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Superradiant emission occurs when ultra-relativistic electron bunches are

compressed to a duration shorter than the wavelength of the light emitted by

them. In this case the different electron contributions to the emitted field sum up

in phase and the output intensity scales as the square of the number of electrons

in the bunch. In this work the particular case of superradiant emission from an

undulator in the THz frequency range is considered. An electron bunch at the

entrance of a THz undulator setup has typically an energy chirp because of the

necessity to compress it in magnetic chicanes. Then, the chirped electron bunch

evolves passing through a highly dispersive THz undulator with a large magnetic

field amplitude, and the shape of its longitudinal phase space changes. Here the

impact of this evolution on the emission of superradiant THz radiation is

studied, both by means of an analytical model and by simulations.

1. Introduction

As has been well known for a long time, superradiant emission

of radiation1 from ultrarelativistic electron bunches takes

place when the duration of the bunches is shorter than the

radiation wavelength (Nodvick & Saxon, 1954). In this case,

the contributions to the field from all electrons sum up in

phase, and the output intensity scales as the square of the

number of electrons in the bunch.

This description can be made mathematically precise by

modelling the electric field from a given electron bunch in a

fixed radiation setup with

Eðr; tÞ ¼
XNe

j¼ 1

E1 lj; gj; �j; �j; r; t
� �

; ð1Þ

where E1 is the field from a single electron, Ne is the number of

electrons, and the phase space position of the jth electron at

the entrance of the radiator setup is specified by (lj, gj, � j, �j).

In particular, given the jth electron, lj indicates its transverse

position with respect to the z-axis, which coincides with the

radiator axis, gj is the angle formed by the electron trajectory

with respect to z, � j is the electron energy in units of mec2 (me

being the electron rest mass, and c the speed of light in

vacuum) and �j is the arrival time of the electron at the

entrance of the radiator, which is calculated assuming that the

reference electron, labelled with j = 0, arrives at �0 = 0. If the

electron distribution in phase space, normalized to unity, is

given by

f l; g; �; �ð Þ ¼ f� �ð Þ � lð Þ � gð Þ � � � �0ð Þ; ð2Þ

one obtains
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EðtÞ ¼
XNe

j¼ 1

E1 t � �j

� �
: ð3Þ

If one now indicates with EEð!Þ the Fourier transform of

the electric field with respect to time and with eEEð!Þ =

EEð!Þ expð�i!z=cÞ the slowly varying amplitude of the field in

the frequency domain, in short ‘the field’, one obtains

eEEð!Þ ¼XNe

j¼ 1

eEE1ð!Þ exp i!�j

� �
: ð4Þ

By averaging the field over an ensemble of electron bunches

(this operation will be indicated by angular brackets h . . . i) the

ensemble-averaged intensity is found to be

Iðz; r; !Þ
� �

¼
c

2�

D eEEðz; r; !Þ
��� ���2E ð5Þ

¼
c

2�
eEE1ðz; r; !Þ
��� ���2 Ne þ NeðNe � 1Þ �ff�ð!Þ

�� ��2h i
;

where

�ff� !ð Þ ¼

Z
d� f�ð�Þ expði!�Þ: ð6Þ

Note that the corresponding power can be found by inte-

grating equation (5) in d2r over the transverse plane.

This is a well known expression [see, for example, Williams

(2004) and references therein] that models incoherent [the

first term in equation (5)] and coherent [the second term

in equation (5)] emission, whenever a cold, zero-emittance

electron beam with finite duration and given temporal profile

f� is considered.

In this article we generalize equation (5) accounting for the

phase space distribution

f l; g; �; �ð Þ ¼ f� �ð Þ � lð Þ � gð Þ � � � �0 þ ��ð Þ
� �

; ð7Þ

normalized to unity, which still models a cold beam without

uncorrelated energy spread, but accounts for an energy chirp

along the bunch through the constant �, which has the

dimension of inverse time, and can assume both positive or

negative values and indicates the slope of the chirp. We will

focus on the particular case of superradiant emission of

radiation from an electron bunch with this kind of phase-space

distribution passing through an undulator. Aside for theore-

tical interest [a semi-analytical expression generalizing equa-

tion (5) is not known, at least to the authors’ knowledge],

there is an important practical reason for this study, which is its

relevance to the case of superradiant, undulator-based THz

sources of radiation (Gensch et al., 2008; Green et al., 2016;

Tanikawa et al., 2018), for which there is a need for modelling

and understanding, from a theoretical viewpoint, the shape of

the emitted waveform that can be directly measured in the

time domain with electro-optical techniques (see Fig. 1).

While an analysis of experimental data in the time-domain

is left to future work, in this paper we provide theoretical tools

that can be applied to perform such an analysis (see the time-

domain study in x3.2.6).

In particular, we include in our considerations an important

effect that has not been considered up to now, which is due

to the fact that an electron bunch at the entrance of a THz

undulator setup has typically an energy chirp that can be

approximatively described as in equation (7). Suppose that

electrons with smaller energy are at the head of the bunch,

i.e. � > 0. When such an electron bunch travels along the

undulator, due to dispersion, the electron beam will tend to

shrink. Now, near resonance we know that electrons are

overtaken by radiation of a wavelength every undulator

period, and usually the before-mentioned effect is small.

