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An extension of the exact X-ray resonant magnetic reflectivity theory has been

developed, taking into account the small value of the magnetic terms in the

X-ray susceptibility tensor. It is shown that squared standing waves (fourth

power of the total electric field) determine the output of the magnetic addition

to the total reflectivity from a magnetic multilayer. The obtained generalized

kinematical approach essentially speeds up the calculation of the asymmetry

ratio in the magnetic reflectivity. The developed approach easily explains the

peculiarities of the angular dependence of the reflectivity with the rotated

polarization (such as the peak at the critical angle of the total external

reflection). The revealed dependence of the magnetic part of the total

reflectivity on the squared standing waves means that the selection of the

reflectivity with the rotated polarization ensures higher sensitivity to the depth

profiles of magnetization than the secondary radiation at the specular reflection

condition.

1. Introduction

Polarization properties of radiation absorbed or scattered by

magnetized samples play more and more important roles in

magnetic property investigations with synchrotron radiation.

The modern synchrotron beamlines produce or create X-rays

of any desired polarization state, and polarization-dependent

absorption or scattering near the X-ray absorption edges

(XMCD, XMLD, XMND, M�D, DAFS, XRMR) has become

the basis of the extremely effective methods for magnetic or

structure investigations (Brouder, 1990; Schütz et al., 1994;

Stöhr, 1995; Natoli et al., 1998; Goulon et al., 2003; van der

Laan, 2013; Sessoli et al., 2014). Polarization analysis in

nonresonant magnetic X-ray scattering has proven to be a

very effective tool for separating the charge and magnetic

scattering [revealing, for example, the difference in charge and

magnetic periodicity (Moncton et al., 1986)], and determines

the spin and orbital magnetic moments (Blume & Gibbs, 1988;

Gibbs et al., 1988; Bohr et al., 1989; McWhan et al., 1990; Bohr,

1990; Brückel et al., 1996; Langridge et al., 1997; Fernandez

et al., 1998; Neubeck et al., 1999). Magneto-optical measure-

ments (Faraday and Voigt effects) also utilized the polariza-

tion analysis of the transmitted radiation (Siddons et al., 1990;

Collins, 1999; Mertins et al., 2000, 2001; Kortright & Kim,

2000). In resonant X-ray diffraction the selection of the � !
� 0 channel provides the possibility of enhancing fine effects

like quadrupole transition contributions, orbital ordering, the

Dzyaloshinskii–Moriya interaction and interference of the

quadrupole resonant and nonresonant scattering amplitudes

in structurally forbidden reflections (Caciuffo et al., 2002;

Takahashi et al., 2003; Beutier et al., 2017).
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X-ray resonant magnetic reflectivity (XRMR) provides

unique element, electronic shell and spatially selective infor-

mation about the magnetic ordering in multilayer films (see,

for example, Kao et al., 1994; Tonnerre et al., 1995; Gibert et al.,

2016; Brück et al., 2008; Geissler et al., 2001; Ishimatsu et al.,

1999; Sève et al., 1999; Jaouen et al., 2004; Hosoito et al., 2009;

Kim & Kortright, 2001; Valvidares et al., 2008; Elzo et al., 2015;

Ott et al., 2006; Bergmann et al., 2006; Freeland et al., 2010). In

these experiments two circular or two linear polarizations

of synchrotron radiation are used and the asymmetry ratio

relative to the polarization state of the incident radiation is

measured. The change of polarization of the reflected radia-

tion (X-ray Kerr rotation) has been directly measured with

soft X-rays in but a few works (Kortright & Rice, 1996;

Oppeneer, 2001; Mertins et al., 2004). Ellipsometry measure-

ments have mainly been conducted in the visible range

(Azzam & Bashara, 1977) but the usefulness of the ellipso-

metric investigations in the X-ray region has not been focused

on until now. From the general point of view the polarization

analysis of the reflected radiation should be a source of

valuable information supplemented to the asymmetry ratio

data. Moreover, as pointed out by Yamamoto et al. (2015) and

Yamamoto & Matsuda (2017), following the development

of femtosecond light sources such as synchrotron radiation

sources using a laser slicing technique and free-electron lasers,

the X-ray Kerr rotation is becoming increasingly important,

particularly for temporal domain measurements on the

subpicosecond timescale.

The polarization dependence of the reflectivity is obtained

by exact calculations of the reflectivity matrix amplitude.

Magnetic scattering, being significant near the absorption

edges of magnetic atoms, radically complicates the theory of

reflectivity, because the X-ray susceptibility of a medium

becomes a tensor in the presence of magnetic scattering. The

reflectivity theory from anisotropic (magnetic) multilayers

has been developed (Ishimatsu et al., 1999; Zak et al., 1991;

Bourzami et al., 1999; Stepanov & Sinha, 2000; Elzo et al.,

2012) based on the eigen-wave formalism or by using the

method of the 4�4 propagation matrices (see, for example,

Azzam & Bashara, 1977; Borzdov et al., 1976; Barkovskii et al.,

1983; Andreeva & Rosete, 1986; Andreeva & Smekhova, 2006;

Andreeva et al., 2006). The application of both algorithms for

interpreting real experimental data is rather time-consuming;

therefore, simplifying the calculations is a most urgent

problem. In particular, analytical expressions were obtained

for the 4�4-matrix integral propagation (Andreeva & Rosete,

1986; Pleshanov, 1994; Rühm et al., 1999; Kravtsov et al., 2009)

using some simplifications which are not always valid

(Odintsova & Andreeva, 2010). An interesting approach,

namely a combination of dynamical (for the isotropic scat-

tering part) and kinematical (for the magnetic scattering part)

approximations, was used by Ott et al. (2006) to interpret the

reflectivity curves near the Dy M5 absorption edge for the

dysprosium film revealing the helicoid magnetic ordering. A

kinematic scalar approximation was used by Sève et al. (1999)

and Jaouen et al. (2004) for interpreting the asymmetry ratio

of the XRMR spectra to obtain the depth profiles of the spin

polarization in the 5d electron shells of cerium and lanthanum

in [Ce/Fe]n and [La/Fe]n multilayers. The polarization asym-

metry ratio is generally very small and extremely sensitive to

calculation errors. Correct interpretation of the experimental

data is very important in such studies. It has been shown by

Andreeva & Repchenko (2013) that the kinematic theory of

reflectivity is applicable at angles far enough from the total

reflection region but in some cases the complex polarization

dependence of the propagating radiation leads to the wrong

results even at rather large angles of incidence.

In this paper we show that the angular (and energy)

dependence of the dichroic part of the magnetic contribution

to the X-ray reflectivity is connected to the squared standing

waves of the radiation inside the reflecting sample. It is mostly

pronounced in the region of total external reflection and at

other angles where the reflectivity is high enough. This finding

explains the specific features of the angular dependence of

the reflectivity with the rotated polarization and reveals the

enhanced depth selectivity of this part of the reflectivity. In

addition, the presented approach essentially simplifies the

calculation of the reflectivity from magnetic multilayers. It

implies the substitution of the complicated calculations with

4�4 propagation matrices (or eigen waves) by the simple

Parratt algorithm for the isotropic part of the reflectivity and

following integration of the magnetic part ‘weighted’ with the

squared standing waves. We present some test calculations

confirming the validity of the developed algorithm. The first

experimental results of measuring the reflectivity with the

rotated polarization are given.

