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The first attempts to calculate the diffraction efficiencies of gratings in the soft

X-ray range were made on a scalar model. The results were simple analytical

equations, that always severely overestimated the performance of real objects.

In this respect, computer programs were found to be more successful, which

rigorously consider all diffracted and refracted waves. Consequently soft X-ray

gratings are presently optimized using these tools, which requires rather

extensive calculations for any instrument optimization as general trends are not

immediately obvious. Here it will be shown that the results of the rigorous

calculations for gratings with blaze or sawtooth profile can be approximated

rather well with a simple analytical equation. This equation contains three

multiplicative factors, which deal independently with the effect of the

reflectivity, the blaze angle and the groove density. This opens the possibility

to initially ignore the effects of the blaze angle and thus to start an optimization

in a very general way. Such optimization can be based on isoreflectivity curves

and it can then provide ‘blaze maximum efficiency maps’, i.e. simple images. In

these latter images, one can identify directly the optimum parameters for a

grating, i.e. the groove density providing best efficiency for a requested spectral

resolving power. Only successively will the blaze angle have to be fixed. Its

choice is then not the result of an extensive optimization process but of a simple

calculation applied for the photon energy at which maximum efficiency

performance is requested. The maps presented here are used for the

optimization of a medium-resolving-power soft X-ray monochromator, which

can scan the photon energy range 300–2000 eV.

1. Introduction

For the continuous tuning of the photon energy in the soft

X-ray range with photon energies E from about 300 eV to

beyond 3000 eV (photon wavelengths 0.4 nm < � < 4 nm;

photon energy E and wavelength � are related via �E =

1239.852 nm eV), monochromators employing diffraction

gratings are almost exclusively used (Attwood, 1999).

Presently the chosen parameters for the gratings are the result

of systematic and lengthy calculations of their expected

diffraction efficiencies with sophisticated software. The goal is

to obtain the best possible diffraction efficiency for a proposed

spectral resolution. The difficulties in the proper prediction

arise from the need to operate the grating at very shallow

angles of incidence below the critical angle for total reflection

(Lukirskii et al., 1963) and to consider properly the splitting of

the incident intensity into several diffracted and refracted

diffraction orders. The optimization could be very much

shortened and be made more reliable if an independent tool

was available that would readily provide a best parameter set

for the start of the final optimization. However, such a tool is

presently missing. Nevertheless, a few parameters can be

decided on immediately, e.g. the groove shape. The intuitive

expectation that a grating structure with a sawtooth profile, or

a blazed profile as shown in Fig. 1, will provide the best effi-
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ciency has been confirmed theoretically (Nevière & Flamand,

1980) and experimentally. When the optimization of grating

monochromators for the soft X-ray range started, the choice

fell to the use of such a profile to be operated in the vicinity of

the blaze maximum, i.e. when the diffraction order of interest

is specularly reflected at the grooves (e.g. Kunz et al., 1968).

The latter expectedly most favourable situation is presented in

Fig. 1. In this case the angle of grazing incidence � onto the

grating surface is smaller than the grazing angle of diffraction

�; and all incident radiation is intercepted at grazing incidence

by shallow inclined grooves. In the reversed beam path, part of

the incident intensity will hit the steeper part of the sawtooth,

from where it cannot be diffracted into the desired direction.

Also, the coating material can be chosen immediately, as a

material possibily without any absorption structures in the

projected tuning range will have to be favoured. Instead the

remaining parameters, i.e. the groove periodicity of the grating

and the inclination angle of the grooves, i.e. its blaze angle,

require more systematic considerations and optimizations

with appropriate computer programs. As a rule of thumb, one

starts the optimization assuming that gratings with higher

groove density can provide smaller spectral bandpass, while

lower-density gratings provide better diffraction efficiency.

Here a tool will be discussed that readily indicates the

optimum groove density, which will provide a requested

spectral resolution with the highest possible diffraction effi-

ciency. This tool is here used for the optimization of a soft

X-ray monochromator for operation with medium spectral

resolving power of 5000–10000 in the photon energy range

250–2000 eV at a diffraction-limited storage ring of the newest

generation.

2. Operation parameters for soft X-ray
monochromators

2.1. Plane-grating monochromators working in ‘fixed focus’
or blaze-maximum mode

As a first tool for finding appropriate operation parameters

for diffraction gratings, Petersen (1982) introduced the so-

called grating efficiency map, in which the ranges of grazing

angles at which acceptable diffraction efficiencies had been

experimentally observed are plotted in relation to the mono-

chromated wavelength. Petersen needed such a plot as he had

optimized a monochromator for operation mostly in the off-

blaze condition, and he wanted to quantify the sacrifice in

diffraction efficiency for this particular operation. The

reasoning for this operation mode will be discussed briefly

here. The grating equation (see e.g. Hutley, 1982) for reflection

gratings,

n� ¼ d cos�� cos �ð Þ; ð1Þ

requires that the monochromatization of a given wavelength �
by use of the diffraction of order n (n 6¼ 0) is made for