However, for long wavelength in the millimetre range,

dispersion effects become non-negligible, and one can

potentially control the duration of the electron bunch, and

hence the wavelength reach of superradiant emission, by

imposing an initial chirp on the electron beam. A chirp of

opposite sign would, of course, result in the opposite effect. In

this paper we lay the foundation for these kinds of manip-

ulations.

In Section 2 we present analytical calculations. In Section 3

we present the results from our semi-analytical model, and we

compare them with the output of simulation codes, showing

that, indeed, the effect of an energy chirp on the superradiant

emission can be non-negligible. Finally, in Section 4 we present

our conclusions.

2. Analytical model

We consider an electron beam phase space described by

equation (7). Note that in this case a realization of the electric

field distribution in time and frequency domains are

Eðr; tÞ ¼
XNe

j¼ 1

E1 �0 þ ��j; r; t � �j

� �
ð8Þ

and2
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Figure 1
THz electric field as determined for an undulator tuned to 0.27 THz at the
superradiant THz user facility TELBE (Green et al., 2016). Courtesy of
M. Gensch, HZDR.

2 As before, we will refer to the slowly varying envelope of the Fourier
transform of the electric field.



eEEðz; �; !Þ ¼XNe

j¼ 1

eEE1 �0 þ ��j; z; �; !
� �

exp i!�j

� �
: ð9Þ

We will only consider the case of planar undulator radiation at

resonance, and we underline the fact that the phase space

position refers to the entrance of the undulator. This remark is

important, because the phase space distribution evolves as the

electron beam moves along the undulator axis z.

In particular we should consider that the kth electron

arrives at time t = �k, with respect to the reference electron

(arriving at t = 0), so that values of �k > 0 indicate a delay,

while �k < 0 indicates an advance of the kth electron at the

entrance of the undulator. Then, we can calculate the slippage

after a distance �z0 = z2 � z1 has been travelled along the

undulator as

c
s z2ð Þ � s z1ð Þ

v
�

z2 � z1

c

	 

¼

Zz2

z1

d�zz
1

2�2
z ð�zzÞ
¼
�z0

�w

�1k

¼
�z0 1þ K2=2ð Þ

2 �0 þ ��kð Þ
2
: ð10Þ

Here s(z) is the curvilinear abscissa at position z, v is the

electron speed, �z is the longitudinal Lorentz factor, �w the

undulator period, �1k the undulator fundamental wavelength

for the kth electron and K the undulator parameter. The

difference between the value of the slippage for the kth

particle with � = �0 + ��k and for the reference with � = �0 is

�sð�z0Þ ¼
�z0 1þ K2=2ð Þ

2 �0 þ ��kð Þ
2
�
�z0 1þ K2=2ð Þ

2�2
0

’ �
�z0 1þ K2=2ð Þ

�3
0

��k: ð11Þ

It follows that

R56ð�z
0Þ ¼ �

�z0 1þ K2=2ð Þ

�2
0

; ð12Þ

with the fractional energy deviation from �0 being given by

��/�0 = ��k/�0 and �s(�z0) = R56(�z0)��/�0. Here we remind

that R56 is related to the momentum compaction, and is an

element of the transfer matrix of the setup.3

This means that, if the kth electron arrives at time �k at the

entrance of the undulator, then in the middle of the undulator

the arrival time will be changed to �k[1 + R56(Lu/2)�/(�0c)].

Now, for the reference electron, the undulator radiation

around resonance in the far-zone is [see, among many others,

Onuki & Elleaume (2003)]

eEE1ðz; �; !Þ ¼ �
K!eLu AJJ

2�0c2z
exp i

!�2z

2c

	 

� sinc

Lu

2
C þ

!�2

2c

� �	 

êey; ð13Þ

where

C ¼
!

2 ��� 2
0zc
� ku ¼

�!

!1

ku ð14Þ

is the detuning from resonance, with �! = ! � !10,

���0z ¼
�0

1þ K2=2ð Þ
1=2
; ð15Þ

while AJJ � J1(u) � J0(u), and u = K2!/(8�2kuc), and around

resonance !10 = 2kuc ��� 2
0z we have u ’ K2/[2(2 + K2)].

Then, dropping the vector notation, the field from the

reference electron can also be written as

eEE1 ¼ �
K!eAJJ

2�0c2z
exp i

!�2z

2c

	 


�

ZLu=2

�Lu=2

dz0 exp i
!�2

2c
þ
!� !10

!10

ku

� �
z0

	 

: ð16Þ

In order to obtain the total field we need to find the field from

the kth electron and sum over all electrons. This can be done

by remembering that �0 has to be replaced by �k = �0 + ��k

in all instances in equation (16), including the resonance

frequency that is now !1k = 2kuc ��� 2
kz instead of !10 and that, in

the middle of the undulator, the arrival time of the kth elec-

tron is given by �k[1 + R56(Lu/2)�/(�0c)], with R56 as in

equation (12),

eEE ¼ �XNe

k¼ 1

K!eAJJ

2ð� þ ��kÞc
2z

exp i
!�2z

2c

	 


�

ZLu=2

�Lu=2

dz0 exp i
!�2

2c
þ
!� !1k

!1k

ku

� �
z0

	 


� exp i!�k 1�
Lu 1þ K2=2ð Þ�

2�3
0 c

	 
 �
: ð17Þ

Equation (17) can also be rewritten as

eEEðz; �; !Þ ¼ � K!eAJJ

2c2z
exp i

!�2z

2c

	 


�

ZLu=2

�Lu=2

dz0 exp i
!�2

2c
� ku

� �
z0

	 


�
XNe

k¼ 1

1

ð�0 þ ��kÞ
exp

(
i! 1þ K2=2ð Þ z0

2cð�0 þ ��kÞ
2

þ i!�k 1�
Lu 1þ K2=2ð Þ�

2�3
0 c

	 
)
: ð18Þ

We now perform the following two approximations:

(i) We approximate �0 + ��k ’ �0 in the denominator of

equation (18).