2. X-ray reflectivity from an ultrathin layer

Reflectivity from an ultrathin layer r d in the case of scalar

susceptibility �(z) can be easily obtained using the Parratt

recurrent equations (Parratt, 1954),

Rj�1; j ¼
rj�1; j þ Rj; jþ1

~RR exp 2i’j

� �
1þ rj�1; j Rj; jþ1 exp 2i’j

� � ; ð1Þ

where 2i’j = 2ik�jdj, �j = ðsin2� þ �jÞ
1=2, �j and dj are the scalar

susceptibility and thickness of layer j, � is the grazing angle,

rj�1; j = ð�j�1 � �jÞ=ð�j�1 þ �jÞ is the Fresnel amplitude reflec-

tivity coefficient at the boundary between the j � 1 and j

layers, and Rj, j+1 is the amplitude reflectivity coefficient at the

previous boundary taking into account the multiple reflections

in the structure below.

If an ultrathin layer is detached in-vacuum, the Fresnel

reflectivity coefficients from its boundaries are simply

connected,

r01 ¼
sin � � �

sin � þ �
¼ �r10 ð2Þ

[� = ðsin2� þ �Þ1=2, � is the susceptibility of the ultrathin layer],

and supposing that the thickness of this layer d is very small we

obtain the well known expression
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r d ¼
r01 þ r10 exp 2i’ d

� �
1þ r01 r10 exp 2i’ dð Þ

ffi
r01 þ r10 ð1þ 2i’ dÞ

1þ r01 r10 ð1þ 2i’ dÞ

ffi
� r01

1 � r 2
01

2i’ d ¼
�2 � sin2�

4 sin ��
i2k�d ¼

ikd�

2 sin �
: ð3Þ

The most interesting result we obtain in the case when the

layer is placed under some reflecting substrate. In this case

the reflectivity from the whole system is calculated by the

expression

Rtot
¼

r01 þ
~RR exp 2i’ d

� �
1þ r01

~RR exp 2i’ dð Þ
; ð4Þ

where

~RR ¼
r10 þ Rsubstr expðiQHÞ

1þ r10 Rsubstr expðiQHÞ
ð5Þ

is the reflectivity from the bottom boundary of the film, Q =

ð4�=�Þ sin �, H is the distance from the substrate to the film,

and Rsubstr is the reflectivity from the substrate (see Fig. 1).

Using the same expansion for exp 2i’ d
� �

ffi 1þ 2i’ d as in

(3), we obtain

Rtot ffi
r01 þ

~RR ð1þ 2i’ dÞ

1þ r01
~RR ð1þ 2i’ dÞ

¼
ðr01 þ

~RRÞ þ ~RR 2i’ d

ð1þ r01
~RR Þ 1þ ðr01

~RR2i’ dÞ=ð1 þ r01
~RR Þ

� �� �
ffi
ðr01 þ

~RRÞ þ ~RR2i’ d

ð1þ r01
~RR Þ

1�
r01

~RR2i’ d

ð1þ r01
~RR Þ

� 	

ffi
r01 þ

~RR

1þ r01
~RR
þ

~RR ð1� r 2
01Þ

ð1þ r01
~RRÞ

2 2i’ d; ð6Þ

because ~RRð1þ r01
~RR Þ � r01

~RRðr01 þ
~RRÞ = ~RRð1� r 2

01Þ.

After substituting (5) into (6), the first term in (6) is

simplified to

r01 þ ½ðr10 þ RÞ=ð1þ r10RÞ�

1þ r01½ðr10 þ RÞ=ð1þ r10RÞ�
¼

r01ð1þ r10RÞ þ ðr10 þ RÞ

ð1þ r10RÞ þ r01ðr10 þ RÞ
¼ R

ð7Þ

[we designate R = Rsubstr exp(iQH) for simplicity]. For the

second term in (6), we obtain

½ðr10 þ RÞ=ð1þ r10RÞ�ð1� r 2
01Þ�

1þ r01½ðr10 þ RÞ=ð1þ r10RÞ�
�2 2i’ d

¼
ðr10 þ RÞ ð1þ r10 RÞð1� r 2

01Þ

ð1� r 2
01Þ

2
2i’ d

¼
ðr10 þ Rþ r10r10Rþ r10R2 þ 2r10R� 2r10RÞ

ð1� r 2
01Þ

2i’ d

¼ R
ð1� r10Þ

2

ð1� r 2
01Þ

2i’ d þ
r10

ð1� r 2
01Þ
ð1þ RÞ2 2i’ d: ð8Þ

Taking into account the relation

ð1� r10Þ
2

ð1� r 2
01Þ
¼
ð1þ r01Þ

ð1� r01Þ
¼
ð1� r 10Þ

ð1þ r 10Þ
¼

sin �

�
; ð9Þ

finally we obtain

Rtot
ffi Rþ R

sin �

�
2ik�dþ ð1þ RÞ

2
r d

¼ Rð1þ iQdÞ þ ð1þ RÞ
2
r d

ð10Þ

ffi Rsubstr exp½iQðH þ dÞ� þ ½1þ Rsubstr expðiQHÞ�2r d:

The two terms in (10) represent the reflectivity amplitude

from the substrate at the top boundary of the ultrathin layer

(the first term) and (the second term) from the ultrathin layer

r d, modulated by the [1 + Rsubstr exp(iQH)]2 factor. If

the incident wave has an amplitude equal to 1 then the term

[1 + Rsubstr exp(iQH)] is no other than the total field amplitude

Etot(H) at the position of the ultrathin layer, created by the

interference of the incident and reflected from the substrate

waves. That is, the standing wave amplitude. The expression

(10) means that the reflectivity amplitude from ultrathin layer

r d placed above the reflecting substrate is modulated as r d
!

r d0 by the squared standing wave amplitude Etot(H),

r d0 ¼ 1þ Rsubstr expðiQHÞ
� �2

r d ¼ E totðHÞ
� �2

r d: ð11Þ

For the first time this formula has been obtained for the

explanation of the critical angle peak in the delayed nuclear

resonant reflectivity (Andreeva & Lindgren, 2002, 2005),

when a small resonant contribution to reflectivity is selected

by time gating.

If the ultrathin layer is placed inside the multilayer structure

the statement that its reflectivity amplitude is modulated by

the squared standing wave amplitude is also valid. For

checking this conclusion, we start from one additional

boundary above the layer. The total reflectivity amplitude

from the whole system is described by

R1 ¼
r1 þ Rtot expð2i’0Þ

1þ r1Rtot expð2i’0Þ
ð12Þ

where ’0 = �0kd0, and d0 is the distance of the new boundary

from the ultrathin layer. Actually it should be �0 = sin �,

because Rtot and r d have been calculated for the layer in

vacuum (later we can put d0 = 0, H = 0 for a real multilayer

structure). We keep the designation �0 for the similar

following calculations however. For subsequent calculations

we simplify the designation in (10),
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Figure 1
Illustration of the modification of the reflectivity from an ultrathin layer
in the presence of a reflecting substrate.



