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High-brightness coherent ultrashort X-ray free-electron lasers (XFELs) are

promising in resolving nanoscale structures at the highest temporal resolution

(�10 fs). The feasibility is explored of resolving ultrafast fragmentation of

liquids at the nanoscale with single-shot small-angle X-ray scattering (SAXS) on

the basis of large-scale molecular dynamics simulations. Fragmentation of liquid

sheets under adiabatic expansion is investigated. From the simulated SAXS

patterns, particle-volume size distributions are obtained with the regularization

method and average particle sizes with the weighted Guinier method, at

different expansion rates. The particle sizes obtained from simulated SAXS are

in excellent agreement with direct cluster analysis. Pulse-width effects on SAXS

measurements are examined. The results demonstrate the feasibility of resolving

the nanoscale dynamics of fragmentation and similar processes with SAXS, and

provide guidance for future XFEL experiments and data interpretation.

1. Introduction

Dynamic fragmentation is ubiquitous in nature and engi-

neering (Grady, 2007, 2010; Boast & Baveye, 2017) and the

physics governing these processes varies considerably (Michel

et al., 2001; Holian & Grady, 1988; Grady, 2009; Åström et al.,

2000; Sorenson et al., 2017; Durand & Soulard, 2013). For such

highly transient, irreversible and nonlinear fragmentation

processes, establishing reliable predictive capabilities is of

great interest. For example, fragment-size or mass-distribution

evolution is a key question to be answered for dynamic frac-

ture and failure (Grady, 2010). Various strategies have been

proposed for in situ real-time measurements on different

length scales, such as optical and X-ray phase-contrast imaging

(Monfared et al., 2014), proton radiography (Buttler et al.,

2012; Morris et al., 2016), holography (Sorenson et al., 2017)

and Mie scattering (Monfared et al., 2015).

Nanoscale dynamic fragmentation, however, is inaccessible

by the techniques mentioned above due to their limited spatial

resolution (Sorenson et al., 2017; Monfared et al., 2015), and

measuring particle-size distribution at the nanoscale has been

a challenge for dynamic events such as inertial-confinement

fusion (Sorenson et al., 2014; Goncharov, 1999; Thomas &

Kares, 2012). Molecular dynamics (MD) simulations are

currently the main means of investigating nanoscale frag-

mentation. A large number of MD simulations have investi-

gated dynamic jetting and fragmentation, addressing the

effects of strain rate (Holian & Grady, 1988; Wagner et al.,

1992; Ashurst & Holian, 1999), surface roughness and load
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intensity (Durand & Soulard, 2013, 2012; He et al., 2016), and

defect morphology (Li, Zhao et al., 2014; Li, Wang et al., 2014).

However, direct measurements of dynamic fragmentation are

still lacking and very desirable.

Due to the highly transient nature of dynamic fragmenta-

tion, measurements at the nanoscale must be single-shot with

high spatial and temporal resolution. Small-angle X-ray scat-

tering (SAXS) can provide information on the size, shape and

size distributions of nanoparticles. The very bright coherent

ultra-short pulses from X-ray free-electron lasers (XFELs)

offer promise in resolving nanoscale structures at the highest

temporal resolution (�10 fs), while SAXS measurements with

synchrotron sources may suffer a lower signal-to-noise ratio

due to the limited number of photons within a single pulse,

and a lower temporal resolution due to their longer pulse

duration (�100 ps) in the case of dynamic measurements. An

open question is whether nanoscale fragmentation dynamics

can be resolved with ultrafast SAXS.

In this work, we utilize large-scale MD simulations and

single-shot SAXS simulations to explore the feasibility of

resolving nanoscale fragmentation of liquids with XFEL

SAXS, to guide future experiments and data interpretation.

Large-scale MD simulations are used to simulate the adiabatic

expansion of liquid microsheets at different expansion rates.

SAXS patterns are obtained from atomic configurations at

different stages of fragmentation. From the simulated SAXS

patterns, we obtain particle-volume size distributions with the

regularization method and average particle sizes with the

weighted Guinier method. The particle sizes as obtained from

simulated SAXS are compared with those obtained from

direct cluster analysis of MD configurations. Anisotropic 2D

SAXS patterns at early stages of fragmentation are also

investigated. The effect of X-ray pulse width on the potential

SAXS measurements is examined. Our results demonstrate

the feasibility of the proposed SAXS measurements.

2. Methodology

2.1. Molecular dynamics simulations and cluster analysis

An accurate embedded-atom model (EAM) potential for

Cu (Mishin et al., 2001) is used to describe its thermo-

mechanical properties under both equilibrium and non-

equilibrium loading conditions (An et al., 2008; Bringa et al.,

2004; Li et al., 2010), including surface tension and viscosity

(Cai et al., 2014). MD simulations are performed with the

large-scale atomic/molecular massively parallel simulator

(LAMMPS) (Plimpton, 1995).

