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In situ X-ray diffraction with advanced X-ray sources offers unique

opportunities for investigating materials properties under extreme conditions

such as shock-wave loading. Here, Singh’s theory for deducing high-pressure

density and strength from two-dimensional (2D) diffraction patterns is

rigorously examined with large-scale molecular dynamics simulations of

isothermal compression and shock-wave compression. Two representative

solids are explored: nanocrystalline Ta and diamond. Analysis of simulated

2D X-ray diffraction patterns is compared against direct molecular dynamics

simulation results. Singh’s method is highly accurate for density measurement

(within 1%) and reasonable for strength measurement (within 10%), and can be

used for such measurements on nanocrystalline and polycrystalline solids under

extreme conditions (e.g. in the megabar regime).

1. Introduction

Knowledge of equation of state and strength of materials

under extreme conditions is critical to exploiting or optimizing

their performance in engineering applications, and to under-

standing the structure and dynamics of planetary interiors, but

measurements of such properties (in particular strength) are

still challenging. Extreme conditions are normally achieved

with diamond anvil cell (DAC) or shock-wave compression. In

DAC loading, X-ray diffraction (XRD) is often used to deduce

lattice compression and strength (Singh, 1993; Uchida et al.,

1996; He & Duffy, 2006; Liermann et al., 2010; Xiong et al.,

2014; Singh & Liermann, 2015; Dorfman et al., 2015). For

shock-wave loading (Murphy et al., 2010; Hawreliak et al.,

2012; MacDonald et al., 2016; Foster et al., 2017), the yield

strength is measured with stress gauges (Rosenberg, 2000),

pressure-shear loading (Yuan et al., 2001) and reshock–release

loading (Lipkin & Asay, 1977; Asay & Lipkin, 1978; Asay &

Chhabildas, 1981; Huang & Asay, 2007). Advanced X-ray

sources such as synchrotron radiation sources, X-ray free-

electron lasers (XFELs) and laser-induced plasma emission

sources offer opportunities for probing materials properties

with XRD, and have been applied to single crystals (Rigg &

Gupta, 2001; Turneaure & Gupta, 2009, 2011; Comley et al.,

2013; Fan et al., 2016) and polycrystalline solids (Hawreliak et

al., 2012; Fan et al., 2014; Singh, 2014; Lu et al., 2016; Briggs et

al., 2017; Foster et al., 2017; Wehrenberg et al., 2017).

For polycrystalline solids, a theory was developed by Singh

for DAC experiments (Singh, 1993) to obtain density and

strength from 2D XRD patterns (Singh, 2004, 2009, 2014;

Singh et al., 2012). Variations of Singh’s theory were applied to

shock-wave loading (Hawreliak et al., 2012; MacDonald et al.,
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2016; Foster et al., 2017). However, there are assumptions

inherent in Singh’s theory as regards deducing density and

differential stress (yield strength), such as the small strain

assumption (Singh, 1993; MacDonald et al., 2016). Given the

wide use of Singh’s theory, it is highly desirable to examine

rigorously its accuracy, and its applicability to extreme

conditions. A self-consistent examination with minimum/zero

assumptions is timely, considering that in situ temporally

resolved XRD measurements with advanced X-ray sources

have gained increasing importance in the study of materials

under dynamic extremes (Wehrenberg et al., 2017).

Here, we conduct large-scale molecular dynamics (MD)

simulations combined with XRD simulations to compare the

predictions of Singh’s theory against direct MD simulations.

We choose Ta and diamond as examples to represent ‘soft’ and

‘hard’ solids. Ta (Lu et al., 2013; Wehrenberg et al., 2017; Tang

et al., 2017; Sliwa et al., 2018) and diamond (Knudson et al.,

2008; Bradley et al., 2009; Smith et al., 2014; MacDonald et al.,

2016; Gregor et al., 2017) have been investigated both in

experiments and simulations. MD simulations of nanocrys-

talline solids are not only interesting for their engineering

applications but also allow us to evaluate the contribution of

grain boundaries in compression in addition to that of crystal

lattices, since diffraction peak positions only represent lattice

compression. The challenges posed by diffuse scattering of

nanocrystalline solids under shock compression (poor signal-

to-noise ratio) can also be mitigated by highly coherent

XFELs, and MD/XRD simulations are useful for such XFEL

experiments in the future. Our results show that Singh’s theory

is highly accurate for density measurements (within 1%) and

reasonably accurate for strength measurements (within 10%)

under megabar conditions, and can be applied for both static

and dynamic compression.

2. Methodology

2.1. Loading and diffraction geometries

For solids under extreme conditions, we consider two

common types of loading, i.e. shock-wave and diamond anvil

cell (DAC) compression; generally the bulk stress states are

both axially symmetric. Shock-wave loading is adiabatic

compression accompanied by heating, and DAC loading is

normally an isothermal process (at 300 K as in our case, if no

external heating or cooling is applied). We use the transmis-

sion geometry for diffraction calculations. Loading and

diffraction geometries are both shown in Fig. 1.

The loading direction (the shock compression direction in

Fig. 1) forms an angle of  with the normal (n) of a diffracting

plane under consideration (here the {110} plane for Ta).  is

referred to as the loading–diffraction geometry angle, and can

be varied as desired. Two frequently used geometries, where

the incident X-ray direction is parallel (the longitudinal

geometry) or perpendicular (the transverse geometry) to the

loading direction, are shown in Fig. 1.