(ii) We expand the phase factor in �k in equation (18) to the

first order in �, that is we assume

i! 1þ K2=2ð Þz0

2cð�0 þ ��kÞ
2
’

i! 1þ K2=2ð Þz0

2c�2
0

�
i! 1þ K2=2ð Þz0

c�3
0

��k: ð19Þ
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3 The transfer matrix transforms the electron phase-space at two different
positions along the undulator, in our case the undulator entrance and �z0.



Both assumptions are verified for all electrons when �	�=�0�

1 and 3ð�	�Þ
2kuLu=�

2
0 � 1. These conditions need to be

verified case by case for the theory to be valid.

Substitution into equation (18) gives

eEEðz; �; !Þ ¼ � K!eAJJ

2c2�0z
exp i

!�2z

2c

	 

ð20Þ

�

Z Lu=2

�Lu=2

dz0 exp i
!�2

2c
þ
!� !10

!10

ku

� �
z0

	 

�
XNe

k¼1

exp i! 1�
1þ K2=2

c�3
0

�ðz0 þ Lu=2Þ

	 

�k

 �
;

where we remind that !10 is the resonance frequency for the

reference electron with � = �0. We now calculate the

ensemble-averaged intensity to find the following general-

ization of the usual formula for coherent and incoherent

emission (a detailed derivation can be found in Appendix A),

hIðz; �; !Þi ¼ Ne

K2!2e2A2
JJ

8�c3�2
0

(Z 1
0

d� f�ð�Þ

�

Z Lu=2

�Lu=2

dz0 exp i
!�2

2c
þ
!� 2kuc ���2

z

2c ���2
z

� �
z0

	 
���� ����2
þ ðNe � 1Þ

�����
Z Lu=2

�Lu=2

dz0

� exp i
!�2

2c
þ
!� !10

!10

ku

� �
z0

	 


� �ff� ! 1�
1þ K2=2

c�3
0

�ðz0 þ Lu=2Þ

� �	 
�����
2)
; ð21Þ

where f�ð�Þ =
R

d� d2
 d2l f ðl; g; �; �Þ.
Equation (21) generalizes equation (5) and in fact reduces

to it for � = 0. The first term is the incoherent radiation

contribution hIinci ’ Ne, while the second term hIcohi ’

Ne(Ne � 1) describes the coherent, or superradiant emission.

The coherent part of equation (21) automatically includes a

change in the relative positions of electrons due to dispersion

in the undulator. This dispersion leads to the phase factor

depending on � in equation (20). This factor is then included

in �ff� , so that the form factor evolves along the undulator as a

function of z0: the factor inside the round parenthesis in the

argument of �ff� [see equation (21)] shrinks or expands the

reach in frequencies for coherent emission. When z0 = �Lu/2,

i.e. at the entrance of the undulator, this multiplication factor

is just equal to unity, resulting in the usual form factor �ff�ð!Þ.
Moving inside the undulator, depending on the sign of �, i.e.

on the slope of the energy correlation, we have a modification

of the form factor instead. Note that this modification takes

place in general, not only for undulator radiation at resonance.

A more detailed discussion can be found in Appendix B.

3. Comparison between analytical model and
simulations: a simple case study

In this section we compare the results from our analytical

model with numerical simulations. In fact, the analytical model

is based on the resonance approximation, while usually THz

undulator setups consist of a small number of periods.

Differences are, therefore, to be expected when a realistic case

is considered. The analytical approach is nevertheless still

useful for a better physical understanding, for quick estima-

tions, and for cross-checking numerical calculations in the

limit for a large number of undulator periods. This last step

was actually the first to be taken during our simulation studies.

From a methodological point of view, we proceeded with our

simulations in two steps: first, we considered the influence of

the chirp from a beam dynamics standpoint and, second, we

calculated radiation from the chirped beam. This is correct as

long as no self-effects are impacting on the electron beam. We

verified this fact separately, using the OCELOT toolkit

(Agapov et al., 2014), which was exploited for nearly all the

simulations in this paper.

3.1. Choice of simulation parameters

The presence of energy chirp in the electron beam is typical

and is a consequence of the bunch compression technique

used4, which we assume based on magnetic compression, as is

often the case for THz light sources based on a linear accel-

erator like TELBE (Green et al., 2016) or the FLASH THz

undulator (Gensch et al., 2008) just to name two.

From a beam dynamics point of view, as already discussed, it

is the energy chirp – in conjunction with a large R56 due to the

long fundamental wavelength – that leads to cases when the

additional beam compression or decompression might not be

negligible.