Rtot
¼ R0 þ�0; ð13Þ

and take into account that �0 is small enough,

Rout
1 ¼

r1 þ ðR0 þ�0Þ expð2i’0Þ

1þ r1ðR0 þ�0Þ expð2i’0Þ

¼
r1 þ R0 expð2i’0Þ þ�0 expð2i’0Þ

½1þ r1R0 expð2i’0Þ�
�

1þ r1�0

½1þr1R0 expð2i’0Þ�
expð2i’0Þ

�
ffi

r1 þ R0 expð2i’0Þ

½1þ r1R0 expð2i’0Þ�

� 1�
r1�0

½1þ r1R0 expð2i’0Þ�
expð2i’0Þ


 �

þ
�0

½1þ r1R0 expð2i’0Þ�
expð2i’0Þ

¼
r1 þ R0 expð2i’0Þ

½1þ r1R0 expð2i’0Þ�

þ

(
�0 expð2i’0Þ

�
1þ r1R0 expð2i’0Þ � r 2

1 � r1R0 expð2i’0Þ

½1þ r1R0 expð2i’0Þ�
2

)

¼
r1 þ R0 expð2i’0Þ

½1þ r1R0 expð2i’0Þ�

þ�0 expð2i’0Þ
ð1� r 2

1 Þ

½1þ r1R0 expð2i’0Þ�
2
: ð14Þ

For the next boundary we use the designation

Rout
1 ¼

r1 þ R0 expð2i’0Þ

½1þ r1R0 expð2i’0Þ�

þ�0 expð2i’0Þ
ð1� r 2

1 Þ

½1þ r1R0 expð2i’0Þ�
2

¼ R1 þ�1; ð15Þ

and repeat the same kind of calculations as in (14) with the

renumbered indices. So the calculation shows that, for each

additional j boundary above the ultrathin layer [we numerate

the boundaries in opposite order than in the recursive

expression (1)], the expression (11) is supplemented with the

factor

expð2i’j�1Þ
ð1� r 2

j Þ

½1þ rjRj�1 expð2i’j�1Þ�
2 ; ð16Þ

with the exception of the zero artificial vacuum layer, for

which we put expð2i’j�1Þ = 1.

Finally, we obtain

r d0
ðzÞ ¼ TðzÞT 0ðzÞ ½1þ Rbelow

ðzÞ�2 r d
¼ E2

totðzÞ r
d; ð17Þ

where the functions T(z)T 0(z) describe the transformations of

the transmitted and outgoing waves during multiple reflec-

tions at all boundaries in the upper part of the multilayer,

TðzÞT 0ðzÞ ¼ exp½2ið’1 þ . . .þ ’j�1Þ� ð18Þ

�
ð1� r 2

1 Þð1� r 2
2 Þ . . . ð1� r 2

j Þ

ð1þ r1R0Þ
2
½1þ r2R1 expð2i’1Þ�

2 . . . ½1þ rjRj�1 expð2i’j�1Þ�
2

( j numerates the boundaries above the layer). It should be

mentioned that r d corresponds to the reflectivity amplitude

from an ultrathin layer in vacuum (3), so the vacuum spacers

below and upper the ultrathin layer should be considered, but

due to their artificial nature the thicknesses H in (11) and d0

(in ’0) in (12), (18) must be put as 0.

Taking into account the well known Fresnel relations at

each boundary,

1� r 2
i ¼ ð1� riÞð1þ riÞ ¼ 1�

�i � �i�1

�i þ �i�1

� 
1�

�i�1 � �i

�i þ �i�1i

� 
¼ ti t 0i ; ð19Þ

ti ¼
2�i

�i þ �i�1

; t 0i ¼
2�i�1

�i þ �i�1

;

two separate functions (each one for the waves in the forward

and backward directions, respectively) can be extracted from

(18),

TðzÞ ¼ exp½ið’1 þ ’2 þ . . .þ ’j�1Þ� ð20Þ

�
ð1þ r1Þð1þ r2Þ . . . ð1þ rj�1Þ

ð1þ r1R0Þ½1þ r2R1 expð2i’1Þ� . . . ½1þ rj Rj�1 expð2i’j�1Þ�

and

T 0ðzÞ ¼ TðzÞ
�j�1

�0

: ð21Þ

Omitting the multiple scatterings in the kinematical approx-

imation, these functions are simplified to the well known

expression describing the phase incursion for the transmitted

and outgoing waves in the upper part of the multilayer,

TðzÞT 0ðzÞ ¼ exp iQzþ
2�

� sin#

Xj�1

m¼ 1

�m dm

 !
: ð22Þ

The multistep function for calculation of the field amplitude

at depth z in (18) is not convenient for the cases of a large

amount of layers. The propagation matrix method provides a

much more effective way for such calculations. The appro-

priate formulas for the reflectivity by an ultrathin layer inside

a multilayer are given in Appendix A.

The intensity of the total reflectivity includes the squared

module of both terms in (10) or (15)) and the interference

term. The most interesting case happens when in the experi-

ment it is possible to select only the second term r d0. It takes

place, for example, in the time domain nuclear resonant

reflectivity when the resonance scattering gives the delayed

signal (Toellner et al., 1995; Baron et al., 1994). In this case the

time gating separates the nuclear resonant response of nuclei,

placed at some depth, i.e. only the second term (10) should be

considered (Andreeva & Lindgren, 2002, 2005). In this article

we consider another way to separate the small resonant

contribution from total reflectivity, namely by the polarization

analysis of reflected radiation.
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3. Anisotropic ultrathin layer

The reflectivity amplitude from an ultrathin anisotropic layer

can be considered by means of the propagation matrix. In the

anisotropic case the propagation matrix is a 4 � 4 matrix and

it describes the variation of the two-dimential tangential

vectors

Ht ¼ �q� q�H ¼
Hx

Hy

� 
and q� E ¼

�Ey

Ex

� 

of the plane electromagnetic wave expðikr� i!tÞ in a layered

medium (the x axis is chosen perpendicular to the reflection

plane, the y axis in the reflection plane – Fig. 2),

d

dz

Ht

q� E

� 
¼ ikM̂M

Ht

q� E

� 

or

d

dz

HxðzÞ

HyðzÞ

�EyðzÞ

ExðzÞ

0
BB@

1
CCA ¼ ikM̂MðzÞ

HxðzÞ

HyðzÞ

�EyðzÞ

ExðzÞ

0
BB@

1
CCA: ð23Þ

In the general case the matrix M̂MðzÞ has been calculated [see

the textbook by Azzam & Bashara (1977)] by the coordinate

method, and by the covariant tensor method by Borzdov et al.

(1976) and Barkovskii et al. (1983). If the material equations

include just the tensor of the electric susceptibility �̂� [D = "̂"E =

ð1þ �̂�ÞE, B = H], then M̂MðzÞ is presented in the following form

(Borzdov et al., 1976; Andreeva & Smekhova, 2006),

M̂M ¼

1
"q

q� "̂" q � a 1
"q

ÎI �̂""̂"" ÎI � b � b

ÎI � 1
"q

a � a � 1
"q

a � q "̂" q�

0
@

1
A

¼

�
�yz

1þ�zz
cos � 0 1þ �yy �

�zy�yz

1þ�zz

�yz�zx

1þ�zz
� �yx

�xz

1þ�zz
cos � 0

�zy�xz

1þ�zz
� �xy �xx �

�zx�xz

1þ�zz
þ sin2�

1� cos2�
1þ�zz

0 �
�zy

1þ�zz
cos � �zx

1þ�zz
cos �

0 1 0 0

0
BBBB@

1
CCCCA

’

��yz cos � 0 1þ �yy ��yx

�xz cos � 0 ��xy sin2� þ �xx

sin2�þ�zz

1þ�zz
0 ��zy cos � �zx cos �

0 1 0 0

0
BBBB@

1
CCCCA; ð24Þ

using the following notations: b is the unchanged tangential

components of all wavevectors in units of !/c, a = b � q,

bj j = aj j = cos �, ÎI = 1� q � q =�ðq�Þ2 is the projective tensor,

q� is a dual tensor performing the vector product, "q = q "̂" q, �̂""̂""=

(q� "̂" q � q "̂" q� � q� "̂" q�q "̂" q) is the reciprocal of the trans-

posed matrix �̂""̂"", and the sign � designates the operation of the

outer product of the vectors.