In our discussion below, we consider only the transverse

geometry, although the geometries can be arbitrary. For

diffraction, the 2D detector is set perpendicular to the incident

X-ray direction (the normal detector position). For an arbi-

trary detector position, a geometrical correction can be

applied so the detector position becomes normal. The

diffraction angle (2�) and azimuthal angle (�) are defined on

the detector, and there exists the following relation among

 , 2� and �,

cos ¼ cos � cos �: ð1Þ

In the case shown in Fig. 1, two diffraction {110} rings appear

from the unshocked and shocked regions, corresponding to

the inner and outer rings, respectively. For isothermal DAC

compression, the geometries are similar, and the loading

direction is perpendicular to the culets of the diamond anvils.

2.2. Molecular dynamics simulations

For MD simulations of shock compression and isothermal

DAC compression, the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS) (Plimpton, 1995) is

used. The interatomic interactions in Ta are described with

an embedded-atom method (EAM) potential (Ravelo et al.,

2013). This EAM potential is widely adopted for shock and

nonshock simulations, especially for thermodynamic and

mechanical properties (Wang et al., 2014; Remington et al.,

2014), melting (Liu et al., 2016) and equation of state (Ravelo

et al., 2012, 2013), which are in agreement with the experi-

mental results (Marsh, 1980; Mitchell & Nellis, 1981; Cynn &

Yoo, 1999) and ab initio calculations (Dewaele et al., 2004). For

diamond, we use the Tersoff potential (Tersoff, 1989), which

has been used in the studies of carbon-based materials,
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Figure 1
Loading and diffraction geometries for dynamic X-ray diffraction
measurements under extreme conditions. Here shock loading of
nanocrystalline Ta is used as an example of loading. Longitudinal and
transverse diffraction geometries are illustrated, referring to the cases
with the incident X-ray direction being parallel or perpendicular to the
loading direction, respectively. The dashed triangle refers to the {110}
diffraction planes with a normal n. Loading-diffraction geometry angle  ,
diffraction angle 2� and azimuthal angle � are also defined.



including diamonds (Tersoff, 1994; Shen & Chen, 2007;

Remediakis et al., 2008; Sha et al., 2011; Zhao et al., 2016;

Huang et al., 2018). Nanocrystalline Ta and diamond config-

urations with random grain crystallographic orientations and

grain centers are constructed via the Voronoi tessellation

method (Voronoı̈, 1908; E et al., 2018a).

The nanocrystalline Ta configuration has dimensions of

100 nm � 80 nm � 80 nm and contains approximately 2500

grains (grain size �5 nm), corresponding to about 35000000

atoms. The nanocrystalline diamond configuration has

dimensions of 120 nm � 30 nm � 30 nm, and contains 300

grains (grain size �10 nm) and approximately 19000000

atoms. The time step for integrating the equation of motion is

1 fs and the run times are up to 100 ps. Prior to DAC or shock

compression, energy minimization of the configurations is

performed with the conjugate gradient method, followed by

relaxation with a constant-pressure-temperature ensemble at

300 K and zero pressure. 3D periodic boundary conditions are

applied. Therefore, the structures are optimized with negli-

gible internal stress.

To mimic DAC loading, a sample is compressed with the

lateral confinement. The loading axis is along the x-axis and

3D periodic boundary conditions are applied, the constant-

volume-temperature ensemble (the 300 K isotherm) is used,

and the dimension along the loading axis is reduced at a fixed

decrement. Shock loading is also applied along the x-axis via a

rigid piston (Holian & Lomdahl, 1998), and periodic boundary

conditions are applied only along the y- and z-axes. The

microcanonical ensemble is used for shock loading. Piston

velocity (up) is varied to achieve different shock states. The

stress tensor (�ij) is calculated after the removal of the velocity

of the center of mass (Luo et al., 2009). Hydrostatic

compression is also performed with the constant-pressure-

temperature ensemble at the equivalent hydrostatic stress (�P)

corresponding to a 1D strain state for shock or isothermal

compression.

The stress tensor can be decomposed into hydrostatic and

deviatoric stress components as

�xx 0 0

0 �yy 0

0 0 �zz

0
@

1
A ¼ �P Iþ

ð2=3Þt 0 0

0 �ð1=3Þt 0

0 0 �ð1=3Þt

2
4

3
5;

where I is the identity matrix, �xx� �yy = �zz for homogeneous

isotropic solids, �P = ð1=3Þð�xx þ �yy þ �zzÞ represents the

mean normal stress or so-called equivalent hydrostatic stress,

and t = �xx � ð1=2Þð�yy þ �zzÞ denotes the differential stress.

According to the von Mises yield criterion (Ruoff, 1975),

t = �Y = 2� upon yield. �Y and � are the (residual) yield

strength and maximum shear stress, respectively. t and bulk

density � are obtained directly from MD simulations, and

compared with those from X-ray diffraction analysis as shown

below.

2.3. Diffraction simulation and analysis

Given the atomic configurations at different loading states,

we calculate corresponding diffraction patterns with GAPD, a

GPU-accelerated parallel diffraction simulation code (E et al.,

2018b). The diffraction intensity I at scattering vector q is

the product of atom number N, structure factor F(q) and its

complex conjugate, F �ðqÞ (Warren, 1969; Chen et al., 2017),

IðqÞ ¼
F �ðqÞFðqÞ

N
; ð2Þ

with

FðqÞ ¼
XN

j¼ 1

fj exp 2�iq � rj

� �
: ð3Þ

Here, rj is the position of the jth atom in real space, and fj is

the atomic scattering factor of atom j. Then, we obtain the

diffraction patterns projected from reciprocal space to a two-

dimensional detector. An example is shown in Fig. 2(a) with

the corresponding distribution of  [defined in equation (1)]

illustrated in Fig. 2(b). The X-ray wavelength in our calcula-

tions is 1 Å (12.398 keV), 2� ranges from 20	 to 35	, and the

corresponding range of  is 10	�90	.
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Figure 2
(a) 2D diffraction patterns (the {110} reflection) for nanocrystalline Ta at different strains ("xx or simply ") under isothermal compression (DAC).
(b) Distribution of  on the 2D diffraction patterns for the transverse geometry. (c) Corresponding dm versus ð1� 3 cos2  Þ plots. The solid curves in (a)
and (c) denote fitting based on equation (4).