Here we choose a coordinate system with � = c� so the beam

head is on the left side of graphs. Then, the beam energy chirp

can be negative (in the case of over-compression) or positive,

and it can vary over a wide range: in extreme cases (see, for

example, Zagorodnov et al., 2016) for a study dedicated to the

European XFEL, the energy gradient over the bunch length

in an over-compression scenario can be E0 = dE/d� ’
�1000 MeV mm�1 at 14 GeV and in combination with a

corrugated structure E0 ’ �5000 MeV mm�1. In order to

choose realistic simulation parameters we limited ourself to

the case of FLASH (FLASH, 2018; Ackermann et al., 2007;

Gensch et al., 2008). The main FLASH accelerator and THz

undulator parameters are listed in Table 1.

We further specialize our discussion to the case of a 500 pC,

1 GeV electron beam, as simulated in DESY S2E Simulations

(2013), at the entrance of the FLASH1 VUV undulator; see

the longitudinal beam phase space distribution and beam

current in Fig. 2. For the sake of simplicity, we assume that the

electron beam does not evolve during the passage through the

FEL undulator: in other words, we do not model the effects of
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4 Here we are not considering self-effects (e.g. wakefields, coherent
synchrotron radiation), which can further influence the energy chirp.



the FEL process on the electron beam. Space charge as well as

resistive wakefield effects due to the vacuum chamber are

assumed to be small. We then picked our energy chirp to be, in

agreement with Fig. 2, E0 = 80 MeV mm�1.

The compression function eCC = ð@sf=@siÞ
�1, which quantifies

the compression for the particles in the neighbourhood of

position si (that is the position in the bunch before the

undulator) can be explicitly written as [for example, see

Zagorodnov & Dohlus (2011)]

eCC ¼ 1� R56

�

c

� ��1

¼ 1�
1þ K2=2

�2

�

c
Lu

� ��1

; ð22Þ

where � = c�0 = cE0/E0 is the energy chirp parameter defined

earlier, while R56 pertains to the undulator and is defined in

equation (12). Since at FLASH there are accelerator modules

after the last bunch compressor, the final energy of the elec-

tron beam can be varied from 450 MeV to 1200 MeV without

changing the compression scenario, and accordingly the beam

energy gradient remains the same. Therefore, the energy chirp

is inversely proportional to the electron beam energy: �(E) =

cE0/E. Taking all of this into account, we can calculate the

compression function in terms of two variables: the undulator

K parameter and the electron beam energy Ebeam, see Fig. 3(a),

or alternatively the photon energy Eph and the electron beam

energy Ebeam, see Fig. 3(b).

As one can see from Fig. 3, the compression function takes

values up to 1.4 and more for low electron beam energies

(lower than 700 MeV) and large K-values (larger than 30),

which correspond to low energetic radiation with photon

energies lower than 10 meV, i.e. in our region of interest.

It is also worth mentioning that for cases with a larger

energy chirp, the region in the parametric plots in Fig. 3

corresponding to large compression factors widens up.

Summarizing our previous discussion, we report the full list

of our simulation parameters in Table 2.
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Figure 2
Beam current and energy distribution from start-to-end simulations for
FLASH, according to the data reported in DESY S2E Simulations (2013).

Figure 3
Compression function C for the FLASH1 THz undulator as function of
beam energy and undulator K parameter (top) or, alternatively, as a
function of beam energy and photon energy Eph (bottom).

Table 1
The main FLASH accelerator parameters (FLASH, 2018; Ackermann et
al., 2007; Gensch et al., 2008).

Accelerator
Electron beam energy 0.35–1.25 GeV
Electron bunch charge 0.1–1.2 nC
Peak current 1–2.5 kA

Undulator
Type Planar electromagnetic undulator
Period 400 mm
Number of periods 9
K-value 3–49

Output THz radiation
Wavelength 10–230 mm
Photon energy 5–125 meV
Photon frequency 1.3–30 THz
Photon pulse energy (average) 10–100 mJ



3.2. Simulation results

Using simulation parameters from Table 2 we generated

three beam distributions: one with zero energy chirp and two

with opposite energy chirp signs (see also the following

subsections). While the average beam energy for all three

cases is the same, 600 MeV, the effect of different energy

chirps on electron beam dynamics and radiation output will

vary. In the case of positive energy chirp (� > 0) we expect a

growing current (because of beam shortening) and a higher

contribution to radiation around the fundamental harmonics.

In the case of negative energy chirp (� < 0) the effect will be

opposite. Finally, for the case of no chirp (� = 0) the beam will

be unchanged during the evolution through the undulator.

Note that in the analytical approach we used a ‘cold’ beam

approximation and we assumed zero transverse emittance, this

last assumption being justified by the long radiation wave-

length, compared with the geometrical emittance of an XFEL-

class beam. Therefore, we generated a zero-emittance, zero-

energy-spread beam with Gaussian distribution in the long-

itudinal direction.

In order to simulate radiation emission we used the

OCELOT toolkit (Agapov et al., 2014), which includes a

module, developed in-house, for spontaneous radiation

calculations. Simulations were run in parallel on a cluster

for 30000 macroparticles, which was sufficient for obtaining

converging results.