The integral propagation matrix L̂LðdÞ for an ultrathin layer

of thickness d and �̂�ðzÞ = const can be easily calculated by the

expansion of the matrix exponential up to the first order of kd,

L̂LðdÞ ¼ expðikdM̂MÞ ¼
l̂l1 l̂l2

l̂l3 l̂l4

 !
’ 1þ ikdM̂M ’ ð25Þ

1� ikd�yz cos � 0 ikd ð1þ �yyÞ �ikd�yx

ikd�xz cos � 1 �ikd�xy ikd ðsin2� þ �xxÞ

ikd
sin2�þ�zz

1þ�zz
0 1� ikd�zy cos � ikd�zx cos �

0 ikd 0 1

0
BBBB@

1
CCCCA:

It is convenient to dismember the 4 � 4 matrix into 2 � 2

blocks l̂lj; j = 1, . . . 4.

The boundary task with the integral propagation matrix is

presented by a system of four equations (for the two two-

dimensional vectors),

HT
t

q� ET

0
@

1
A ¼ l̂l1 l̂l2

l̂l3 l̂l4

0
@

1
A H0

t þHR
t

q� E0þq� ER

0
@

1
A: ð26Þ

We define the reflectivity amplitude p̂p for the tangential

components of the magnetic field of radiation by the relation

HR
t ¼ p̂p H0

t ð27Þ

( p̂p is now a 2 � 2 matrix), and introduce the 2 � 2 matrices

�̂�0;R;T supplying the link between the tangential vectors Ht

and q � E in the incident, reflected and transmitted waves

(superscripts 0, R and T, respectively),

q� E0;R;T
¼ �̂� 0;R;TH0;R;T

t : ð28Þ

Then the solution of (26) is presented by the following

expression (Borzdov et al., 1976),

p̂p ¼ �̂�T
ðl̂l1 þ l̂l2�̂�

R
Þ � ðl̂l3 þ l̂l4�̂�

R
Þ

h i�1

� ðl̂l3 þ l̂l4�̂�
0
Þ � �̂�T

ðl̂l1 þ l̂l2�̂�
0
Þ

h i
: ð29Þ

If an ultrathin layer is situated in a vacuum, the matrices �̂�0;R;T

have the very simple form

�̂�0;R;T ¼ �
sin � 0

0 1=sin �

� 
; ð30Þ

where the sign � refers to the wves in the direct (0, T) and

opposite (R) directions.
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Figure 2
The coordinate system used. k0 and kR are the wavevectors of the incident
and reflected plane waves, 	 and � are the polar and azimuth angles for
the magnetization unit vector h.



Calculation of the ‘numerator’ in (29) in the first approx-

imation gives

ð l̂l3 þ l̂l4�̂�
0
Þ � �̂�T

ð l̂l1 þ l̂l2�̂�
0
Þ

¼
ikd ½ðsin2 � þ �zzÞ=ð1þ �zzÞ� 0

0 ikd

 !

þ
1� ikd�zy cos � ikd�zx cos �

0 1

� 
sin � 0

0 1=sin �

� 

�
sin � 0

0 1=sin �

� "
1� ikd�yz cos � 0

ikd�xz cos � 1

� 

þ
ikd ð1þ �yyÞ �ikd�yx

�ikd�xy ikd ðsin2� þ �xxÞ

 !
sin � 0

0 1=sin �

� #

¼ ikd

�zz cos2 � � �yy sin2 �

þ ð�yz � �zyÞ cos � sin �

ð1=sin �Þð�zx cos �

þ �yx sin �Þ

ð�1=sin �Þð�xz cos � � �xy sin �Þ ��xx=sin2�

0
BBBBB@

1
CCCCCA
ð31Þ

The ‘denominator’ in (29) in the first approximation can be

simplified to

�
�̂�T
ð l̂l1 þ l̂l2�̂�

R
Þ � ð l̂l3 þ l̂l4�̂�

R
Þ
�

¼
1� ikd�zy cos � ikd�zx cos �

0 1

� 
sin � 0

0 1=sin �

� 

�
ikd ½ðsin2 � þ �zzÞ=ð1þ �zzÞ� 0

0 ikd

 !

þ
sin � 0

0 1=sin �

� "
1� ikd�yz cos � 0

ikd�xz cos � 1

� 

�
ikd ð1þ �yyÞ �ikd�yx

�ikd�xy ikd ðsin2� þ �xxÞ

 !
sin � 0

0 1=sin �

� #

ffi
2 sin � 0

0 2= sin �

� 
; ð32Þ

and the inverse matrix is easily calculated

2 sin � 0

0 2= sin �

� �1

¼
1

4

2= sin � 0

0 2 sin �

� 
: ð33Þ

Finally, we obtain

p̂p ¼
ikd

2

1= sin � 0

0 sin �

� 
ð34Þ

�

�zz cos2 � � �yy sin2 �

þ ð�yz � �zyÞ cos � sin �

ð1=sin �Þð�zx cos �

þ �yx sin �Þ

ð�1=sin �Þð�xz cos � � �xy sin �Þ ��xx=sin2�

0
BBBBB@

1
CCCCCA

¼
ikd

2 sin �

�zz cos2 � � �yy sin2 �

þ ð�yz � �zyÞ cos � sin �

ð1=sin �Þð�zx cos �

þ �yx sin �Þ

� sin �ð�xz cos �

� �xy sin �Þ
��xx

0
BBBBBBB@

1
CCCCCCCA
:

Instead of (27) it is reasonable to have the reflectivity matrix

for the electric field of radiation r̂r and present it in the �- and

�-polarization basis. If in the outward medium �0 = 0, the

conversion from p̂p to r̂r is simple,

r̂r ¼
r�!�0 r�!�0
r�!�0 r�!�0

� 
¼

�p22 p21= sin �
�p12 sin � p11

� 
: ð35Þ

The reflectivity matrix amplitude for a single ultrathin layer

takes the following expression,

r̂r d ffi
ikd

2 sin �
�̂�?; ð36Þ

where the transverse (to the propagation directions)

susceptibility tensor �̂�? in �- and �-polarization basis is

introduced,

�̂�? ¼
��!�0 ��!�0

��!�0 ��!�0

� 
ð37Þ

¼

�xx �xy sin � � �xz cos �

� �yx sin � � �zx cos �
�zz cos2 � � �yy sin2 �

þ cos � sin �ð�yz � �zyÞ

0
BBBB@

1
CCCCA:

4. Magnetic contribution from a single layer

The magnetic contributions of the circular ��m and linear ��l

dichroism to the susceptibility �0 in the case of the dipole

resonance transitions can be presented in the following form

(Stepanov & Sinha, 2000),

�̂� ¼ �0 þ i��mh� þ��lh � h; ð38Þ

where h is the unit vector in the direction of magnetization,

h� is the dual tensor, describing the operation of the vector

product, and the sign � designates the operation of the outer

product of the vectors.