From 2D X-ray diffraction patterns, we can deduce bulk

density under the equivalent hydrostatic pressure density (�P)

and strength under extreme conditions using a method

originally presented by Singh (1993) in the small strain limit,

and compare the results with those obtained from direct

MD simulations. In this theory, a polycrystalline sample is

compressed and the stress field is axially symmetric along the

loading axis (the x-axis).

The measured lattice spacing, dm(hkl), is related to  via

dmðhklÞ ¼ dPðhklÞ 1þ 1� 3 cos2  
� �

QðhklÞ
� �

: ð4Þ

Here, dP(hkl) denotes d-spacing due to �P, and Q(hkl) is a

factor which depends on t and single-crystal elastic

compliances, Sij. Since dm = �=2 sin �, we obtain a scatter plot

of dm versus ð1� 3 cos2  Þ, which can then be fitted with

equation (4). The fitting in the dm versus ð1� 3 cos2  Þ plane is

mapped back into the detector plane to obtain the fitted

diffraction rings. The 2D diffraction patterns and dm versus

ð1� 3 cos2  Þ plots along with their fittings are shown in

Figs. 2(a) and 2(c), respectively. The shape of a diffraction ring

is a perfect circle if strain free, and it becomes elliptical

(or other noncircular shapes) under a finite strain. In the

dm versus ð1� 3 cos2  Þ plots, the intercept at ð1� 3 cos2  Þ =

0 is dP, and the slope is dP(hkl)Q(hkl). The slope is zero for

the strain-free cases.

For convenience, we define relative density � r = � /�0, where

�0 is the initial density. We use �P
r to denote relative density

under equivalent hydrostatic stress. � r and �P
r can be different,

since their exact stress conditions are different. In equation-

of-state measurements under nonhydrostatic compression, � r
P

rather than � r should be used in principle.

Given dP obtained from the diffraction analysis, we have

� r
Pð"xxÞ ¼

dPð"xx ¼ 0Þ

dPð"xxÞ

� �3

ð5Þ

for 1D strain conditions simulated in this work; the � r
P values

from XRD can be compared with those directly from MD

simulations. Strictly speaking, � r
P,XRD only represents the bulk

density of crystal lattices, while its MD counterpart, � r
P,MD,

consists of contributions from both lattices and grain bound-

aries. Therefore, XRD measurements may underestimate

density by a small amount, since grain boundaries in a poly-

crystalline sample overall are more compressible than crystal

lattices.

The residual strength t is then given by

t ¼ 6G hQðhklÞi f ðx; 	Þ; ð6Þ

where G is the aggregate shear modulus, x is the elastic

anisotropy factor and 	 is a weight factor depending on x.

f(x, 	) is a parameter, approximately 1 for all crystal systems

(Singh, 2014). In theory, the aggregate shear modulus G is

expressed as the harmonic mean of GV and GR,

1

G
¼

1

2

1

GV

þ
1

GR

� 	
: ð7Þ

Here, GV is the aggregate shear modulus under the Voigt

assumption (strain continuity) (Voigt, 1928), and GR is the

aggregate shear modulus under the Reuss assumption (stress

continuity) (Reuss, 1929). For better accuracy, the aggregate

shear modulus G under extreme conditions is calculated

directly from MD simulations. In MD simulations, small shear

strains are applied to the sample followed by stress tensor

calculation. Then the shear modulus is calculated from stress

and strain tensors.

3. Results and discussion

3.1. Nanocrystalline Ta

For nanocrystalline Ta, we apply both isothermal

compression (or DAC) and shock compression. For isothermal

compression at 300 K (strain rate �109 s�1), "xx (or simply ")
varies from 0 to 0.4, and, for shock compression (strain rate

�1011 s�1), the piston velocity up varies from 0 to 1.5 km s�1.

The initial configurations are the same for isothermal DAC

compression and shock compression. MD simulation results

and XRD analysis are presented in Figs. 2–5 and Tables 1–4.

For isothermal compression, the stress–strain curves

directly obtained from MD simulations are shown in Fig. 3,

including �xx("xx), �P("xx) and t("xx). �xx and �P increase

monotonically to >270 GPa with "xx increasing to 0.4, while

the differential stress increases rapidly to the peak (6 GPa at

"xx = 0.08; the elastic regime), followed by relaxation (yield)

and strain hardening beginning at "xx ’ 0.2. Full stress and

relative density parameters are shown in Table 1 at repre-

sentative strains, "xx = 0, 0.1, 0.2, 0.3 and 0.4.

For 2D diffraction pattern analysis of isothermal compres-

sion, we consider the following cases: "xx = 0, 0.1, 0.2, 0.3 and

0.4. The diffraction patterns of the strongest reflection, the

{110} reflection, are shown in Fig. 4, along with the fitted

diffraction rings. The diffraction patterns show strong diffuse

scattering features due to the small grain size. Compared with

the diffraction ring at zero strain, the diffraction ring moves

toward larger 2� with increasing strain, and its shape deviates

from the circular shape as a result of nonhydrostatic

compression. The 2D diffraction patterns are reduced to the

dm(110) versus ð1� 3 cos2  Þ plots, which are fitted with the
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Figure 3
Nanocrystalline Ta: the stress versus strain ("xx) curves for isothermal
compression (DAC), along with differential stresses for shock compres-
sion (squares).



linear equation [equation (5)]. For "xx = 0, Q = 0 as expected,

and the slopes deviate from zero at higher strains: Q increases

and then decreases with increasing strain.