differing angles of grazing incidence � and of grazing

diffraction �. This equation is valid for periodic surface

structures of any shape with periodicity d. In the present

convention the order number is positive when a diffraction

order falls between the incident beam and the beam being

specularly reflected from the substrate (order n = 0). For

� 6¼ �, the beam size will change in the diffraction process for

all diffraction orders with the exception of the specularly

reflected beam of order 0. As a consequence of this, the

intrinsic beam divergence will also change (see, for example,

Petersen, 1982). This will introduce aberrations to an incident

uncollimated beam. For an observer downstream of the

grating, the beam will then appear to be astigmatic as the new

virtual position for the source in the dispersion direction will

no longer coincide with its real position and thus with the

unaltered position of the source in the orthogonal direction. It

should be noted that the astigmatism problem can be over-

come by collimating the beam prior to its dispersion; however,

only at the expense of a flux reduction in an additional colli-

mation mirror. Petersen (1982) wanted to avoid these losses

and thus proposed an operation scheme in which the astig-

matism, i.e. the position of the new virtual source, is kept

constant during tuning. This so-called ‘fixed focus’ mode

requires the beam size increase in the diffraction process to be

kept constant. This is achieved by applying a constant ratio cff

between the angles,

sin � ¼ cff sin�; ð2Þ

with cff > 1 for the optical path as shown in Fig. 1. Instead,

blaze maximum operation is achieved for a blaze angle � in

the condition

�þ � ¼ � � �: ð3Þ

Then in the ‘fixed focus’ mode the blaze maximum operation

can be provided in only a single angular position. It should be

noted at this point that for both operation modes one has to

accompany the required grating rotation with a correlated

rotation of a pre- or post-mirror, when the monochromated

beam is to be stationary in angle and position. Now, in the off-

blaze condition, one expects intuitively to observe losses in the

diffraction efficiency and Petersen (1982) wanted to rapidly

quantify them for his ‘fixed focus’ mode. At that time the

grating quality could not be assured and thus he refrained

from using already possible calculations for ideal profiles.

Instead he decided to base his evaluation of the transmission
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Figure 1
Diffraction of a radiation beam that strikes a diffraction grating with
periodicity d with an angle of grazing incidence of �, and which is
diffracted by an angle of � away from the surface. The situation is
presented for a blazed grating with blaze angle �. The illuminated area of
width b is actively participating in the diffraction process. The radiation,
being incident in the reversed orientation in the grey areas, cannot be
diffracted by the common deflection angle.



performance of his monochromator on published perfor-

mance data for the grating efficiency. Petersen (1982) found

that his chosen operation curve with cff = 2.25 for a grating

with line density p = 1220 mm�1 (groove spacing d = 825 nm)

stayed inside the range for 50% of the maximum possible

efficiency over the whole tuning range from � = 15 nm down to

below � = 0.8 nm (photon energy range 80 eV to above

1500 eV). Jark (1988) later confirmed the validity of the maps

with systematically measured efficiencies, which allowed him

to present the data in the form of isoefficiency curves.

For the soft X-ray range indicated here only very grazing

angles will be considered. It is then more convenient to use the

small-angle approximations for the trigonometric functions.

The grating equation then reads

n� ¼
d

2
�2
� �2

� �
: ð10Þ

From here on, the discussion will be restricted to the orders +1

and �1 to be diffracted from a sawtooth profile. In this case

the optimum diffraction efficiency is found when the diffrac-

tion order of interest is specularly reflected at the inclined

grooves. Intuitively one would have expected that Fig. 1

presents the condition for perfect diffraction into a single

diffraction order. However, the reciprocity theorem requests

the invariance of the diffraction efficiency upon exchange of

the source and of the detector. Now, when the optical path is

reversed compared with Fig. 1, then only part of the inclined

sawtooth of width b can intercept and properly diffract the

incident beam, while some intensity will be absorbed in the

steeper part of the sawtooth. The undiffractable beam is

incident in the light grey areas. In a short geometrical exercise

it can be shown that the properly diffractable intensity is thus

reduced by the factor

c 0 ¼
sin� sinð� � �Þ

sin � sinð�þ �Þ
; ð4Þ

which for small angles becomes

c 0 ¼
� � � �ð Þ

� �þ �ð Þ
: ð5Þ

The validity of the reciprocity theorem now requires applying

this reduction factor also to the beam path shown in Fig. 1.

This invariance request for the diffraction efficiency upon

source and detector exchange was always used for validating

programs for the calculation of the diffraction efficiencies,

e.g. by Maystre & Petit (1976). Experimentally its validity was

verified by Jark (1988). As far as the blaze maximum condition

is concerned, Maystre & Petit (1976) established that the

diffraction efficiency can be predicted with small error of the

order of at most 10% with the simple relation

e�1;bm ¼ Rð�þ �Þ
�

�
: ð6Þ

Here, R(� + y) is the reflection coefficient for the inclined

interface, for which R �þ �ð Þ = R � � �ð Þ holds, and the

geometrical factor c 0 = �/� is the factor from (5) applied to the

blaze maximum condition. The angles in the ratio remain

unchanged, even though their meaning is reversed in the

reversed beam path. In the latter path, � is then referring to

the angle of grazing incidence while � is the angle of grazing

diffraction. The symmetry required by the reciprocity theorem

is then also respected in the calculations, when one considers

the deflection angle � + � as the relevant parameter for the

reflectivity calculation. For all further considerations, here it

will be attempted to express all relations as functions of this

deflection angle. From equation (10) one finds readily that a

minimum deflection angle exists for the diffraction, which is

given by

�þ �ð Þmin ¼
2�

d

� �1=2

: ð7Þ

At blaze maximum, from (3) one obtains �bm = � + 2�, and by

use of (10) one then obtains the working curve,

ð� þ �Þbm ¼
�

d�
: ð8Þ

By use of (7) and (8) one then finds a limitation for the tuning

in the blaze maximum of

�min;bm � 2d�2: ð9Þ

For the earlier described ‘fixed focus’ mode (Petersen, 1982)