In the chosen coordinate system (Fig. 2) the magnetization

unit vector h has the following components,
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h ¼ ðsin 	 cos �; sin 	 sin �; cos 	Þ: ð39Þ

Typically, ��l is much smaller than ��m, so neglecting ��l we

have

�̂� ¼ �0

1 0 0

0 1 0

0 0 1

0
B@

1
CA ð40Þ

þ

0 �i��m cos	

i��m

� sin 	 sin �

i��m cos 	 0
� i��m

� sin 	 cos �

� i��m

� sin 	 sin �
i��m sin 	 cos � 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

Supposing that the magnetization in the ultrathin layer is

arranged in the surface plane and along the grazing beam

(L-MOKE geometry, 	 = 90� and � = 90�), we obtain

�̂� ¼
�0 0 i��m

0 �0 0

�i��m 0 �0

0
@

1
A; ð41Þ

and from (36) and (37)

r̂r d
ffi

ikd

2 sin �

�0

i��m cos �

�
�i��m cos �
�0 cos 2�


: ð42Þ

Thus, for a �-polarized incident wave, the amplitude of which

is represented as

1

0

� 
;

we have the reflectivity amplitude of the same �-polarization,

r�!�0 ¼
ikd

2 sin �
�0 ð43Þ

and the reflectivity amplitude with the rotated �0-polarization,

r�!�0 ¼
�kd

2 sin �
��m cos �: ð44Þ

Making use of (10), the reflectivity from such a magnetic

ultrathin layer placed under the reflecting substrate can be

written

Rtot
�� ��2 ’ Rsubstr exp½iQðH þ dÞ� þ ½EtotðHÞ�

2
r�!�0

��� ���2
þ ½EtotðHÞ�

2
r�!�0

��� ���2; ð45Þ

where Etot(H) = 1 + Rsubstr exp(iQH) is the total radiation field

amplitude at the position of the magnetic layer, and H is the

distance of this layer from the substrate. The expression (45)

contains two terms: the first one presents the reflectivity with

the same polarization as the incident wave and the second one

corresponds to the rotated �-polarization in the reflectivity.

The second part of the total reflectivity has the rotated �-

polarization which has a pure magnetic scattering origin,

R �!�0

�� ��2 ¼ ½EtotðHÞ�
2 kd cos �

2 sin �
��m

����
����

2

: ð46Þ

In the general case of the arbitrary magnetization direction

the reflectivity with rotated polarization |R�!�0|
2 takes the

form

R �!�0

�� ��2 ¼ kd

2 sin �
½EtotðHÞ�

2 ��!�0

����
����

2

ð47Þ

¼
kd

2 sin �
½EtotðHÞ�

2
ð��yx sin � � �zx cos �Þ

����
����

2

:

Fig. 3 demonstrates the angular dependence of this dichroic

component |R�!�0|
2 for different distance H of this thin layer

from the substrate. The calculations are performed for the L2-

edge of gadolinium (Eph = 7930 eV, � = 0.1563 nm). For a Gd

layer of thickness 0.1 nm we put �0 = (�31.0 + i10.0) � 10�6

and ��m = (�0.1 � i0.23) � 10�6 [the data are taken from

Sorg et al. (2007)], for the Si substrate �0 = (�15.6 + i0.37) �

10�6 (http://henke.lbl.gov/optical_constants/getdb2.html).
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Figure 3
Angular dependences of the reflectivity with the rotated polarization (a) and the reflectivity difference (I+� I�) (b), calculated for the ultrathin magnetic
layer, placed at different distances from the Si substrate and magnetized along the beam. It is interesting to note that the peculiarities near the critical
angle disappeared in the asymmetry angular dependence (I+ � I�)/(I+ + I�) due to the strong variations of the denominator (I+ + I�) in this region.



The obtained angular dependencies (Fig. 3) are similar to

the ones presented in the paper by Bedzyk et al. (1989)

devoted to the standing wave influence on the fluorescent

yield from heavy atoms incorporated into Langmuir layers.

However, the contrast of oscillations in the calculated

dependencies of the reflectivity with the rotated polarization

is more pronounced due to the squared standing wave

amplitude. This should have a consequence in the enhanced

surface sensitivity. It is important that the curves in Fig. 3,

calculated by the simple expression (46) and by the exact

theory of the magnetic reflectivity with 4 � 4 propagation

matrices, are identical.

It is reasonable to compare two possible kinds of

measurements. The results presented in Fig. 3(a) need linear

polarization of the incident radiation and polarization analysis

of the reflected intensity. Commonly for magnetic investiga-

tions by the reflectivity method (XRMR), the two circular

polarizations of the incident radiation are used and the

asymmetry of the two reflectivity curves (I+ � I�)/(I+ + I�) is

analyzed. Supposing that the total reflectivity amplitude is a

matrix in �- and �-polarization orts,

R̂Rtot
¼

R�� R��

R�� R��

� 	
; ð48Þ

then the intensity of the reflected radiation for the right and

left circular polarization I+ and I� can be calculated according

to the expressions

Iþ ¼
1

2
R�� þ iR��

�� ��2 þ R�� þ iR��

�� ��2� �
ð49Þ

¼
1

2

n
R��

�� ��2 þ R��

�� ��2 þ 2
�
ReR��ImR�� � ReR��ImR��

�
þ R��

�� ��2 þ R��

�� ��2 þ 2
�
ReR��ImR�� � ReR��ImR��

�o
;

I� ¼
1

2
R�� � iR��

�� ��2 þ R�� � iR��

�� ��2� �
ð50Þ

¼
1

2

n
R��

�� ��2 þ R��

�� ��2 � 2
�
ReR��ImR�� � ReR��ImR��

�
þ R��

�� ��2 þ R��

�� ��2 � 2
�
ReR��ImR�� � ReR��ImR��

�o
;

and the difference in the reflectivity takes the form

ðIþ � I�Þ ¼ 2
�
ReR��ImR�� � ReR��ImR��

þ ImR��ReR�� � ImR��ReR��

�
: ð51Þ

From (51) it follows that the reflectivity amplitudes with the

rotated polarization, which have a purely magnetic scattering

origin and are typically very small, are enhanced in this

XRMR method by the much higher R�� and R�� reflectivity

amplitudes of scattering without polarization change. This

circumstance makes the measurements of the magnetic scat-

tering easier, but on the other hand it essentially complicates

the data treatment directed to the extraction of the magnetic

scattering information. The expression (51) disproves the

assertion of Höchst et al. (1996, 1997) about a pure magnetic

origin of the measured asymmetry ratio. Note that the selec-

tion of the purely magnetic scattering part had been carried

out by Mertins et al. (2002) by a complicated combination of

different kinds of measurements (L-MOKE, T-MOKE and

Faraday rotation) on a ferromagnetic Fe/C multilayer at the

Fe-2p absorption edge.

It is clear that using the selection of the reflectivity with the

rotated � 0-polarization directly gives the purely magnetic

scattering part separately from the dominant R�� and R��
reflectivity.

The obtained formulas (47) and (51) suggest the most

effective way for the calculation of the magnetic addition to

the reflectivity instead of the very time-consuming algorithm

based on the 4 � 4 propagation matrices.

5. Magnetic reflectivity from the whole magnetic
structure

The magnetic contribution to the scattering is typically small

enough and it does not influence the total radiation field inside

the whole sample; therefore we can suppose that the magnetic

scattering from different layers is independent of each other.