Given the dm(110) versus ð1� 3 cos2  Þ fitting results at

different "xx, we obtain dP and Q as a function of the applied

1D strain "xx, and thus density and strength (differential

stress) under elevated stresses (Table 2) and compare them

with direct MD simulations (Table 1).

For nanocrystalline Ta under isothermal compression, the

density under 1D strain compression (� r; true density) agrees

within 0.1% with that under equivalent hydrostatic compres-

sion (�P
r) from direct MD simulations (Table 1). These two

densities (� r and �P
r obtained directly from MD simulations)

are used for calculating the relative errors in density obtained

from the XRD analysis, denoted as 
�1 and 
�2 (Table 2),

respectively. Similarly, the relative error in differential stress t

obtained from the XRD analysis (
t ; Table 2) is referenced to

that directly obtained from MD simulations (Table 1).

The XRD analysis method is highly accurate for obtaining

density and |
�| < 1% for nanocrystalline Ta under isothermal

compression (Table 2). Note that all 
� < 0; the negative values

of 
� are due to the fact that the diffraction positions represent

lattice deformation only, while the density values obtained

directly from MD simulations have contributions from grain

boundaries and crystal lattices, and are higher since grain

boundaries are overall more compressible than crystal lattices.

The accuracy in differential stress is reasonable, |
t| < 8%.

While the measurement on Q is of high accuracy, converting Q

to t involves different assumptions as discussed in Section 2,

which may lead to systematic errors in deducing t.

Shock loading induces pure elastic compression for up 


0.2 km s�1 and elastic–plastic compression for 0.2 < up 


1.5 km s�1. The shock parameters from MD simulations are

presented in Table 3 and Fig. 3. During elastic compression,

the differential stress from shock loading is nearly identical

to that in isothermal DAC compression, while it decreases

rapidly for stronger shocks (after yield), and a complete loss

of strength occurs at up = 1.5 km s�1. The difference between

DAC and shock loading in differential stress at higher strains

is due to increased shock heating with increasing piston

velocities/strains (the shock temperature is about 2800 K at

up = 1.5 km s�1).

For nanocrystalline Ta under shock compression, the 2D

diffraction patterns are obtained along with fitted diffraction

rings for piston velocity ranging from 0 to 1.5 km s�1. The

diffraction signals (Fig. 5) become more diffuse compared with

isothermal loading (300 K) at similar strains (Fig. 4), due to

shock-induced heating (the shock temperature is about

1300 K at up = 1.0 km s�1). The 2D XRD patterns are reduced

to the dm � ð1� 3 cos2  Þ curves fitted with equation (5). The

results are summarized in Table 3 for direct MD simulations

and in Table 4 for XRD analysis.

Similar to isothermal compression, the densities under

the actual shock-loading conditions (� r) and the equivalent

hydrostatic stress (� r
P) are nearly identical (Table 3). The XRD

analysis method is also highly accurate for shock compression

(Tables 3 and 4). The densities obtained from XRD agree with

direct MD simulations to within 1%, and all 
� < 0 as expected.

The relative errors in differential stress are within 4%.

3.2. Nanocrystalline diamond

In sharp contrast to metals, diamond has the highest yield

strength and low compressibility, and represents the other end
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Figure 4
2D diffraction patterns (the {110} reflection) of nanocrystalline Ta under isothermal compression (DAC) at different strains ("xx). The solid curves
denote fitting with equation (4). The inner different rings refer to zero strain. 2� ranges from 20	 to 35	. U: uncompressed; C: compressed.

Table 2
Isothermal (DAC) compression of nanocrystalline Ta: XRD analysis.

Relative errors are 
t � t/tMD � 1; 
�1 � �
r/� r

MD � 1; 
�2 � �
r
P /� r

P,MD � 1.

"xx dP (Å) Q t (GPa) 
t (%) � P
r 
�1 (%) 
�2 (%)

0.0 2.339 0.0001 0.03 – 1.000 – –
0.1 2.263 0.0170 6.10 7.95 1.104 �0.63 �0.63
0.2 2.177 0.0119 4.77 �3.07 1.241 �0.72 �0.80
0.3 2.082 0.0108 6.44 �0.09 1.419 �0.70 �0.70
0.4 1.980 0.0115 8.77 6.56 1.650 �1.02 �0.96

Table 1
Isothermal (DAC) compression of nanocrystalline Ta: direct MD
simulations.

� r
P refers to compression under equivalent hydrostatic stress.

"xx �xx (GPa) �P (GPa) t (GPa) � r � r
P

0.0 0.00 0.00 0.00 1.000 1.000
0.1 28.01 24.25 5.65 1.111 1.111
0.2 71.45 68.20 4.92 1.250 1.251
0.3 147.08 142.83 6.45 1.429 1.429
0.4 276.69 271.20 8.23 1.667 1.666



of the wide spectrum of materials. Deducing the equation of

state and strength of polycrystalline diamonds at extreme

conditions is of direct technical and scientific interest (Field,

1992; Eremets et al., 2005; Bradley et al., 2009; Lang & Gupta,

2010; McWilliams et al., 2010). As another validation and

application case, we investigate below shock compression of

nanocrystalline diamond and XRD interpretation as regards

density and strength at high pressures.

Shock loading with a piston velocity up = 3.0 km s�1 is used

for illustrative purposes here. At this piston velocity, nano-

crystalline diamond undergoes the elastic–plastic transition.