with constant beam size increase in the diffraction process, one

can approximate (2) by � = cff� and one finds then

ð�þ �Þff ¼
2�

d

� �1=2
cff þ 1

cff � 1

� �1=2

: ð10Þ

For a given cff the corresponding deflection angle is then a

multiple of the minimum possible deflection angle. Conse-

quently no limitation exists in this mode for the tuning of the

wavelength. In the latter case the variation of the deflection

angle with wavelength � follows a proportionality, �þ �ð Þff /ffiffiffi
�
p

, which is significantly smaller than at the blaze maximum,

where one finds (� + �)bm / �. The here-discussed depen-

dencies are presented in Fig. 2 for two example gratings with

groove densities of 1200 mm�1 (d = 833.3 nm), as chosen by

Petersen (1982), and of 75 mm�1 (d = 13,333 nm), which is a

plausible lower limit for the groove density. For a grating with

density 1200 mm�1 the data are shown at the top for two ‘fixed

focus’ constants, cff = 2.25 and cff = 1.5, and for two blaze

angles, � = 1.0� and � = 1.5�. These numbers present the range

that is mostly used in this type of monochromator (Petersen et

al., 1995). At the bottom only two working curves with cff = 1.5

and � = 0.25� are presented. One can see, as mentioned earlier,

that the ‘fixed focus’ monochromator operation mode will

coincide with blaze maximum at only one particular photon

energy. With the constant cff = 2.25 originally proposed

by Petersen one finds, according to (10), (� + �)ff, 2.25 =

1.61(� + �)min and the ratio �þ �ð Þff= �þ �ð Þmin increases with

decreasing ‘fixed focus’ constant cff. Now for larger groove

densities the range of inaccessible deflection angles extends

to rather large angles, while the inaccessible range does not

present a significant limitation for smaller groove densities.

However, one needs to consider that the minimum deflection
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angle that can be operated in the related monochromator

design (Riemer & Torge, 1983) or in modified versions for the

‘fixed focus’ operation proposed by Petersen (1982) will

reasonably be limited to (� + �) � 1.8�. Consequently the

indicated operation of the grating with groove density

75 mm�1 is rather limited towards higher photon energies in

both modes, i.e. in the ‘fixed focus’ and in the blaze maximum

mode. An additional technological challenge lies in the very

shallow blaze angles of only fractions of a degree, at which

gratings with smaller groove densities will provide higher

efficiencies. Heidemann et al. (2007) succeeded by use of

reactive ion beam etching and the related significantly

different etching rates for different materials to reduce the

blaze angle in a grating with groove density of 300 mm�1. A

larger blaze angle of 2.8� in a mechanically ruled grating

structure in a gold layer could be transferred into the under-

lying silicon substrate with a final blaze angle of 0.1�. Voronov

et al. (2018) achieved similar numbers more cost effectively

starting with periodic structures produced by anisotropic

etching into silicon.

2.2. Spectral resolving power

Now the primary performance parameter for the soft X-ray

monochromator under discussion is in terms of spectral

resolution. As far as this parameter is concerned, a routine

operation with a spectral resolving power RP of the order of

�=��ð Þ = 5000 is projected for photon energies up to 2000 eV.

The instrument should eventually also provide values of the

order of �=��ð Þ = 10000. An additional request is to keep the

monochromatic beam cone behind the exit slit as circular as

possible. Such a cone would then optimally illuminate the

focusing optics, that is either rotationally symmetric or that is

operated with square entrance apertures. An example of the

first is focusing by use of Fresnel zone-plates (Attwood, 1999)

and mono-capillaries (Voss et al., 1992), while crossed Kirk-

patrick–Baez mirror systems (Kirkpatrick & Baez, 1948) and

particularly Montel mirrors (Montel, 1957) are examples of

the latter situation. This latter request for a circular cone

seems to match well with the fact that at diffraction-limited

storage rings of the newest generation the radiation in the soft

X-ray range will already be emitted into circular cones.

However, according to (2) the diffraction at the grating will

always alter the size of the incident beam in the dispersion

direction. After diffraction with a ‘fixed focus’ constant cff, a

beam of initially circular shape will have become a beam of

elliptical shape with an aspect ratio between the ellipse axes in

the dispersion and in the orthogonal direction of Sdisp=Sorth =

cff. A monochromator operation in the ‘fixed focus’ mode with

the original constant cff = 2.25 is then not desirable; instead

smaller constants of the order of cff = 1.25 could be accepted.

For the further discussion it will be assumed here that all

reflection and diffraction processes take place aberrations-

free, such that the phase space volume, i.e. the product of the

source size and the beam cone opening angle, is preserved in

the waists of the beam path. It will also be assumed that the

incident beam is collimated by use of a collimation mirror.

Then the ‘fixed focus’ mode can also be abandoned and a

more flexible grating operation could be possible. In any case

it will be assumed that the monochromator exit slit is always

perfectly matched to the size of the monochromatic image.

