18896 29689 21031 126611 2159614 2516741 440965
Pulse repairing 9973 19041 30115 21468 128849 2206349 2589151 458092

Second Pulse elimination 9984 18946 29841 21000 126509 2160069 2516139 441183
Pulse repairing 9982 19314 30088 21255 128817 2207343 2586949 456938

Third Pulse elimination 10123 18852 29651 21105 126967 2158685 2517574 441606
Pulse repairing 10172 19255 30040 21315 129115 2207270 2588156 458453

Fourth Pulse elimination 9819 18981 29535 20990 126699 2161929 2517703 441317
Pulse repairing 10094 19348 29952 21125 128591 2207913 2588549 456984

Fifth Pulse elimination 9986 19127 29696 20901 126232 2162332 2517893 440628
Pulse repairing 10077 19193 30089 21196 128877 2209996 2587063 457543

Sixth Pulse elimination 9871 19151 29945 20868 126236 2161386 2516611 440505
Pulse repairing 9981 19451 29955 21497 129342 2206414 2587909 456126

Seventh Pulse elimination 10089 19044 29764 21052 126650 2161278 2517542 442239
Pulse repairing 10158 19259 29761 21304 128448 2208808 2588904 457908

Eighth Pulse elimination 9760 18958 29708 20923 126928 2162538 2517095 439693
Pulse repairing 9856 19515 30230 21179 129251 2207610 2586926 458077

Ninth Pulse elimination 10010 19151 29627 21154 126887 2159733 2515590 441842
Pulse repairing 10071 19439 30258 21168 128798 2208648 2586922 457829

Tenth Pulse elimination 9944 19101 29366 21587 126539 2159653 2513695 442358
Pulse repairing 9949 19356 30478 21890 128849 2209533 2589412 457632

Average Pulse elimination 9941 19020 29682 21061 126625 2160721 2516658 441233
Pulse repairing 10031 19317 30096 21291 128893 2207988 2587994 457558

Figure 7
Comparison spectrum of the 238Pu standard source obtained by the pulse
elimination and pulse repairing method.

Figure 6
Comparison of different repair methods.



On the basis of Table 1, we compare ten groups of peak

areas of any eight peaks selected in two ways: by the pulse

elimination method and by the pulse repairing method. The

count increase rate is defined as follows,

Increase rate of peak area ¼��
peak area obtained by pulse repairing method

�
�
�
peak area obtained by pulse elimination method

��
��

peak area obtained by pulse elimination method
�
:

ð14Þ

Formula (14) is used to calculate the rates of increase of the

peak areas, which are shown in Fig. 8. This figure includes nine

lines of different colour, with each line having ten measure-

ment points which were obtained by formula (14). Fig. 8 shows

nine lines, eight of which represent the rate of increase of each

peak area, respectively, and the red line represent the rate of

increase of the total peak area of the eight peaks. It is easy to

see that the count increase rate of the first to the fourth weak

peaks fluctuates considerably, but the increase rate of each

peak after S5 tends to be stable, and also that the sum of the

peak areas of all peaks is relatively stable after the repairing,

which is shown by the red line in Fig. 8.

4.4. Counting-loss correction

Ten groups of measured data were obtained by using the

pulse elimination method and the pulse repairing method,

respectively. The total spectrum includes 2048 channels. As

shown in Table 2, in this paper we have analyzed the count

values of three channel ranges. The first range is the full

spectrum, 2048 channels; the second range is the first 768

channels, which contain the S1–S4 four weak peaks mentioned

in the previous article; and the third range is from channel 768

to channel 1536, which contains the four peaks S5–S8. A good

measurement result requires not only that the counting value

should be as large as possible, on the basis of ensuring that the

counting value is true, but also that the statistical fluctuation

should be reduced.

In Table 2, C represents the count value, A represents the

average counting value of the ten measurement results, and S

represents the standard deviation of the ten counting values.