The corresponding 2D diffraction pattern of nanocrystalline

diamond at the steady shock state is obtained [Fig. 6(a)]; the

pattern is relatively spotty compared with the nanocrystalline

Ta cases, since we deliberately decrease the grain number and

increase grain size to check their effects on data analysis. For

comparison, the XRD pattern is also calculated for the

unshocked sample. Fittings to both 2D diffraction patterns are

performed based on equation (5) and plotted as a solid curve

in Fig. 6(a), and the corresponding dm versus ð1� 3 cos2  Þ
plots and linear fittings are shown in Fig. 6(b). The MD results

and XRD analysis are also summarized in Tables 5 and 6.

The shocked sample displays a highly elliptical diffraction

ring and a large slope (Q = 0.0393), and the unshocked sample

displays a perfectly circular diffraction ring and zero slope

(Q = 0) as expected. The density from the 2D diffraction

pattern analysis at up = 3.0 km s�1 is still of high accuracy, with

an underestimate by 0.93% relative to the true density and by

1.8% with respect to the density under equivalent hydrostatic

stress. This underestimate is again due to different compres-

sibilities of grain boundaries and crystal lattices. However, � r

and �P
r differ more in the diamond

case (Table 5) than the Ta case,

likely due to the more pronounced

nonhydrostaticity in nanocrystalline

diamond.

The shear modulus of diamond

under this high pressure is calculated

as 570.19 GPa from MD simulations,

so the differential stress from XRD

analysis is tXRD = 134.35 GPa [equation

(7)] under the equivalent hydrostatic

pressure of 103.22 GPa, almost iden-

tical to that from direct MD simula-

tions (tMD = 133.77 GPa, differing only

by 0.4%).
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Figure 5
2D diffraction patterns of nanocrystalline Ta (the {110} reflection) under shock compression at
different piston velocities (up). The solid curves denote fittings. The diffraction ring for the
unshocked state is also included for comparison. 2� ranges from 20	 to 30	. U: unshocked; S: shocked.

Table 4
Shock loading of nanocrystalline Ta: XRD analysis.

Here 
t � t/tMD � 1; 
�1 � �
r/� r

MD � 1; 
�2 � �
r
P /� r

P,MD � 1.

up

(km s�1)
dP

(Å) Q
t
(GPa)


t

(%) � r
P


�1

(%)

�2

(%)

0.0 2.339 0.0001 0.03 – 1.000 – –
0.2 2.301 0.0103 3.64 1.34 1.050 �0.28 �0.28
0.5 2.247 0.0073 2.54 �3.13 1.128 �0.79 �0.88
1.0 2.166 0.0020 0.75 �1.59 1.260 �0.55 �0.63

Figure 6
Nanocrystalline diamond under shock compression. (a) 2D {110}
diffraction patterns from the unshocked (U) and shocked (S) samples,
and (b) the corresponding dm versus ð1� 3 cos2  Þ plots. The solid curves
are fittings based on equation (4).

Table 5
Shock loading of nanocrystalline diamond: direct MD simulations.

up

(km s�1)
�xx

(GPa)
�P

(GPa)
t
(GPa) "xx � r �P

r

0.0 0.02 �0.04 0.08 0.00 1.000 1.000
3.0 192.40 103.22 133.77 0.16 1.188 1.199

Table 6
Shock loading of nanocrystalline diamond: XRD analysis.

Here 
t � t/tMD � 1; 
�1 � �
r/� r

MD � 1; 
�2 � �
r
P /� r

P,MD � 1.

up

(km s�1)
dP

(Å) Q
t
(GPa)


t

(%) � r
P


�1

(%)

�2

(%)

0.0 2.069 0.0012 3.29 – 1.000 – –
3.0 1.960 0.0393 134.35 0.43 1.177 �0.93 �1.83

Table 3
Shock loading of nanocrystalline Ta: direct MD simulations.

up

(km s�1)
�xx

(GPa)
�P

(GPa)
t
(GPa) "xx � r �P

r

0.0 0.00 0.00 0.00 0.00 1.000 1.000
0.2 12.91 10.51 3.59 0.05 1.053 1.053
0.5 33.62 31.88 2.62 0.12 1.137 1.138
1.0 77.56 77.05 0.76 0.21 1.267 1.268



3.3. Implications to synchrotron experiments

Two key issues for synchrotron experiments are q-resolu-

tion and the effects of X-ray spectral characteristics (band-

width and spectrum shape). We discuss briefly below these two

issues considering realistic detector sizes, detector geometry

and X-ray spectra.

In experiment, pixel size and sample-to-detector distance

(Lsd) affect the q-resolution. For instance, we consider the Ta

case with a piston velocity of 1 km s�1, and take Lsd = 100 mm

for calculating the {110} diffraction ring. For a typical pixel size

(100 mm � 100 mm), a single pixel represents a 0.045	 differ-

ence in 2� in this geometry, corresponding to 0.5% density

variation. The full {110} diffraction ring can be recorded on a

115 mm � 115 mm detector (1150 pixels � 1150 pixels). The

length difference between the major and minor axes of the

diffraction ring (ellipse) is 2.24 mm, and the difference in 2�
is 1	; such an ellipticity of the diffraction ring can be readily

resolved. Similarly, it can be resolved for a 200 mm � 200 mm

pixel size.

In addition to monochromatic X-rays, we also explore

spectra with finite bandwidths and different spectrum

symmetries. Here, we choose the first harmonic of an undu-

lator source (U18Gap13) at the Advanced Photon Source

(APS) beamline 32ID-B [Fig. 7(a)]. This

asymmetrical pink beam has a band-

width of 8% with its spectral flux peak

located at �c = 0.5064 Å. Another

symmetric Gaussian-shaped spectrum

with the same spectral peak wavelength

and bandwidth is examined for

comparison [Fig. 7(b)]. The bandwidths

are considerably larger than those of

XFELs.