The expected spectral resolution can be obtained from the

derivative of the grating equation (1) or (10) for the order n =

+1, to which the discussion will be limited at this point,

�� ¼
@

@�
��� ’ d���: ð11Þ

In the diffraction process one conserves the phase space

volume when

��� ¼ ���: ð12Þ

Then one can calculate directly the source-size-limited spec-

tral resolution. For this purpose it will now be assumed that
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Figure 2
Working curves, i.e. the deflection angles � + � at the grating, depending
on the monochromated photon energy for different monochromator
operation modes and grating groove densities. At the top, for a groove
density of 1200 mm�1 (d = 833.3 nm), the black curves refer to the ‘fixed
focus’ operation according to (10) with the two different constants cff =
2.25 and cff = 1.5. The red curves refer to blaze maximum mode according
to (8) with two blaze angles, � = 1.0� and � = 1.5�. At the bottom, for a
groove density of 75 mm�1 (d = 13,333 nm), only curves for cff = 1.5 and a
blaze angle of � = 0.25 � are presented. The grey area indicates the range
of inaccessible deflection angles according to (7).



the insertion device is operated slightly detuned, such that the

maximum flux is intercepted in an aperture of finite size.

According to Coisson (1988), in this case the � parameter for

the roughly Gaussian-shaped emission angle is given by �0 =

1:3
ffiffiffiffiffiffiffiffiffi
�=D
p

in both directions. The source size is diffraction

limited in the vertical direction with �y = 0:15
ffiffiffiffiffiffiffi
�D
p

; and the

dispersion will thus be assumed to take place in this vertical

direction. The corresponding full width at half-maximum

values are then larger by a factor 2.35 than the � values. Here

the contribution from the electron beam size will be ignored.

The intrinsic angular spread in the beam due to the finite

source size is then �� = 2.35�/L, where L is the distance of the

grating from the source. One thus obtains, by use of (11) and

(12), for the achievable spectral resolving power,

�

��

� �
¼

�

d���
¼ 2:84

L

d�

ffiffiffiffi
�

D

r
: ð13Þ

In order to achieve this limit, it needs to be assured that the

radiation cone illuminates a sufficient amount of lines at the

grating, i.e. the number of illuminated lines needs to be larger

than the requested spectral resolving power. This number of

lines can be calculated from the size of the beam footprint at

the grating via � L=d�, and the final result

� L

d�
¼ 3:06

L

d�

ffiffiffiffi
�

D

r
ð14Þ

is just slightly larger than the achievable spectral resolution

according to (13). This applies here in all cases and conse-

quently this diffraction limit will be ignored in the further

discussion. The angle of grazing incidence required to obtain a

desired spectral resolving power (�=��) can be obtained from

(13). It presents now a very interesting dependence in the

form

� ¼
2

�=��ð Þ

Lffiffiffiffiffiffiffi
dD
p

ffiffiffiffiffi
2�

d

r
: ð15Þ

Here
ffiffiffiffiffiffiffiffiffiffi
2�=d
p

is the minimum deflection angle according to (7).

Consequently the required angle of grazing incidence for a

constant requested spectral resolving power �=��ð Þ is a

multiple of the minimum deflection angle. Now, when for a

desired performance parameter the related angle of grazing

incidence varies with the minimum deflection angle according

to � = A
ffiffiffiffiffiffiffiffiffiffi
2�=d
p

with constant A, then the related deflection

angle to be obtained from �þ � = �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�=dÞ þ �2

p
is also a

multiple of the minimum deflection angle and it is given by

�þ � =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�=dÞ

p
ðAþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 1
p

Þ. Consequently the operation

curves for constant spectral resolving power are at multiples of

the minimum deflection angle. This was also the case for the

‘fixed focus’ operation curves. Then in any of the ‘fixed focus’

curves a constant spectral resolving power is provided, which

can easily be calculated via

�

��

� �
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p Lffiffiffiffiffiffiffi

dD
p : ð16Þ

Here the operation of the grating at a distance of L = 22 m

from an undulator of length D = 4.5 m is considered. Similar

numbers will be used at presently projected diffraction-limited

storage rings, and thus the results presented here could be

almost directly applied in these cases. For differing parameters

L0 and D0, instead the achievable spectral resolving powers can

simply be obtained by correcting the here-presented numbers

according to (16) by the factor ðL0=22 mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:5 m=D0
p

. For the

two example gratings from Fig. 2 with groove densities of

1200 mm�1 and of 75 mm�1, the related factors 2L=
ffiffiffiffiffiffiffi
dD
p

in

equation (15) lead to values of 22720 and of 5680, respectively.

Consequently a spectral resolving power of 5000, as requested,

can be achieved in both cases with convenient ‘fixed focus’

constants cff < 1.3.

2.3. Diffraction efficiency

2.3.1. Analytical calculations. At this point the achievable

diffraction efficiencies will then have to be predicted for the

optimum ‘fixed focus’ constants and the related groove

densities. On the one hand, for this purpose one has available

an analytical expression derived from a scalar approach by

Sprague et al. (1955) and later by Lukirskii & Savinov (1963).