We are interested in intensities as in equations (21) or (5),

which are special cases of a field correlation function calcu-

lated at the same frequency and angular position. This field

correlation function actually includes an ensemble average

over electron bunch realizations, the stochastic process being

the electron shot noise. However, here we are only interested

in the calculation of the coherent part of the intensity, i.e. the

second term in equation (21), and the radiation wavelength we

are interested in is actually much longer than the longitudinal

average separation between two macroparticles. As a result,

for our purposes, the electron bunch distribution obtained

after the macroparticle generation process is smooth, and no

random process actually enters our calculations. Again, this is

justified by our interest in the coherent part of the intensity,

and by the fact that the distance between macroparticles is

much smaller than the radiation wavelength. Then, one can

simply calculate the independent radiation-field contributions

from each macroparticle and sum them up taking into account

the relative phases, remembering that the initial phase of the

field from each macroparticle depends on its position inside

the bunch,

�j ¼
2��j

�
; ð23Þ

where �j = c�j is the longitudinal position of the macroparticle

in the bunch, and � is, as before, the wavelength of the

radiation. By summing up the individual particle contribu-

tions, one obtains a total field that is independent of the

macroparticles realization. Then, the coherent intensity can be

calculated from the field.

3.2.1. Code validation. We first validated the code by

comparing it against analytical calculations in the limit for a

large number of undulator periods and in the far zone. The

reason for doing this is that, as discussed before, the analytical

calculations are derived under the resonance approximation

and in the far zone. Obviously, as one increases the number of

undulator periods, one also increases the effect of the energy

chirp, because R56 increases. Therefore, we first performed

calculations by increasing the number of undulator periods by

a factor of ten (for a total of 90 periods), and by decreasing

accordingly by the same factor the energy gradient to E0 =

8 MeV mm�1 or the energy chirp �/c = 0.013 mm�1. Fig. 4

shows the case for a positive chirp (top left plot). As expected,

the current increases as the electron bunch travels through the

undulator (top right plot). The numerically calculated radia-

tion profile at the nominal resonant photon energy Eph =

8.5 meV (bottom left plot) and on-axis spectrum (bottom right

plot) agree with the respective analytical calculations. Small

differences are to be ascribed to the accuracy of the resonance

approximation. Note that in simulations we introduce the

ending poles sequence (1/4, �3/4, 1, . . . , �1, 3/4, �1/4), indi-

cating that the undulator end-poles are characterized by one-

quarter and three-quarters of the on-axis magnetic field of the

other poles.

After obtaining the good agreement shown in Fig. 4

(bottom plots) between analytical calculations and OCELOT,

we moved further to consider our case study with a small

number of undulator periods Nw = 9 and the parameters in

Table 2.

3.2.2. Zero energy chirp. We started simulating super-

radiant radiation from an electron beam with zero chirp. In

this case, we could perform a further cross-check with the well

known code SPECTRA (Tanaka & Kitamura, 2001). Fig. 5

shows our results.

Note that the current profile remains the same before and

after the undulator, as it should be. The very good agreement
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Table 2
Simulation parameters.

Electron beam
Electron beam energy 0.6 GeV
Electron bunch charge 0.5 nC
Peak current 1.45 kA
Transverse phase space: 	x, y, x0 , y0 0
Energy spread, 	E 0
Longitudinal size, 	� 43 mm
Energy gradient, E 0 80 MeV mm�1

Energy chirp, �/c 0.13/�0.13/0
Number of macroparticles 30000

Undulator
Period 400 mm
Number of periods 9
Amplitude of magnetic field 1.2 T
K-value 44.821
R56 at 600 MeV �2.63 mm
Compression factor eCC 1.52/0.74/1

Output THz radiation
Wavelength 145.8 mm
Photon energy 8.5 meV
Frequency 2.05 THz



between SPECTRA and OCELOT further validates our

numerical simulations. As concerns the difference with respect

to analytical calculations here we stress that, as was also

discussed above, the resonance approximation does not hold

with good accuracy for a small number of undulator periods,

and differences between analytical and numerical approach

are not surprising. This does not mean that the output from

an actual setup will necessarily be closer to these particular

numerical calculations than to the analytical ones. In fact,

numerical calculations made here only assume a typical end-

pole configuration to give zero first and second field integrals,

but do not account for what precedes and follows the undu-

lator, which is important if one goes beyond the resonance

approximation. In other words, we underline the limited

accuracy of the resonance approximation, but also the need to

specify the full THz setup in order to obtain realistic simula-

tions of the output.

3.2.3. Positive energy chirp. We performed the same

simulations for a positive chirp �/c = 0.13 mm�1, Fig. 6. It is

interesting to note that the current amplitude is increased in

accordance with the compression factor eCC = 1.5. Likewise, the

output spectrum and intensity are increased by a factor of 2.6

with respect to the case of zero energy chirp.

3.2.4. Negative energy chirp. Finally, the same calculations

were performed for a negative energy chirp � = �0.13 mm�1,

Fig. 7. This time, the beam current decreases, consistently with

a compression factor eCC = 0.74, smaller than unity. Likewise,

the output spectrum and intensity are decreased by a factor of

2.7 with respect to the case of zero energy chirp.