The simulated 2D {110} peak beam

diffraction patterns are shown in

Figs. 8(a) and 8(b). To reduce the pink

beam diffraction patterns with Singh’s

method, we use the peak wavelength �c,

and obtain the corresponding dm versus

ð1� 3 cos2  Þ curves in Fig. 8(c). The

analysis results for the pink beam sources are presented in

Tables 7 and 8. Compared with the monochromatic X-ray

diffraction, the intercept is slightly smaller and the slope

remains the same for the U18Gap13 spectrum, while the fitting

curves for the Gaussian-shaped spectrum coincide with those

for the monochromatic diffraction. The change of intercept in

Fig. 8(c) for the U18Gap13 spectrum represents the diffraction

peak shift due to the asymmetry of the pink beam spectrum

(E et al., 2018b). Therefore, the strength, which is calculated

with the slope, is not affected by the spectrum width or

symmetry, while there is a slight overestimate of density due to

asymmetry of the undulator source U18Gap13. The overall

accuracy in relative density is within 3%.

4. Conclusions

The accuracy of determining density and strength from a 2D

diffraction pattern (Singh’s theory) is examined independently

with direct large-scale MD simulations and simulated 2D

diffraction patterns, under representative extreme compres-
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Table 7
Shock loading of nanocrystalline diamond: pink beam X-ray diffraction
with the first harmonic of the U18Gap13 undulator spectrum.

Here 
t � t/tMD � 1; 
�1 � �
r/� r

MD � 1; 
�2 � �
r
P /� r

P,MD � 1.

up

(km s�1)
dP

(Å) Q
t
(GPa)


t

(%) � r
P


�1

(%)

�2

(%)

0.0 2.034 �0.0003 �3.29 – 1.000 – –
3.0 1.933 0.0390 133.42 �0.26 1.166 �1.85 �2.75

Table 8
Shock loading of nanocrystalline diamond: pink beam X-ray diffraction
with the Gaussian-shaped spectrum.

Here 
t � t/tMD � 1; 
�1 � �
r/� r

MD � 1; 
�2 � �
r
P /� r

P,MD � 1.

up

(km s�1)
dP

(Å) Q
t
(GPa)


t

(%) � r
P


�1

(%)

�2

(%)

0.0 2.065 0.0009 3.20 – 1.000 – –
3.0 1.958 0.0403 137.74 2.96 1.173 �1.26 �2.17

Figure 7
(a) Simulated X-ray spectrum from a typical APS undulator source
(U18Gap13), through a 1 mm � 1 mm pinhole located 35 m away from
the source. U18Gap13: undulator with a period of 18 mm and a gap of
13 mm; electron energy is 7 GeV and the current is 100 mA. The spectral
flux is normalized by the peak value. (b) Gaussian-shaped spectrum (8%
bandwidth). Both spectra peak at 0.5604 Å.

Figure 8
Pink beam X-ray diffraction of nanocrystalline diamond. 2D {110} diffraction patterns from the
unshocked (U) and shocked (S) samples with (a) the first harmonic of U18Gap13 and (b) a
Gaussian-shaped spectrum. (c) Corresponding dm versus ð1� 3 cos2  Þ plots. The dashed curves
refer to monochromatic XRD, and solid curves to the pink beam.



sion conditions (DAC and shock compression) of two repre-

sentative solids, nanocrystalline Ta and diamond. Our results

highlight the necessity of 2D diffraction pattern analysis

for the equation of state, and the usefulness for strength

measurements.

(i) Singh’s theory is validated self-consistently for

isothermal compression as in DAC experiments, and its

extension to shock compression appears to be reliable.

(ii) Singh’s theory is highly accurate for determining true

density (within 1%), but always underestimates density since

it only considers lattice compression, since grain boundaries

are overall more compressible than crystal lattices.

(iii) The residual strength can achieve an accuracy of <8%

or better, although improvement is desirable.

(iv) Small-strain assumption appears to be valid to large

strains, for small (nanocrystalline) as well as large grain sizes.

A full diffraction ring rather than the magic angle ( = 54.7	)

should be measured whenever possible for better accuracy.

(v) For nanocrystalline Ta, isothermal compression leads to

a decrease of strength followed by increased strength after

yield, while shock compression results in decrease or loss of

strength for strong shocks (below 100 GPa) due to shock

heating. Nanocrystalline diamond retains its exceptional

strength even above 100 GPa.

(vi) For pink beam X-ray diffraction, the slope of a dm

versus ð1� 3 cos2  Þ curve remains unchanged regardless of

spectrum width or symmetry; however, the intercept (thus,

density) may be over- or underestimated for asymmetric

spectra.

Acknowledgements

Numerical computations were performed at the Super-

computing Center of the Peac Institute of Multiscale Sciences.

Funding information

Funding for this research was provided by: National Key R&D

Program of China (grant No. 2017YFB0702002); Scientific

Challenge Project of China (grant No. TZ2018001); National

Natural Science Foundation of China (grant No. 11627901).

References

Asay, J. R. & Chhabildas, L. C. (1981). In Shock Waves and High-
Strain-Rate Phenomena in Metals, pp. 417–431. Springer.

Asay, J. R. & Lipkin, J. (1978). J. Appl. Phys. 49, 4242–4247.
Bradley, D. K., Eggert, J. H., Smith, R. F., Prisbrey, S. T., Hicks, D. G.,

Braun, D. G., Biener, J., Hamza, A. V., Rudd, R. E. & Collins, G. W.
(2009). Phys. Rev. Lett. 102, 075503.