In this case the magnetic scattering amplitudes with proper

phases can be summarized as is done in the kinematical theory

of reflectivity. The analogous procedure has been used by Ott

et al. (2006). However, in contrast to that paper we will take

into account the influence of the total radiation field E(�, z)

(standing waves) at different depths z on the magnetic scat-

tering, as follows from (11), (17) and (46). So, for calculation

of the reflectivity with the rotated polarization we suggest the

following expression, which is actually the generalized kine-

matical approximation,

I�!�0 ð�Þ ¼
�

� sin �

Z
��!�

0

ðzÞE�
2
ð�; zÞ dz

����
����

2

; ð52Þ

where ��!�
0

is the magnetic off-diagonal element of the

transverse susceptibility tensor �̂�? (37). Direct calculations

performed using this formula demonstrate a surprisingly

perfect agreement with the calculations by the exact matrix

theory for all angles of incidence including the region of total

external reflection (Figs. 4 and 5).

The off-diagonal elements of the reflectivity matrix ampli-

tude, needed for the asymmetry ratio calculations by expres-

sion (51), can be obtained similarly to (52),

R��ð��Þð�Þ ¼
i�

� sin �

Z
���ð��ÞðzÞE 2

�ð�Þð�; zÞ dz: ð53Þ

The diagonal elements of the amplitude reflectivity matrix R��
and R�� in (51) can be calculated ignoring magnetic contri-

butions by the simple Parratt algorithm, for example. Figs. 4

and 5 show that such a way for the asymmetry ratio calcula-

tions also gives results identical to the exact calculations.

The calculated depth-distribution of the total field (more

precisely the squared standing waves) drawn in Fig. 4 is

independent of the type of magnetization ordering in the

multilayer and it can be used as the basis for the calculations of

the rotated reflectivity and asymmetry ratio by (52), (51) and

(53) for ferromagnetic, antiferromagnetic and spiral interlayer
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coupling between Gd layers. The calculation results for these

cases are shown in Fig. 5.

Figs. 4 and 5 show that both the angular curves for the

asymmetry ratio and for the reflectivity with rotated polar-

ization characterize the peculiarities of the magnetic ordering

by specific maxima at Bragg angles or by the magnetic satel-

lites, but the shapes of the two dependences are rather

different. Therefore, it is clear that the measurements of the

rotated polarization are very helpful for investigations of the

complicated magnetic structures.

The significance of the expression (52) is stipulated by two

aspects. Firstly, it allows us to calculate the magnetic reflec-

tivity much faster without 4 � 4 propagation matrices, because

the most complicated part of the standing wave calculations

can be performed by the scalar theory of reflectivity (e.g. by

the Parratt algorithm). It essentially speeds up the model

calculations and fit procedure. Secondly, the interpretation of

the reflectivity with the rotated polarization based on the

squared standing waves explains the exclusive depth selec-

tivity of the measurements using the polarization analysis.

6. Experimental test

The most important evidence for the influence of the standing

wave on the magnetic reflectivity with rotated polarization is

the observation of a peak near the critical angle of the total

reflection in the angular dependence.

The first experimental test of this peculiarity on the angular

curve of reflectivity with the rotated polarization was carried

out for Ti(10 nm)/Gd0.23Co0.77(250 nm)/Ti(10 nm) film at the

L2-edge of Gd (Andreeva et al., 2018a). The sample has the

compensation temperature of Tcomp ’ 433 K for Co and Gd

subsystem magnetizations (Svalov et al., 2016), so at room

temperature the Gd atoms should possess magnetic moments.

The measurements were performed at the Kurchatov Center

for Synchrotron Radiation and Nanotechnology (KCSRN).

The sample was placed on a piece of permanent magnet in

order to magnetize it along the beam. The analysis of the

polarization state of the reflected radiation was performed by

90� reflection from a Si crystal [(422) reflection with 2�B =

89.682� for � = 0.156 nm] placed before the detector.

It should be noted that the reflectivity with the rotated

polarization is less than three to four orders of magnitude of

the asymmetry ratio. The measurements of such weak signals

need special precautions and thorough work with all details of

the equipment. Our first experiment was not performed under

optimal conditions. The most essential problem was the

presence of the �-polarization (	10%) in the synchrotron

radiation beam used which was reflected by our sample in the

same manner as the �-polarized part of radiation. Therefore

the selected �-polarized reflectivity contained, in addition to

the reflectivity with the rotated �!� 0-polarization, the much

larger signal of �!� 0-reflectivity. The subtraction of this

undesired contribution led to the very poor statistics of the

observed �!� 0-reflectivity signal seen in Fig. 6. For details of

this difficult experiment, see Andreeva et al. (2018a). In any

case, the peak for the reflectivity with the rotated polarization

at the critical angle was observed (Fig. 6). It can be attributed

to the magnetic scattering on the Gd atoms because it exists

only for the resonant photon energy Eph = 7930 eV. The very

small value of the ‘dichroic’ effect was explained not only by

the small concentration of Gd atoms in the film but also by the

rather thick Ti top layer, preventing penetration of the inci-

dent radiation to the Gd0.23Co0.77 layer. So the standing wave

created in the angular region in the vicinity of the critical angle

could excite only the Gd atoms in the Ti/Gd0.23Co0.77 interface.

Mössbauer scattering on the 57Fe-containing samples is also

characterized by the dichroic effect for some hyperfine

components of the spectrum. In order to obtain the angular

dependencies of the nuclear resonant reflectivity, the integral

over reflectivity resonant spectra is measured as a function

of the grazing incidence angle of the beam (Andreeva

et al. (2018b). The measurements were made at ID18, ESRF
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Figure 4
Squared standing waves jE 2

� ð�; zÞj2 inside a [Ti(3 nm)/Gd(4 nm)]8 multi-
layer at different grazing angles (bottom part), the rotated reflectivity
I�!�0, the asymmetry ratio A = (I+� I�)/(I+ + I�) and the total reflectivity
(top graphs). E�ð�; zÞ is normalized to the amplitude of the incident wave
E0 = 1. Calculations for Eph = 7930 eV and with the same parameters of
Gd susceptibility as in Fig. 3. Multilayer magnetization is supposed along
the beam (L-MOKE geometry). The magnetic contributions to the
reflectivity originate only from Gd layers (hatched); therefore the
integration in (52) and (53) concerns only this hatched regions. Thin (red)
lines show A(�) and I�!�0(�) calculated by the exact theory [program
pack by Andreeva & Repchenko (2017)], thick dashed (green) lines show
the results of A(�) and I�!�0(�) calculations obtained by (51), (53) and
(52), respectively.



(Rüffer & Chumakov, 1996), using the

Synchrotron Mössbauer Source (Potapkin

et al., 2012a,b) for the sample [57Fe(0.8 nm)/

Cr(1.05 nm)]30 at 4 K and the external field

of 5 T in order to align the magnetizations

in the 57Fe layers ferromagnetically along

the beam. The radiation from the

Synchrotron Mössbauer Source is purely

�-polarized, and the rotated polarization

should have the �-polarization state.

Polarization analysis of the reflected �-

polarized radiation was carried out using an

Si channel-cut crystal [two (840) reflections

with 2�B = 90.2� for � = 0.086 nm].

The result of this first experiment

(Andreeva et al., 2019) is shown in Fig. 7.

The essential difficulty of this experiment

was the unexpected large angular diver-

gence (	200 arcsec) of the reflected beam,

caused apparently by imperfections of the

surface and boundaries in the multilayer

(Ragulskaya et al., 2019). The Si channel-

cut analyzer has an angular acceptance

of only 	2 arcsec; therefore, for the

measurements of the reflectivity with the

rotated polarization, a scan by analyzer of

the reflected beam and its integration at

each grazing angle was needed. However, we observed the

peak at the critical angle, confirming the standing wave

influence on the weak magnetic scattering with rotated

polarization. With such complicated measurements, a detailed

analysis of the peak shape was not possible. This will be done

with improved instrumentation in the future.