3.2.5. Maximum intensity as a function of photon energy.

It is interesting to compare the maximum intensity as a

function of the fundamental tune for the different chirps

considered above, both for the analytical treatment and for

the numerical calculations. As can be seen from Fig. 8, for

positive chirps the maximum intensity is higher, and shifted

towards shorter wavelengths. The difference with the analy-

tical approximation depends once more on what preceded and

what follows the undulator. In the case of Fig. 8 the undulator

end-poles are, as discussed above, characterized by the

sequence (1/4, �3/4, 1, . . . , �1, 3/4, �1/4), which reduces the

effective number of undulator periods. If one imposes (non-

physically) a cos-like undulator magnetic field profile, one

obtains the result in Fig. 9.

3.2.6. Time domain analysis. The simulation results shown

up to now pertain to the coherent part of the intensity in the

frequency domain. In order to obtain them, we actually

calculated the coherent part of the electric field in the

frequency domain, whose knowledge straightforwardly allows

to synthesize the field in the time domain too, via discrete

inverse Fourier transform. In Fig. 10 we show field traces of
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Figure 4
Energy distribution, beam current in front of and after the undulator, on-axis spectrum and far-zone spatial distribution at Eph = 8.5 meV for beam with
an increased number of undulator periods, Nw = 90, and a positive, reduced energy chirp.



the on-axis field for different chirps, obtained by synthesizing,

from our previous results, photon energies between 0.1 meV

and 30 meV. Since the fundamental harmonic is at 8.5 meV

the traces include contributions at the first and at the third

harmonics5. However, for the particular parameter set chosen

in our simulations, see Table 2 and Fig. 11, the modulus of the

form factor at the third harmonic is too small to play any role,

even after compression has taken place.

The results in Fig. 10 can be easily interpreted. First of all,

they refer to a large observation distance from the undulator

centre, compared with the undulator length. Therefore, when

there is no chirp (orange line), all poles contribute in the same

way, i.e. the field amplitude does not depend on the position

inside the pulse. When � is positive (blue line) the bunch

duration shrinks along the undulator, i.e. the modulus of the

form factor at the fundamental increases, and one observes an

increase of the field amplitude along the undulator. Viceversa,

when � is negative (green line) the bunch duration increases

along the undulator, i.e. the modulus of the form factor at the

fundamental decreases, and one observes a decrease of the

field amplitude along the undulator.

While we stress once more that the present work is of pure

theoretical nature, we also underline that our time-domain

analysis enables a detailed study of experimentally measured

data like those in Fig. 1.

4. Conclusions

This paper reports on the influence of energy chirp in the

electron beam on the output from dedicated THz undulators,

due to the large dispersion associated with the long funda-

mental wavelengths. The combination of chirp and dispersion

leads to a change in the electron beam form factor as the beam

goes through the undulator, and hence a modification of the

superradiant output radiation. We showed both theoretically

and by means of simulations that for parameters compatible

with existing accelerator-based THz undulators one can

expect a large deviation of the output characteristics of

the THz beam compared with the usual estimations in

equation (5). We discussed an analytical generalization of

equation (5) for the case of undulator radiation, equation (21),

which is still based on the resonance approximation and

accounts for the evolution of the electron beam phase space

along the undulator. We used this analytical model to validate

our software tool, based on the OCELOT package, which
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Figure 5
Energy distribution, beam current in front of and after the undulator, on-axis spectrum and far-zone spatial distribution at Eph = 8.5 meV for a beam with
no energy chirp.

5 On-axis, the contribution of the even harmonics is simply zero.



allows for both beam dynamics calculations and radiation

emission calculations. Further cross-checking was performed

with the help of the SPECTRA code. We argue that our work

may be used in order to explain, at least partially, possible

deviations of THz emission from the nominal expectations,

calculated under the assumption that the form factor does not

change as the electron beam evolves through the undulator.

APPENDIX A
A detailed derivation of equation (21)

We start from equation (20), which we rewrite as

eEEðz; �; !Þ ¼ Aðz; �; !Þ

Z Lu=2

�Lu=2

dz0 Bðz0; �; !Þ

�
XNe

j¼ 1

exp i!ðz0Þ�j

� �
; ð24Þ

with the auxiliary definitions

Aðz; �; !Þ ¼ �
K!eAJJ

2c2�0z
exp i

!�2z

2c

	 

; ð25Þ

Bðz0; �; !Þ ¼ exp i
!�2

2c
þ
!� !1

!1

ku

� �
z0

	 

ð26Þ

and

ðz0Þ ¼ 1�
1þ K2=2

c�3
0

�ðz0 þ Lu=2Þ: ð27Þ

We use equation (24) to calculate

Iðz; �; !Þ
� �

¼
cz2

2�

D eEE��� ���2E ¼ cz2

2�
Aj j2

* Z Lu=2

�Lu=2

dz0Bðz0Þ

�
XNe

m¼ 1

exp i!ðz0Þ�m

� � Z Lu=2

�Lu=2

dz00

� B�ðz00Þ
XNe

n¼ 1

exp �i!ðz00Þ�n

� �+
; ð28Þ

where we understood some of the variable dependencies,

explicitly defined in equations (25), (26) and (27).

We now remember that in general

f�ðtÞ ¼
1

Ne

XNe

j¼ 1

�ðt � �jÞ

* +
ð29Þ

and
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Figure 6
Energy distribution, beam current in front of and after the undulator, on-axis spectrum and far-zone spatial distribution at Eph = 8.5 meV for beam with
positive energy chirp. Calculations refer to the parameters in Table 2.