Briggs, R., Gorman, M. G., Coleman, A. L., McWilliams, R. S.,
McBride, E. E., McGonegle, D., Wark, J. S., Peacock, L., Rothman,
S., Macleod, S. G., Bolme, C. A., Gleason, A. E., Collins, G. W.,
Eggert, J. H., Fratanduono, D. E., Smith, R. F., Galtier, E.,
Granados, E., Lee, H. J., Nagler, B., Nam, I., Xing, Z. & McMahon,
M. I. (2017). Phys. Rev. Lett. 118, 025501.

E, J. C., Cai, Y., Zhong, Z. Y., Tang, M. X., Zhu, X. R., Wang, L. &
Luo, S. N. (2018a). J. Appl. Cryst. 51, 124–132.

Chen, S., E, J. & Luo, S.-N. (2017). J. Appl. Cryst. 50, 951–958.
Comley, A. J., Maddox, B. R., Rudd, R. E., Prisbrey, S. T., Hawreliak,

J. A., Orlikowski, D. A., Peterson, S. C., Satcher, J. H., Elsholz, A. J.,

Park, H.-S., Remington, B. A., Bazin, N., Foster, J. M., Graham, P.,
Park, N., Rosen, P. A., Rothman, S. R., Higginbotham, A., Suggit,
M. & Wark, J. S. (2013). Phys. Rev. Lett. 110, 115501.

Cynn, H. & Yoo, C.-S. (1999). Phys. Rev. B, 59, 8526–8529.
Dewaele, A., Loubeyre, P. & Mezouar, M. (2004). Phys. Rev. B, 70,

094112.
Dorfman, S. M., Shieh, S. R. & Duffy, T. S. (2015). J. Appl. Phys. 117,

065901.
E, J. C., Wang, L., Chen, S., Zhang, Y. Y. & Luo, S. N. (2018). J.

Synchrotron Rad. 25, 604–611.
Eremets, M. I., Trojan, I. A., Gwaze, P., Huth, J., Boehler, R. & Blank,

V. D. (2005). Appl. Phys. Lett. 87, 141902.
Fan, D., Huang, J. W., Zeng, X. L., Li, Y. E. J., Huang, J. Y., Sun, T.,

Fezzaa, K., Wang, Z. & Luo, S. N. (2016). Rev. Sci. Instrum. 87,
053903.

Fan, D., Lu, L., Li, B., Qi, M. L. E. J., Zhao, F., Sun, T., Fezzaa, K.,
Chen, W. & Luo, S. N. (2014). Rev. Sci. Instrum. 85, 113902.

Field, J. E. (1992). Editor. The Properties of Natural and Synthetic
Diamond. London: Academic Press.

Foster, J. M., Comley, A. J., Case, G. S., Avraam, P., Rothman, S. D.,
Higginbotham, A., Floyd, E. K. R., Gumbrell, E. T., Luis, J. J. D.,
McGonegle, D., Park, N. T., Peacock, L. J., Poulter, C. P., Suggit,
M. J. & Wark, J. S. (2017). J. Appl. Phys. 122, 025117.

Gregor, M. C., Fratanduono, D. E., McCoy, C. A., Polsin, D. N., Sorce,
A., Rygg, J. R., Collins, G. W., Braun, T., Celliers, P. M., Eggert, J. H.,
Meyerhofer, D. D. & Boehly, T. R. (2017). Phys. Rev. B, 95, 144114.

Hawreliak, J., El-dasher, B., Eggert, J., Rygg, J., Collins, G. W.,
Lorenzana, H., Kimminau, G., Higginbotham, A., Nagler, B.,
Vinko, S., Murphy, W., Whitcher, T., Rothman, S., Park, N. & Wark,
J. (2012). AIP Conf. Proc. 1426, 975–978.

He, D. & Duffy, T. S. (2006). Phys. Rev. B, 73, 134106.
Holian, B. L. & Lomdahl, P. S. (1998). Science, 280, 2085–2088.
Huang, C., Peng, X., Yang, B., Chen, X., Li, Q., Yin, D. & Fu, T.

(2018). Carbon, 136, 320–328.
Huang, H. & Asay, J. R. (2007). J. Appl. Phys. 101, 063550.
Knudson, M. D., Desjarlais, M. P. & Dolan, D. H. (2008). Science, 322,

1822–1825.
Lang, J. M. & Gupta, Y. M. (2010). J. Appl. Phys. 107, 113538.
Liermann, H.-P., Jain, A., Singh, A. K. & Saxena, S. K. (2010). J. Phys.

Chem. Solids, 71, 1088–1093.
Lipkin, J. & Asay, J. R. (1977). J. Appl. Phys. 48, 182–189.
Liu, C. M., Xu, C., Cheng, Y., Chen, X. R. & Cai, L. C. (2016). Appl.

Phys. A, 122, 22.
Lu, C. H., Remington, B. A., Maddox, B. R., Kad, B., Park, H. S.,

Kawasaki, M., Langdon, T. G. & Meyers, M. A. (2013). Acta Mater.
61, 7767–7780.

Lu, L., Huang, J. W., Fan, D., Bie, B. X., Sun, T., Fezzaa, K., Gong,
X. L. & Luo, S. N. (2016). Acta Mater. 120, 86–94.

Luo, S.-N., Germann, T. C. & Tonks, D. L. (2009). J. Appl. Phys. 106,
123518.

MacDonald, M. J., Vorberger, J., Gamboa, E. J., Drake, R. P., Glenzer,
S. H. & Fletcher, L. B. (2016). J. Appl. Phys. 119, 215902.

McWilliams, R. S., Eggert, J. H., Hicks, D. G., Bradley, D. K., Celliers,
P. M., Spaulding, D. K., Boehly, T. R., Collins, G. W. & Jeanloz, R.
(2010). Phys. Rev. B, 81, 014111.