Both groups derived an equation for the calculation of the

diffraction efficiency for gratings in the form

en ¼ R �; �; �ð Þ S 2
n �; �ð ÞG �; �ð Þ; ð17Þ

where R is a reflection coefficient depending on the angles �
and � and on the refraction angle into the substrate �. S is the

structure factor derived for the order n in analogy to the

Fraunhofer diffraction from a multislit system,

Sn ¼
sin ð�b=�Þ cos �þ �ð Þ � cos �n � �ð Þ

� �	 

ð�b=�Þ cos �þ �ð Þ � cos �n � �ð Þ

� � ; ð18Þ

with

b ¼ d cos � �
sin �

tan �þ �ð Þ

� �
¼ d

sin�

sin �þ �ð Þ
: ð19Þ

The geometrical factor G is derived by Sprague et al. (1955)

to be G = sin �=sin�, while Lukirskii & Savinov (1963)

derive for a sawtooth profile grating the factor G =

sin � � �ð Þ=sin �þ �ð Þ. The authors of both studies were not

aware of the validity of the reciprocity theorem. In the study

by Lukirskii & Savinov (1963) the respective correction factor

sin�=sin � is thus missing, and the correct form for G should

have been as given above in (4). Then measured data were

always falling significantly behind the expectations, which

were erroneously too optimistic. Consequently this scalar

approach was abandoned rather early for any instrument

optimization.

2.3.2. Rigorous calculations with the differential method.

As far as a better agreement between predictions and

experiment is concerned, the differential method for the

calculation of the diffraction efficiencies as presented by

Nevière et al. (1974) was finally successful. This rigorous

approach thus became the tool used for the optimization of

the grating parameters in the design stage for mono-

chromators (e.g. Schäfers, 2008; Boots et al., 2013). Now this

code and its modification can treat perfect grating profiles, but
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can also take into account distortions in the profiles (Boots et

al., 2013).

2.3.3. Analytical approximation of rigorously calculated
diffraction efficiencies. In the present study, we now attempt

to return to an analytical expression that would provide

diffraction efficiencies in agreement with the rigorous Neviere

code (Nevière et al., 1974). This would very much help to

accelerate the systematic optimization as a designer would

then be able to use simpler and readily available software for a

first optimization. In this initial design stage it is acceptable to

assume a perfect grating profile. In fact, any possible imper-

fections should in the first place reduce the relative diffraction

efficiency but should not affect the optimum working point for

any wavelength. Obviously such an analytical expression

needs to predict the diffraction efficiency in the blaze

maximum as given in (6). Plausibly it should also contain the

structure factor as presented in (18) and part or all of the

geometrical factor G as presented in (4) or (5). In a systematic

comparison with the Neviere code for the perfect profile it was

then assumed that the reflection coefficient can be used in the

form R �þ �ð Þ not only in the blaze maximum condition but in

general. For the commonly used coating of gold these latter

coefficients are now presented colour-coded in Fig. 3. These

coefficients were calculated by use of the Center for X-ray

Optics Database (2019). The most convenient form of the plot

is as isoreflectivity curves, i.e. as a reflectivity map depending

on the photon energy and on the deflection angle. When now

the rigorously calculated diffraction efficiency erig for a given

grating periodicity d and blaze angle � is divided by the

corresponding reflection coefficient R �þ �ð Þ from Fig. 3, then

the resultant ratio erig=R �þ �ð Þ agrees for � > � with little

error, of the order of 10% or less, with the product of the

structure factor according to (18) and the simplified geome-

trical loss factor �=�,

erig

R �þ �ð Þ
¼ S 2

n¼1

�

�
: ð20Þ

The latter simple loss factor �=�, which was shown by Maystre

& Petit (1976) to be applicable for the calculation of the

blaze maximum diffraction efficiency for the order n = +1,

is identical to the reciprocal of the ‘fixed focus’ constant,

i.e. with 1/cff.

3. Discussion

3.1. Grating efficiency maps

An additional important result for further discussion is the

observation that the product of the geometrical factors on the

right-hand side of equation (20) is bell-shaped. The maximum

occurs always very close to the blaze maximum condition as

given by (3). The width of these curves varies with photon

energy and blaze angle. For the purpose of this study, it is now

important to recognize that the diffraction efficiency can be

calculated by use of three multiplicative factors,

e ¼ R �þ �ð Þ S 2
n¼1

�

�
: ð21Þ

In this equation the contributions from the reflectivity, the

grating blaze angle and the groove density and geometry

separate into independent factors. At blaze maximum, the

bell-shaped structure factor is S 2
n¼1 = 1. The width in the

deflection angle and in the photon energy, in which S 2
n¼1 is at

least 0.5, can be estimated via f½sinðBÞ�=Bg2 = 0.5, which is

achieved for B = 0.44�. Then one finds by use of the small-

angle approximation that at a given photon energy the effi-

ciently diffracting interval of deflection angles is given by

� þ �ð Þmax

� þ �ð Þmin

¼ 1þ
B

�

�1 þ �

�1

� �.
1�

B

�

�2 þ �

�2

� �
; ð22Þ

while the corresponding photon energy interval for a given

deflection angle is given by the same ratio,

Emax

Emin

¼ 1þ
B

�

�1 þ �

�1

� �.
1�

B

�

�2 þ �

�2

� �
: ð23Þ

Here the indices 1 and 2 refer to the angles of grazing inci-

dence at the upper and at the lower limit of the intervals,

respectively. Both ratios are at least 1þ 0:44½ �= 1� 0:44½ � =

2.57, when the blaze angle can be ignored in comparison with

the angles of grazing incidence, and they are larger otherwise.