The average counting value obtained by the different

processing methods can realize the quantization of increasing

the proportion of the counting value, and the quantization

result is shown in equation (15),

Increase proportion of Crepair ¼
Arepair � Aeliminate

Aeliminate

: ð15Þ

The average value of the ten measurement results of the full

spectrum obtained after repairing is 6322911, and the average

value when the pulse elimination method is used is 6137257;

this gives an increase ratio for the counting value of 3% using

equation (15), which is easily obtained by the pulse repairing

method.

The statistical fluctuation of the ten measurement results

obtained by each method is quantified by the standard

deviation. It is easy to see that the standard deviation obtained

by the pulse repairing method is always less than that obtained

by the pulse elimination method in all channel ranges, which

contain the full spectrum, the weak peak region and the strong

peak area. That is to say, this experiment can verify that the
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Figure 8
Increase rate of the peak area.

Table 2
Comparison of the count value obtained by the pulse repairing and pulse elimination methods.

Cr = Crepair; Ce = Celiminate.

Cr Ce (Cr � Ce)/Ce Cr Ce (Cr � Ce)/Ce Cr Ce (Cr � Ce)/Ce

Channel 1–2048 1–2048 – 1–768 1–768 – 768–1536 768–1536 –
1st measurement 6324465 6136640 3.06% 170238 154250 10.36% 5716682 5565590 2.71%
2nd measurement 6325511 6135383 3.10% 170487 154884 10.07% 5718501 5564030 2.78%
3rd measurement 6323431 6137275 3.03% 170385 154651 10.17% 5715407 5565375 2.70%
4th measurement 6321728 6138864 2.98% 169668 154372 9.91% 5715445 5567951 2.65%
5th measurement 6324494 6139515 3.01% 169736 155269 9.32% 5717628 5567322 2.70%
6th measurement 6319873 6137754 2.97% 170424 154726 10.15% 5713291 5565194 2.66%
7th measurement 6323491 6139968 2.99% 170381 154629 10.19% 5716978 5568698 2.66%
8th measurement 6323189 6138141 3.01% 169833 154810 9.70% 5715961 5566395 2.69%
9th measurement 6321793 6135764 3.03% 170179 155014 9.78% 5716800 5563850 2.75%
10th measurement 6321144 6133265 3.06% 170260 153773 10.72% 5713917 5562817 2.72%
Average value 6322911 6137257 – 170159 154637 – 5716061 5565722 –
Standard deviation 1743.75 2057.96 – 302.08 422.58 – 1607.92 1887.41 –



measurement results obtained by the pulse repairing method

are more stable and the statistical fluctuation is smaller.

5. Conclusions

This paper presents a new method that not only solves the

problem of false peaks located in front of the total energy

peak but also increases the counting rate, when a fast SDD

adopts a reset type preamplifier and pulse distortion occurs

frequently. This method consists of three parts: theoretical

deduction, method verification and experiment. The theore-

tical deduction part concludes that equation (9) and the

seventh-order successive approximation method can be the

theoretical basis of pulse repairing. The simulation verification

part uses MATLAB as a tool for trapezoidal/triangular

shaping, whose objects are a complete negative exponential

pulse and a repaired negative exponential pulse. Comparison

results show that the shaping result of a complete negative

exponential pulse is indeed consistent with the shaping result

of a repaired negative exponential pulse, and therefore we can

conclude that both the equation (9) and the seventh-order

successive approximation methods can repair distorted pulses

effectively. Considering that the seventh-order successive

approximation method is easier to implement, the actual

measurement uses this method to repair distorted pulses. For

the experiment, we chose a 238Pu standard source as the

measuring object to verify the repairing method mentioned

above. According to the results of the measurement, the

following conclusions can be drawn:

(i) The peak area of each peak in the spectrum obtained

after pulse repairing has increased.

(ii) The peak area increase ratio for the strong peak is more

stable than that of the weak peak.

(iii) For the same source, the sum of the peak area obtained

by the pulse repairing method is increased by about 2.7%

compared with the pulse elimination method.

(iv) The pulse repairing method can realize the correction

of counting-loss, the increase ratio for the counting value

obtained by the pulse repairing method is about 3%, and the

statistical fluctuation of the counting value obtained by the

pulse repairing method is lower than that obtained by the

pulse elimination method.
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