Marsh, S. P. (1980). LASL Shock Hugoniot Data, Vol. 5. University of
California Press.

Mitchell, A. C. & Nellis, W. J. (1981). J. Appl. Phys. 52, 3363–3374.
Murphy, W. J., Higginbotham, A., Kimminau, G., Barbrel, B., Bringa,

E. M., Hawreliak, J., Kodama, R., Koenig, M., McBarron, W.,
Meyers, M. A., Nagler, B., Ozaki, N., Park, N., Remington, B.,
Rothman, S., Vinko, S. M., Whitcher, T. & Wark, J. S. (2010). J. Phys.
Condens. Matter, 22, 065404.

Plimpton, S. (1995). J. Comput. Phys. 117, 1–19.
Ravelo, R., An, Q., Germann, T. C. & Holian, B. L. (2012). AIP Conf.

Proc. 1426, 1263–1266.
Ravelo, R., Germann, T. C., Guerrero, O., An, Q. & Holian, B. L.

(2013). Phys. Rev. B, 88, 134101.

research papers

420 Y. Y. Zhang et al. � Deducing density and strength from X-ray diffraction J. Synchrotron Rad. (2019). 26, 413–421

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB38


Remediakis, I. N., Kopidakis, G. & Kelires, P. C. (2008). Acta Mater.
56, 5340–5344.

Remington, T. P., Ruestes, C. J., Bringa, E. M., Remington, B. A., Lu,
C. H., Kad, B. & Meyers, M. A. (2014). Acta Mater. 78, 378–393.

Reuss, A. (1929). Z. Angew. Math. Mech. 9, 49–58.
Rigg, P. A. & Gupta, Y. M. (2001). Phys. Rev. B, 63, 094112.
Rosenberg, Z. (2000). AIP Conf. Proc. 505, 1033–1038.
Ruoff, A. L. (1975). J. Appl. Phys. 46, 1389–1392.
Sha, Z. D., Branicio, P. S., Sorkin, V., Pei, Q. X. & Zhang, Y. W. (2011).

Diamond Relat. Mater. 20, 1303–1309.
Shen, L. & Chen, Z. (2007). Int. J. Solids Struct. 44, 3379–3392.
Singh, A. K. (1993). J. Appl. Phys. 73, 4278–4286.
Singh, A. K. (2004). J. Phys. Chem. Solids, 65, 1589–1596.
Singh, A. K. (2009). J. Appl. Phys. 106, 043514.
Singh, A. K. (2014). J. Phys. Conf. Ser. 500, 122005.
Singh, A. K., Hu, J., Shu, J., Mao, H. & Hemley, R. J. (2012). J. Phys.

Conf. Ser. 377, 012008.
Singh, A. K. & Liermann, H.-P. (2015). J. Appl. Phys. 118, 065903.
Sliwa, M., McGonegle, D., Wehrenberg, C., Bolme, C. A., Heighway,

P. G., Higginbotham, A., Lazicki, A., Lee, H. J., Nagler, B., Park,
H. S., Rudd, R. E., Suggit, M. J., Swift, D., Tavella, F., Zepeda-Ruiz,
L., Remington, B. A. & Wark, J. S. (2018). Phys. Rev. Lett. 120,
265502.

Smith, R. F., Eggert, J. H., Jeanloz, R., Duffy, T. S., Braun, D. G.,
Patterson, J. R., Rudd, R. E., Biener, J., Lazicki, A. E., Hamza,

A. V., Wang, J., Braun, T., Benedict, L. X., Celliers, P. M. & Collins,
G. W. (2014). Nature, 511, 330–333.

Tang, M. X. E. J., Wang, L. & Luo, S. N. (2017). J. Appl. Phys. 121,
115901.

Tersoff, J. (1989). Phys. Rev. B, 39, 5566–5568.
Tersoff, J. (1994). Phys. Rev. B, 49, 16349–16352.
Turneaure, S. J. & Gupta, Y. M. (2009). J. Appl. Phys. 106, 033513.
Turneaure, S. J. & Gupta, Y. M. (2011). J. Appl. Phys. 109, 123510.
Uchida, T., Funamori, N. & Yagi, T. (1996). J. Appl. Phys. 80, 739–

746.
Voigt, W. (1928). Lehrbuch der Kristallphysik (mit Ausschluss der

Kristalloptik). Springer-Verlag.
Voronoı̈, G. (1908). J. Reine Angew. Math. 134, 198–287.
Wang, L., Zhao, F., Zhao, F. P., Cai, Y., An, Q. & Luo, S. N. (2014).

J. Appl. Phys. 115, 053528.
Warren, B. E. (1969). X-ray Diffraction. Courier Corporation.
Wehrenberg, C. E., McGonegle, D., Bolme, C., Higginbotham, A.,

Lazicki, A., Lee, H. J., Nagler, B., Park, H.-S., Remington, B. A.,
Rudd, R. E., Sliwa, M., Suggit, M., Swift, D., Tavella, F., Zepeda-
Ruiz, L. & Wark, J. S. (2017). Nature, 550, 496–499.

Xiong, L., Bai, L. & Liu, J. (2014). J. Appl. Phys. 115, 033509.
Yuan, G., Feng, R. & Gupta, Y. M. (2001). J. Appl. Phys. 89, 5372–

5380.
Zhao, S., Hahn, E. N., Kad, B., Remington, B. A., Wehrenberg, C. E.,

Bringa, E. M. & Meyers, M. A. (2016). Acta Mater. 103, 519–533.

research papers

J. Synchrotron Rad. (2019). 26, 413–421 Y. Y. Zhang et al. � Deducing density and strength from X-ray diffraction 421

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB66
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5113&bbid=BB68