The extremes for the minimum ratio are then at about 0.55

and 1.45 of the deflection angle or photon energy corre-

sponding to blaze maximum, respectively.

The latter ratio 1.45 is important for the applicability of

equation (21). This equation was tested in the soft X-ray range

between photon energies of 300 eV and 4000 eV, i.e. in the

window chosen in all figures. In this range it estimates the

diffraction efficiency for the first order, but also for the second

order, with similarly small error (<10%) compared with the

rigorous calculations. It was found to be applicable for the first

order also in the EUV range 30–300 eV. In all cases the simple

predictions become unreliable when the working curve

involves deflection angles in excess of 1.45-fold the working

curve for blaze maximum. In these areas the structure factor

S 2
n¼1 decreases very rapidly towards a local minimum. This
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Figure 3
Isoreflectivity curves for a gold coating in a plot of deflection angle � + �
versus photon energy. The reflectivities corresponding to the borders
between different colours are indicated in the colour bar, which covers
the range of reflectivities 0 < R < 1.



can produce significant discrepancies between the rigorous

calculations and the simple predictions by use of (21).

However, this has little effect on the optimization in which one

will always point to high efficiencies. Similar observations are

not made for smaller deflection angles. The reflectivity factor

Rð�þ �Þ in (21) can only be applied in the case of a sawtooth

with apex angle 90� and a thick coating. In fact, equation (21)

cannot account for any interference in a thin coating or for

interferences which are caused by intensity being transmitted

through the tips of the profile. Only a rigorous approach can

properly account for these effects. Likewise only the rigorous

approach will permit to interpret measured efficiencies when

the grating profile is defective, e.g. when it presents rounded

tips or a varying groove inclination.

Now, as far as any ‘fixed focus’ working curve is concerned,

the structure factor S 2
n¼1 remains larger than 0.5 between 0.35

times and 2.1 times the photon energy at which the blaze

maximum condition is found. This permits a relative operation

in this mode to at least Emax = 6Emin. This scanning limit covers

already two-thirds of the presented window in Figs. 2 and 3,

e.g. the scanning could cover efficiently the photon energy

range 300–1800 eV, while it is not limited to this range.

Consequently the here-requested slightly larger tuning range

can be covered in ‘fixed focus’ mode with a single grating; and

the just discussed feasibility of efficient tuning in rather large

photon energy intervals in this ‘fixed focus’ mode invites to

initially ignore completely the blaze angle in the optimization.

As it is only contained in the structure factor in (21), one

would then calculate the efficiency for S 2
n¼1 = 1 by use of e =

R �þ �ð Þð�=�Þ. This is identical to (6) for the calculation of the

diffraction efficiency of a blazed grating in blaze maximum.

Consequently when one now plots for a given groove density

the diffraction efficiencies according to (6) in analogy to Fig. 3

as isoefficiency curves depending on photon energy and on

deflection angle, the result can be called a ‘blaze maximum

efficiency map’. It can now be used as a powerful tool for

the further optimization of the grating in a monochromator.

Without consideration of the exact groove profile these maps

allow one to compare directly the ultimately possible perfor-

mance by use of gratings with varying groove densities. The

reflection coefficient for the commonly used coating material

gold can be taken from Fig. 3. Then Fig. 4 presents the ‘blaze

maximum efficiency maps’ for the three different groove

densities (from top to bottom) of 1200 mm�1, 300 mm�1 and

75 mm�1. The most obvious observation is a significant

variation of the maximum diffraction efficiency with groove

density. On the one hand the changes are rather insignificant

in the isoefficiency curves towards the upper right. In fact here

the isoefficiency lines follow very much the behaviour of the

isoreflectivity lines in Fig. 3. On the other hand, towards the

lower left the shape of the isoefficiency curves is dominated by

the correction factor �=� = 1=cff , which leads to increasing

geometrical losses when the inaccessible angular range is

approached. Fig. 2 points out already that the reduced in-

accessible angular ranges for smaller groove densities make

the areas of larger reflectivities, as of Fig. 3, available when

such gratings are used. Consequently the diffraction efficiency

increases with decreasing groove density and simultaneously

also the efficiently diffracting angular range increases. These

observations are in line with past practical and theoretical

experiences. The maximum diffraction efficiency obtainable in

the blaze maximum condition is presented at the top of Fig. 5
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Figure 4
‘Blaze maximum grating efficiency maps’, i.e. isoefficiency curves
according to (6), for gold-coated blazed gratings in a plot of deflection
angle � + � versus photon energy for different groove densities (from
top to bottom) of 1200 mm�1, 300 mm�1 and 75 mm�1. The efficiencies
corresponding to the borders between different colours are indicated in
the colour bar, which covers the range of efficiencies in blaze maximum
0 < e < 0.7.



for a photon energy of 1580 eV, around which the best

performance is found. The variation in the presented range of

groove densities 50 mm�1 . . . 1200 mm�1 is here more than a

factor of three.

Comparison of these ‘blaze maximum efficiency maps’ from

Fig. 4 and of the isoreflectivity curves from Fig. 3 with the

grating operation curves in Fig. 2 shows some interesting

behaviour. In the optimization stage of early grating mono-

chromators for operation at blaze maximum (Kunz et al., 1968)

it was argued that the blaze maximum operation curves would

follow well the critical angle behaviour of the metal coatings.