7. Summary

A generalized kinematical approximation describing X-ray

resonant magnetic reflectivity (XRMR) has been developed

which is valid at all angles including the total reflection region.

The approach takes into account the typically small value of

the X-ray magnetic scattering amplitude and is based on the

exact calculations of the radiation field amplitude inside the

reflecting multilayer. The calculation performed with the

Parratt recursive method and by propagation matrices gives

identical expressions for the small magnetic contribution. We

found that the squared standing waves (fourth power of the

radiation field amplitude) determine the magnetic scattering

at each depth.

From the described formalism the appearance of a peak

near the critical angle of total reflection is predicted for the

selected part of the reflectivity with rotated polarization. The

first experimental test confirms this prediction. The model

calculations show a full agreement of the results obtained by

the described approach with the exact calculations.

There are several points stipulating the significance of the

developed approach. Firstly, it can essentially speed up the

calculations of the X-ray resonant magnetic reflectivity.
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Figure 7
Nuclear resonant reflectivity (NRR) measured without polarization
selection (logarithmic right-hand scale) and with the selection of the �0-
polarized reflectivity (normal left-hand scale).

Figure 6
Experimental total reflectivity (left-hand log scale) and reflectivity with
the rotated polarization (right-hand normal scale) from a Ti(10 nm)/
Gd0.23Co0.77(250 nm)/Ti(10 nm) multilayer for Eph = 7930 eV (filled blue
symbols) and Eph = 7920 eV (open green symbols).

Figure 5
Angular dependencies of the rotated reflectivity (left part) and asymmetry ratio (right part),
calculated by the exact theory (thin solid red lines) and by (52), (51) and (53) (thick dashed
green lines) for different cases of the magnetic ordering between Gd layers: for ferromagnetic
interlayer coupling [Gd(4 nm)/Ti(3 nm)]8, for antiferromagnetic interlayer coupling
[Gd"(4 nm)/Ti(3 nm)/Gd#(4 nm)/Ti(3 nm)]4 and for helical ordering with magnetic period
28 nm.



Secondly, the connection of the small magnetic part in the

reflectivity with the squared standing waves inside the medium

reveals the enhanced depth selectivity of the polarization

analysis in the resonant reflectivity measurements.

Note finally that nowadays the polarization effects in X-ray

reflectivity (e.g. Kerr rotation) become increasingly important

[see, for example, Yamamoto et al. (2015) and Yamamoto &

Matsuda (2017) developing subpicosecond time domain

measurements on the platform of X-ray free-electron laser

facilities]; therefore proper and simplified theoretical treat-

ment of such effects are in high demand.

APPENDIX A
Matrix method for reflectivity calculation from an
ultrathin layer

Reflectivity from an ultrathin layer in the case of scalar

susceptibility �(z) can be easily obtained using the propaga-

tion matrix method (Azzam & Bashara, 1977; Borzdov et al.,

1976). In the case of planar structures we use for �- or �-

polarization of radiation the scalar tangential amplitudes of

the electric Et = |q � E| and magnetic Ht = �|q � q � H| field

of the plane electromagnetic wave expðikr� i!tÞ (q is the unit

vector normal to the surface) to describe the variations of the

radiation field amplitudes along depth z, so the Maxwell

equations are reduced to the matrix differential equation

(Azzam & Bashara, 1977; Born & Wolf, 1968)

d

dz

EtðzÞ

HtðzÞ

� 
¼ ikM̂MðzÞ

EtðzÞ

HtðzÞ

� 
; ð54Þ

where k = !=c = 2�=� is the wavevector of the monochromatic

electromagnetic wave in outer space and M̂M is the differential

propagation matrix. In the case of the �-polarization, Et = |E| =

E and the magnetic field of radiation Ht = ��E (the � sign

refers to the waves in the direct and opposite directions),

and which for, for example, �-polarization of radiation takes

the form

M̂M�
ðzÞ ¼

0 1

sin2� þ �ðzÞ 0

� 
; ð55Þ

where � is the grazing angle of incidence of the plane wave and

�(z) is the susceptibility of the layered sample. The integral

propagation matrix in a layer of thickness d and scalar

susceptibility �(z) = const can be easily calculated,

L̂LðdÞ ¼
l11 l12

l21 l22

� 
¼ expðikd M̂MÞ ¼

cos ’ ði=�Þ sin ’
i� sin ’ cos’

� 
;

ð56Þ

� ¼ ðsin2� þ �Þ1=2, ’ = k�d. It connects the radiation field

amplitudes on the top and bottom boundaries of the layer

ET

�TET

� 
¼ L̂LðdÞ

E0 þ ER

�0ðE0 � ERÞ

� 
; ð57Þ

where the subscripts 0, R and T designate the incident,

reflected and transmitted waves, �0 = ðsin2� þ �0Þ
1=2 and �T =

ðsin2� þ �TÞ
1=2 are the normal components of the wavevectors

in units of !=c in the outer medium and in the substrate. If on

the outside of the layer �0 = 0 and �T = 0, then �0 = �T = sin �.

The system of two equations (57) gives the reflection ampli-

tude

r ¼ ER=E0 ¼
ð�0l22 þ l21Þ � �Tð�0l12 þ l11Þ

ð�0l22 � l21Þ � �Tð�0l12 � l11Þ
: ð58Þ

Supposing the thickness of the layer is very small, then the

matrix exponential in (56) can be approximated by the

expression

expðikdM̂MÞ ffi 1þ ikdM̂M ¼
1 ikd

ikd�2 1

� 
: ð59Þ

If the layer is placed in a vacuum (�0 = �T = 0), substituting the

elements of the integral propagation matrix from (59) into

(58), the reflection amplitude from ultrathin layer takes a well

known form,

r d ffi
sin � þ ikd�2 � sin2� ikd� sin �

sin � � ikd�2 � sin2� ikdþ sin �
ffi

ikd�

2 sin �
: ð60Þ

If an ultrathin layer is placed above a reflecting mirror the

boundary task (57) is modified,

ETð1þ RÞ

�0ETð1� RÞ

� 
¼

1 ikd

ikd�2 1

� 
E0 þ ER

�0ðE0 � ERÞ

� 
; ð61Þ

because at the bottom boundary of the layer not only the

transmitted wave is present but also the reflected wave from

the substrate, R = Rsubstr exp(iQH), H is the distance from

substrate Q ¼ ð4�=�Þ sin �. Excluding ET in the system of

equations (61) we easily obtain Rtot,

Rtot
¼ ER=E

0

¼
�2�0Rþ ikd½ð�2

0 � �
2Þ � Rð�2

0 þ �
2Þ�

�2�0 þ ikd½ð�2 þ �2
0Þ þ Rð�2 � �2

0Þ�

¼
2�0Rþ ikd½ð�2 � �2

0Þ þ Rð�2
0 þ �

2Þ�

2�
0

� 1þ ikd
½ð�2 þ �2

0Þ þ Rð�2 � �2
0Þ�

2�0


 �

¼ Rþ ikd
��
ð�2 � �2

0Þ þ 2Rð�2
0 þ �

2 � �2
0 þ �

2
0Þ

þ R2
ð�2
� �2

0Þ
�
=2�0

�
¼ Rð1þ 2ikd�0Þ þ ikd

ð�2 � �2
0Þ

2�0

ð1þ 2Rþ R2
Þ

¼ R expðiQdÞ þ r d
ð1þ RÞ

2; ð62Þ

because r d = ð�2 � �2
0Þ=2�0 = ikd�=2 sin �. Therefore the

reflection from ultrathin layer r d0 modified by the squared

standing wave amplitude is the same as (11),

r d0 ¼ ½1þ Rsubstr expðiQHÞ�2 r d: ð63Þ:

For consideration of some top layer above the ultrathin one

we again insert the simplified designation

Rtot
¼ R0 þ�0; ð64Þ
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and write the boundary task for this top layer (this first top

layer we suppose to be vacuum, i.e. �0 = sin �)

E d
0 ð1þ R0 þ�0Þ

�0E d
0 ð1� R0 ��0Þ

� 
¼

cos ’ ði=�0Þ sin ’

i �0 sin ’ cos ’

� 
E i

0 þ E i
R

�outðE i
0 � E i

RÞ

� 
: ð65Þ

Excluding again E0
d in the system of equations (65) we obtain

ð�0 cos ’þ i�out sin ’ÞE i
0 þ ð�0 cos ’� i�out sin ’ÞE i

R

ð1þ Rþ�Þ
ð66Þ

�
ð�out cos ’þ i �0 sin ’ÞE i

0 � ð�
out cos ’� i �0 sin ’ÞE i

R

ð1� R��Þ
¼ 0

and�
�0½expð�i’Þ � ðRþ�Þ expði’Þ�

� �out½expð�i’Þ þ ðRþ�Þ expði’Þ�
�

E i
0

¼
�
�0½� expð�i’Þ þ ðRþ�Þ expði’Þ�

þ �out½� expð�i’Þ � ðRþ�Þ expði’Þ�
�

E i
R ð67Þ

and

E i
R=E i

0

¼
ð�out � �0Þ þ R expð2i’Þð�out þ �0Þ þ� expð2i’Þð�out þ �0Þ

ð�out þ �0Þ þ R expð2i’Þð�out � �0Þ þ� expð2i’Þð�out � �0Þ

¼
ð�out � �0Þ þ R expð2i’Þð�out þ �0Þ þ� expð2i’Þð�out þ �0Þ

½ð�out þ �0Þ þ R expð2i’Þð�out � �0Þ�

�

�
1�

� expð2i’Þð�out � �0Þ

ð�out þ �0Þ þ R expð2i’Þð�out � �0Þ

	

ffi
ð�out � �0Þ þ R expð2i’Þð�out þ �0Þ

½ð�out þ �0Þ þ R expð2i’Þð�out � �0Þ�
ð68Þ

þ� expð2i’Þ
ð�out þ �0Þ

½ð�out þ �0Þ þ R expð2i’Þð�out � �0Þ�

�� expð2i’Þ
ð�out � �0Þ½ð�

out � �0Þ þ R expð2i’Þð�out þ �0Þ�

½ð�out þ �0Þ þ R expð2i’Þð�out � �0Þ�
2 :

The numerator at the �exp(2i’) term is transformed to

ð�out þ �0Þ½ð�
out þ �0Þ þ R expð2i’Þð�out � �0Þ�

� ð�out
� �0Þ½ð�

out
� �0Þ þ R expð2i’Þð�out

þ �0Þ� ¼ 4�0�
out

and

ð�out � �0Þ

ð�out þ �0Þ
¼ rf ;

4�0�
out

ð�out þ �0Þ
2
¼ tf t 0f ; ð69Þ

where rf , tf , t 0f are the Fresnel amplitudes of the reflection and

transmission at the boundary between vacuum and outer

medium. Finally, we obtain, similar to (14) and (15),

Rout
¼

E i
R

E i
0

¼
rf þ R expð2i’Þ

1þ rf R expð2i’Þ
þ

n
expð2i’Þ

tf t 0f

½1þ rf R expð2i’Þ�2

� ½1þ Rsubstr expðiQHÞ�2 r d
o
: ð70Þ

The propagation matrices allow the necessity to calculate the

radiation field successively at each intermediate boundary to

be avoided, but to calculate the radiation field at the position

of the ultrathin layer using the integral propagation matrix

for the whole stack above the ultrathin layer. We use such a

matrix in the general form

L̂L ¼
l1 l2

l3 l4

� 
; ð71Þ

and write down the boundary task as follows,

E d
0 ð1þ Rþ�Þ

�0E d
0 ð1� R��Þ

 !
¼

l1 l2

l3 l4

 !
E out

0 þ E out
R

�outðE out
0 � E out

R Þ

 !
:

ð72Þ

Calculation of the total reflectivity Rout is performing similar

to (68),

Rout
¼

E out
R

E out
0

¼
�0ð1� R��Þðl1 þ �

outl2Þ � ð1þ Rþ�Þðl3 þ �
outl4Þ

��0ð1� R��Þðl1 � �
outl2Þ þ ð1þ Rþ�Þðl3 � �

outl4Þ

¼
�0ð1� RÞðl1 þ �

outl2Þ � ð1þ RÞðl3 þ �
outl4Þ

��0ð1� RÞðl1 � �
outl2Þ þ ð1þ RÞðl3 � �

outl4Þ

��
hn
½�0ð1� RÞðl1 þ �

outl2Þ � ð1þ RÞðl3 þ �
outl4Þ�

� ½ð�0l1 � �0�
outl2 þ l3 � �

outl4Þ�

o
�
½��0ð1� RÞðl1 � �

outl2Þ þ ð1þ RÞðl3 � �
outl4Þ�

2
i

��
hn
½��0ð1� RÞðl1 � �

outl2Þ þ ð1þ RÞðl3 � �
outl4Þ�

� ½ð�0l1 þ �0�
outl2 þ l3 þ �

outl4Þ�

o
�
½��0ð1� RÞðl1 � �

outl2Þ þ ð1þ RÞðl3 � �
outl4Þ�

2
i
: ð73Þ

Using the designations

a ¼ ðl1 þ l3=�0Þ; b ¼ ðl1 � l3=�0Þ;

c ¼ ðl4 þ �0l2Þ; u ¼ ðl4 � �0l2Þ;
ð74Þ

we transform (73) to the following expression,

Rout ¼
ðu�out � b�0Þ þ Rðc�out þ a�0Þ

ðu�out þ b�0Þ þ Rðc�out � a�0Þ

þ�
4�0�

outðl1l4 � l2l3Þ

½ðu�out þ b�0Þ þ Rðc�out � a�0Þ�
2
: ð75Þ

If L̂L is presented by (56) then u = b = exp(�i’), a = c = exp(i’)

and for one upper layer we obtain (70) and (15).

The expression (75) can essentially speed up the calcula-

tions of reflectivity from an ultrathin layer or for small reso-

nant contributions.
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Bourzami, A., Lenoble, O., Féry, Ch., Bobo, J. F. & Piecuch, M.
(1999). Phys. Rev. B, 59, 11489–11494.

Brouder, Ch. (1990). J. Phys. Condens. Matter, 2, 701–738.
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Grübel, G., Sutter, C., de Bergevin, F., Nuttall, W. J., Stirling, W. G.,
Mattenberger, K. & Vogt, O. (1997). Phys. Rev. B, 55, 6392–6398.

McWhan, D. B., Vettier, C., Isaacs, E. D., Ice, G. E., Siddons, D. P.,
Hastings, J. B., Peters, C. & Vogt, O. (1990). Phys. Rev. B, 42, 6007–
6017.

Mertins, H., Abramsohn, D., Gaupp, A., Schäfers, F., Gudat, W.,
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