�ff�ð!Þ ¼
1

Ne

XNe

j¼ 1

expði!�jÞ

* +
; ð30Þ

and therefore

�ff� !ðz
0
Þ½ � ¼

1

Ne

XNe

j¼ 1

exp i!ðz0Þ �j

� �* +
: ð31Þ

Then, with the help of equation (31), equation (28) gives

Iðz; �; !Þ
� �

¼
cz2

2�

D eEE��� ���2E ¼ cz2

2�
Aj j2

�

Z Lu=2

�Lu=2

dz0
Z Lu=2

�Lu=2

dz00Bðz0ÞB�ðz00Þ

�
XNe

m;n¼ 1

exp i!ðz0Þ �m � i!ðz00Þ �n

� �* +
: ð32Þ
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Figure 7
Energy distribution, beam current in front of and after the undulator, on-axis spectrum and far-zone spatial distribution at Eph = 8.5 meV for beam with
negative energy chirp. Calculations refer to the parameters in Table 2.

Figure 8
Maximum intensity as a function of the fundamental tune for different
chirps. In the numerical calculations the undulator end-poles are
characterized by one-quarter of the on-axis magnetic field from the
other poles.



Clearly* XNe

m;n¼ 1

exp i!ðz0Þ�m � i!ðz00Þ�n

� �+

¼

*XNe

j¼ 1

exp i!½ðz0Þ � ðz00Þ��j

� �
þ
XNe

m 6¼ n

exp i!ðz0Þ�m � i!ðz00Þ�n

� �+
¼ Ne

�ff� !ðz
0
Þ � !ðz00Þ½ �

þ NeðNe � 1Þ �ff� !ðz
0
Þ½ � �ff � !ðz00Þ½ �: ð33Þ

Note that the argument of �ff� in the first term is not zero, as

it usually is in calculations of the incoherent summation of

phasors. The reason is that we grouped the full dependence on

the arrival time of the jth particle in the phasors that we

subsequently summed up. Given the fact that the electron

distribution has a chirp, it follows that the phasors depend on

(z), which leads to a non-zero argument in the first term.

Substituting into equation (32) we have

Iðz; �; !Þ
� �

¼
cz2

2�

D eEE��� ���2E ¼ cz2

2�
Aj j2
Z Lu=2

�Lu=2

dz0
Z Lu=2

�Lu=2

dz00

� Bðz0ÞB�ðz00Þ


Ne

�ff� !ðz
0
Þ � !ðz00Þ½ �

þ NeðNe � 1Þ �ff� !ðz
0
Þ½ � �ff �� !ðz

00
Þ½ �

�
: ð34Þ

Finally, we substitute equations (25), (26) and (27) back into

equation (37),

Iðz; �; !Þ
� �

¼
cz2

2�
eEE��� ���2� �

¼
cz2

2�

K2!2e2A2
JJ

4c4�2
0 z2

Z Lu=2

�Lu=2

d0z

Z Lu=2

�Lu=2

d00z

� exp i
!�2

2c
þ
!� !1

!1

ku

� �
ðz0 � z00Þ

	 

�

(
Ne

�ff� !
1þ K2=2

c�3
0

�ðz00 � z0Þ

� �	 

þ NeðNe � 1Þ �ff� ! 1�

1þ K2=2

c�3
0

�ðz0 þ Lu=2Þ

� �	 

� �ff �� ! 1�

1þ K2=2

c�3
0

�ðz00 þ Lu=2Þ

� �	 
)
; ð35Þ

and we obtain a generalization of the usual formula for

coherent and incoherent emission,
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Figure 10
Coherent part of the on-axis field obtained by synthesizing, from the
results in this section, photon energies between 0.1 meV and 30 meV.
Orange, blue and green lines refer to different electron energy chirp
conditions.

Figure 11
On-axis spectrum corresponding to �/c = 0 (orange line in Fig. 10).

Figure 9
Maximum intensity as a function of the fundamental tune for different
chirps. In the numerical calculations, a cos-like magnetic field profile was
chosen.



Iðz; �; !Þ
� �

¼
cz2

2�
eEE��� ���2� �

¼ Ne

K2!2e2A2
JJ

8�c3�2
0

Z Lu=2

�Lu=2

d0z

Z Lu=2

�Lu=2

d00z

� exp i
!�2

2c
þ
!� !1

!1

ku

� �
ðz0 � z00Þ

	 

� �ff� !

1þ K2=2

c�3
0

�ðz00 � z0Þ

� �	 

þ NeðNe � 1Þ

K2!2e2A2
JJ

8�c3�2
0

�

�����
Z Lu=2

�Lu=2

d0z exp i
!�2

2c
þ
!� !1

!1

ku

� �
z0

	 


� �ff� ! 1�
1þ K2=2

c�3
0

�ðz0 þ Lu=2Þ

� �	 
�����
2

: ð36Þ

Note the non-intuitive expression for the incoherent part of

the radiation, that is the first term in equation (36), which

follows from the fact that the argument of �ff� in the first term of

equation (33) is not zero. We now verify that this incoherent

term can be written in the usual intuitive way, as the integral of

single-particle intensities averaged over the electron energy

distribution. In fact, remembering that the power from the kth

electron is

Ikðz; �; !Þ ¼
K2!2e2A2

JJ

8�c3�2
k

ð37Þ

�

Z Lu=2

�Lu=2

d0z exp i
!�2

2c
þ
!� !1k

!1k

ku

� �
z0

	 
���� ����2

and that

Ne
�ff� !ðz

0
Þ � !ðz00Þ½ � ¼

XNe

k¼ 1

exp i!½ðz0Þ � ðz00Þ��k

� �* +
;