This would be the case when absorption in the coating

material can be neglected. However, this is not the case for a

gold coating in the soft X-ray range. In fact the absorption

reduces the reflectivity particularly towards smaller photon

energies. As a result, when compared with the operation

curves in Fig. 2, the isoreflectivity curves do not really follow

the steeper inclination of the blaze maximum curves but more

the smaller inclination of the ‘fixed focus’ curves. This latter

inclination is also dominating the ‘blaze maximum efficiency

curves’ for the gratings in Fig. 4. Then, as far as the grating is

concerned, operation in the ‘fixed focus’ mode seems to be

also the most favourable operation mode efficiency-wise.

According to equation (10) one can then assign an ‘optimum’

‘fixed focus’ constant to each groove density. The diffraction

efficiency is maximum on the related operation curves, and the

corresponding spectral resolving power for the chosen source

is constant. The dependence of both the cff constant and the

spectral resolving power RP on the groove density is

presented in Fig. 5 for operation below the gold M-absorption

edges, i.e. for photon energies <2200 eV. Both the cff constants

and the related spectral resolving powers increase roughly

linearly with increasing groove density. As far as the operation

of a 1200 mm�1 grating, as chosen by Petersen with a ‘fixed

focus’ constant of cff = 2.25, is concerned, this is now found to

be an optimum choice for tuning at photon energies below

2200 eV. For the optimization of the monochromator trans-

mission the plots invite choosing the smallest groove density

as the most efficient solution, which is compatible with the

requested spectral resolution. One should note that the wider

‘blaze maximum efficiency curves’ for smaller groove densities

provide more flexibility for a possible variation of cff. Once

the wavelength � at which the monochromator is to provide

optimum performance at blaze maximum is established, the

final choice of the blaze angle can be made simply by use of

� ¼
1

2

2�

d

� �1=2
cff � 1

cff þ 1

� �1=2

: ð24Þ

Then at least 50% of the optimally available diffraction effi-

ciency according to Fig. 4 would be provided between 0.35�

and 2.1� of the related photon energy.

3.2. Monochromator optimization for spectral resolution
and transmission

For the proposed monochromator with requested spectral

resolution of RP = 5000 the optimum groove density is then

150 mm�1 or smaller. In this case for 150 mm�1 a spectral

resolving power RP of slightly better than 5000 can be

achieved with high diffraction efficiency and with a convenient

‘fixed focus’ constant of cff = 1.245. The related operation

curve (red line) is presented in Fig. 6 in comparison with a

normalized ‘blaze maximum grating efficiency map’, which is

presented in grey scale for photon energies below 2200 eV.

The latter map presents in white the angular ranges in which

>75% of the maximum diffraction efficiency is provided.

Likewise light grey stands for >50%, darker grey for >25%

and dark grey for <25%. In this case the twofold-increased

spectral resolving power of around RP = 10000 can be

obtained with cff = 1.79 (dashed blue curve), which can still be

provided with relatively high efficiency (>75%). The photon

energy for the blaze maximum operation in standard mode

was chosen to be 700 eV (� = 1.77 nm). The related working

curve is then plotted in Fig. 6 as a dashed black line, around
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Figure 5
Top: maximum diffraction efficiency emax depending on the groove
density of blazed gratings at a photon energy of 1580 eV, where the ‘blaze
maximum grating efficiency maps’ in Fig. 4 indicate best diffraction
performance. Center: ‘fixed focus’ constants cff depending on the groove
density of blazed gratings for the monochromator operation, which will
provide maximum diffraction efficiency. Bottom: spectral resolving power
RP depending on the groove density, which a monochromator will
provide when operated with the ‘fixed focus’ constants cff from the centre
figure at 22 m from a 4.5 m-long undulator at a diffraction-limited storage
ring.



which the pink area indicates the angular range in which at

least 50% of the maximum achievable diffraction efficiency

can be provided. The blaze maximum for the higher spectral

resolving power of RP = 10000 is then found for a larger

photon energy of almost 2000 eV. However, the related

working curve still points to only a moderate loss of 50% in

the diffraction efficiency, when the grating is tuned to 700 eV.

The angular width of the ‘efficiency curves’ permits to tune the

monochromator in the entire projected range also at blaze

maximum condition. Fig. 7 (top) now compares the calculated

diffraction efficiencies by use of equation (21) (solid lines) and

by use of the rigorous code (dashed lines) for the indicated

chosen parameters for both ‘fixed focus’ operation curves. For

comparison purposes also the calculation for blaze maximum

is presented (black curves) at the bottom of Fig. 7, as is the

result for a constant deflection angle of �þ �ð Þ = 3� (green

curves). The results from equation (21) agree mostly to within

10% with the results from the rigorous calculations. The

discrepancy exceeds 10% only for ‘fixed focus’ operation with

cff = 1.245 at photon energies around 2000 eV. As discussed

earlier and presented in Fig. 6, in this range the structure

factor decreases rapidly to values <0.5, which results in lower

efficiencies which can then be predicted rather unreliably by

use of (21). Otherwise all calculations confirm the expecta-

tions as they would be derived by use of Fig. 6. At lower

energies, cff = 1.245 provides best efficiency, about twofold

better than cff = 1.79. At the upper limit for the photon energy,

cff = 1.79 performs about twofold better. The blaze maximum

mode would actually always provide the best transmission.