ð38Þ

we see that the first term in equation (36) can simply be

written [upon substitution of equation (38)] as

hIincðz; �; !Þi ¼
K2!2e2A2

JJ

8�c3�2
0

*XNe

k¼ 1

�����
Z Lu=2

�Lu=2

d0z

� exp i
!�2

2c
þ
!� !1

!1

ku

� �
z0 þ i!ðz0Þ�k

	 
�����
2+

¼

*XNe

k¼ 1

K2!2e2A2
JJ

8�c3�2
k

�

�����
Z Lu=2

�Lu=2

d0z exp i
!�2

2c
þ
!� !1k

!1k

ku

� �
z0

	 
�����
2+

¼
XNe

k¼ 1

Ikðz; �; !Þ

* +
ð39Þ

¼ Ne

K2!2e2A2
JJ

8�c3

Z 1
0

d�

�2
f�ð�Þ

�

Z Lu=2

�Lu=2

d0z exp i
!�2

2c
þ
!� 2kuc ���2

z

2c ���2
z

� �
z0

	 
���� ����2;
where ���z = �= 1þ K2=2ð Þ

1=2
, f�ð�Þ =

R
d� d2
 d2l f l; g; �; �ð Þ,

having used equation (7). This is just equation (21), where we

approximated � ’ �0 in the factor 1/�2 under the integral sign.

APPENDIX B
Discussion of dynamical effects from a chirped beam in
the case of generic motion

In general, the slowly varying envelope of the Fourier trans-

form of the electric field of a moving charge in the paraxial

approximation is given by [for a treatment keeping similar

notations, see Geloni et al. (2007) for example]

eEEðz; r?; !Þ ¼ �
i!e

c2

Z 1
�1

d0z
1

z� z0
vðz0Þ

c
�

r? � r 0?ðz
0Þ

z� z0

	 

ð40Þ

� exp i!
j r?ðz

0Þ � r 0? j
2

2cðz� z0Þ
þ

sðz0Þ

v
�

z0

c

� �	 
 �
:

Here s(z0) is the curvilinear abscissa along the particle

trajectory, the integration is assumed to extend along the

entire trajectory, the observer is assumed located downstream

of the source, and

!
sðz2Þ � sðz1Þ

v
�

z2 � z1

c

	 

¼

Z z2

z1

d�zz
!

2�2
z ð�zzÞc

: ð41Þ

Still in full generality, assuming the reference trajectory to be

as that for �k = 0 we see that (assuming v ’ c)
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xðz0Þ ¼ x0ðz
0
Þ þ R16ðz

0
Þ
��

�0

;

vxðz
0
Þ ¼ v0xðz

0
Þ þ cR26ðz

0
Þ
��

�0

;

yðz0Þ ¼ y0ðz
0
Þ þ R36ðz

0
Þ
��

�0

;

vyðz
0
Þ ¼ v0yðz

0
Þ þ cR46ðz

0
Þ
��

�0

;

sðz0Þ ¼ s0ðz
0
Þ þ R56ðz

0
Þ
��

�0

:

ð42Þ

In general, one should substitute all of equation (42) into

equation (40).

Although we refrain from doing so explicitly, one can very

easily do so and work out, for instance, the case of edge

radiation. For this setup, of course, the function R56(�z0) =

��z0/�0
2 should be used, instead of equation (12), and the

electrons move along the longitudinal axis.

Back to the case of planar undulator radiation, one could

in principle start from equation (40). The application of the

resonance approximation can be enforced by neglecting terms

related with the gradient of the charge density distribution

[that is the term ½r? � r0?ðz
0Þ�=ðz� z0Þ under square brackets,

which includes the entire y-polarization contribution] and also

the constrained particle motion in that part of the phase factor

which follows from the Green’s function, that is the term r?ðz
0Þ

in the squared modulus in the phase factor.

One can then proceed further, assuming that the R26 term is

small, which is the case for �	� � �0, and that the kth electron

arrives at time �k, while the reference arrives at time t = 0 at

the entrance of the undulator. Then, the kth electron accu-

mulates delay (or makes up for it) as it moves inside the

undulator, according to R56(�z0)��/�0, where �z0 is the

distance travelled inside of the undulator. If z0 = 0 indicates

the middle of the undulator, then �z0 = z0 + Lu /2 and the field

from the kth electron is therefore given by

eEEkðz; r?; !Þ ’ �
i!e

c2

Z Lu=2

�Lu=2

d0z
1

z� z0
vðz0Þ

c

� exp i!
r2
?

2cðz� z0Þ
þ

s0ðz
0Þ

v
�

z0

c

� �	 
 �
� exp i!R56ðz

0
þ Lu=2Þ

��k

�0

þ i!�k

	 

: ð43Þ

Not surprisingly, the phase factor in the second line is the same

as in the kth term of equation (20), second line.
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