However, in this case the ‘fixed focus’ constant is increasing

in a scan with increasing photon energy, which then leads to

variations, i.e. increases, in the beam cross sections and in the

spectral resolving power. When the grating is operated at fixed

deflection angle, then the efficient tuning range is reduced to

about a factor of 2.5–3 in photon energy, as indicated earlier.

For stability reasons, in a monochromator one would prefer

to operate the plane-mirror–plane-grating pair with parallel

beam offset for the monochromated radiation. Consequently

the beam deflection angles at the premirror and at the grating

will have to be identical. Then the higher diffraction efficiency

provided by gratings with lower groove density is achieved

in combination with higher reflectivity as the pre-mirror is

operated at correspondingly shallower deflection angles.

These more favourable angular regimes become inaccessible

when gratings with larger groove densities are used. The
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Figure 7
Comparison of the first-order diffraction efficiency e calculated by use of
the here-proposed equation (21) (solid lines) and by use of the rigorous
calculation code proposed by Nevière et al. (1974) (dashed lines)
depending on the photon energy for a grating with a gold coating, a
groove density of 150 mm�1 and a blaze angle of � = 0.22�. In the top
figure the data are presented for the ‘fixed focus’ operation with constants
cff = 1.245 (red curves) and cff = 1.79 (blue curves), while in the bottom
figure the black curves refer to the performance in blaze maximum mode
and the green curves refer to the diffraction efficiency for a fixed
deflection angle of � + � = 3�.

Figure 6
Comparison of monochromator operation curves with the normalized
‘blaze maximum grating efficiency map’ for a gold-coated blazed grating
with groove density of 150 mm�1. The grey scale refers to zones of equal
relative performance for blazed gratings. In the white area more than
75% of the maximum possible diffraction efficiency is achieved, while
in the dark grey areas the relative performance is less than 25% of
maximum performance. In the lighter grey area >50% is provided, while
in the darker grey areas at least >25% is available. The solid red and the
dashed blue line refer to the ‘fixed focus’ operation according to (10) with
the two constants cff = 1.245 and cff = 1.79. The dashed black line refers to
the operation at blaze maximum according to (8) for the chosen blaze
angle of � = 0.22�. At the borders of the light red areas the diffraction
efficiency of the chosen blazed grating will have decayed to about 50% of
the maximum.



transmission t through such a combination of ideal compo-

nents is then given by

t ¼ R 2 �þ �ð Þ S 2
n¼1

�

�
: ð25Þ

The calculated results by use of (25) for the two ‘fixed focus’

modes from Fig. 7 (top) are presented in Fig. 8. One can see

that the steeper angles, which need to be operated at the

mirror for the smaller cff constant, reduce the instrument

transmission in the entire working range more significantly

than the smaller angles, which are realized in combination

with larger cff constant.

As the relevant parameter in the presentation of the

isoefficiency curves in Fig. 4 is the deflection angle, these maps

are also valid for the operation of the grating in the reversed

orientation compared with Fig. 1 with the order n = �1. It can

be shown that the achievable spectral resolving power in this

situation is smaller compared with the results discussed here

by the factor 1/cff. This result favours then the use of the

normal orientation, as in this case a reduced spectral resolving

power can be achieved with a decreased groove density and

thus with an advantageously increasing transmission. The

normal orientation is also more resistant to an incident heat

load, as the steeper side of the sawtooth remains hidden from

it. On the other hand, the grating for operation in the reversed

orientation can be shorter, which may be an advantage in

some particular cases.

4. Conclusion

‘Blaze maximum grating efficiency maps’ have been presented

for gratings with gold coating and with significantly varying

groove densities. It is proposed that these maps can be used as

universal curves for finding readily the optimum parameters

for the operation of blazed gratings in monochromators for

the soft X-ray range even though the blaze angle is not

considered. In fact, once a decision has been made on the

projected spectral scanning range and on the required spectral

resolution of a monochromator, the present data indicate

readily the grating groove density that will provide the best

diffraction efficiency in combination with it. The spectral

resolving power is constant when the monochromator is

operated in ‘fixed focus’ mode at an undulator source at a

diffraction-limited storage ring. It is found that efficient

diffraction can be achieved in the same mode. Then the

optimum ‘fixed focus’ constant varies with the groove density

of the grating and depends on the coating material. The blaze

angle will be chosen only successively. In terms of diffraction

efficiency, 50% of optimum performance can be achieved

in energy intervals around the blaze maximum condition in

which the upper energy limit is six-fold the lower energy limit.

This needs to be considered for the choice of the photon

energy at which maximum efficiency at blaze maximum

operation is projected. An optimization is discussed for a

monochromator to be operated with maximum transmission

and with a spectral resolving power of 5000 in the soft X-ray

range with photon energies between 250 eV and 2200 eV. It is

found that this can be achieved with a grating with a groove

density of 150 mm�1 and a blaze angle of � = 0.22�. The

spectral resolving power is constant when the grating is

operated in the ‘fixed focus’ mode with a ‘fixed focus’ constant

of cff = 1.245. The grating can also be operated efficiently in

the blaze maximum mode. It will then provide better effi-

ciency, but also smaller bandpass at the upper energy limit.

The presented parameter choice was made by use of the

universal curves, and the expected performance was then

discussed with simple approximations. The predicted relative

performance was then found to agree with the predictions by

the simple model and by rigorous calculations.
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