We first construct a single-crystal Cu sheet consisting of

38.4 million atoms, or 2000 � 150 � 8 elementary cells along

the x, y and z axes, respectively. Crystallographic orientations

h100i, h010i and h001i are along the x-, y- and z-axes. (The

coordinate system is defined in Fig. 1.) The initial liquid Cu

configuration is obtained by melting the single-crystal

configuration at zero pressure and 2000 K with the constant

pressure–temperature ensemble, and equilibrated at 1400 K;

the dimensions of the resultant liquid sheet are

1511.1 � 113.3 � 3.0 nm. Then, a linear velocity gradient

along the x axis is imposed within the sheet for a given

expansion rate (�), while the velocity gradients are set to zero

(except for thermal fluctuations) along the y and z axes.

Simulations of the fragmentation of adiabatically expanding

liquid sheets are performed with the microcanonical ensemble,

and the periodic boundary condition is applied only along the

y axis. The equation of motion is integrated via the Verlet

algorithm with a time step of 1 fs, and the run durations are up

to 500 ps to achieve full fragmentation. The atomic config-

urations at full fragmentation are analyzed via cluster analysis

to obtain particle-size distributions. Four � values, 0.075, 0.1,

0.125 and 0.15 ps�1, are explored to investigate the effect of

rate on fragmentation.

To analyze particle shapes at full fragmentation, the surface

area and volume for each particle are obtained. An algorithm

based on the alpha complex concept (Edelsbrunner & Mücke,

1994) is used to generate a Delaunay tessellation of the atomic

configuration (Stukowski, 2014). The triangulated surface is

constructed via a dividing surface between occupied (particle

interior) and empty regions, which consists of all triangular

facets of the Delaunay tessellation. The total surface area of

each particle is obtained by summing all triangular facets, and

similarly for the total volume of the solid regions.

To elucidate the statistical features of the particle-size

distributions in log–log or linear plots, two kinds of size-

distribution functions are considered here. One is the particle-

number size distribution in terms of particle volume, �(V),

which is the particle-number density of a statistical bin

centered at V with a bin width of �V. �V is set to increase

with increasing V, following a power law with an exponent of

1.5. In this way, the particle number is statistically significant

for sparsely populated large particles (Bontaz-Carion &

Pellegrini, 2006). In practice, the particle-number distribution

is represented by (Vi, �i) pairs for i � 1, with Vi = (1.5 i�1
�

1.5 i)1/2 V0 and the corresponding number density

�i ¼
ni

1:5i � 1:5i�1ð ÞV0

: ð1Þ

Here, ni is the number of particles with a volume V satisfying

1.5i�1 V0 � V < 1.5iV0, and V0 is the smallest particle volume

preset in the particle-size or cluster analysis. �(V) is used in a
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Figure 1
A schematic diagram of the setup for the simulated SAXS measurements
on liquid fragmentation with an XFEL. The detector is 240 mm from the
sample (a liquid sheet in our case). The incident X-ray beam is
perpendicular to the liquid sheet sample.



log–log plot. Another distribution is the particle-volume size

distribution, S(R), usually used in SAXS analysis,

SðRÞ ¼ �ðRÞVðRÞ: ð2Þ

Here, �(R) is the number size distribution in terms of R, which

can be obtained from �(V). The bin width �R is fixed for

�(R) and S(R). S(R) is used in linear plots.

2.2. Small-angle X-ray scattering simulations

For the intended experiments on liquid fragmentation,

SAXS measurements are necessarily single-shot and single-

pulse, and can be photon-starved due to the highly transient

nature of dynamic fragmentation, such as in the breaking of

ejecta from a perturbed surface under intense shock loading.

A typical pulse length of an XFEL is 10 fs, so motion blur can

be neglected. To obtain higher photon flux, a pink-beam

XFEL with a full undulator bandwidth (up to 1%) may be

used for such SAXS measurements, and the impact of 1%

bandwidth on data interpretation can be neglected for both

polydisperse and monodisperse systems (Chen & Luo, 2018).

To simulate XFEL SAXS patterns of nanoscale liquid

fragments, the kinematic approximation is used, which

assumes full coherence of incident X-rays and single elastic

scattering. A uniform beam-intensity distribution is applied in

simulations. Snapshots of a large number of nanoparticles

from MD simulations are used as the input atomic positions

for SAXS calculations with the GPU accelerated atom-based

polychromatic scattering and diffraction simulation code,

GAPD, developed by the PIMS X-ray Group (E et al., 2018).

GAPD can deal with atomic systems with arbitrary particle

concentrations, dispersities and shapes, ultra-large system

sizes (e.g. 10 billion atoms), and polychromatic X-rays. The

total scattering intensity I of M atoms in a system is computed

as the product of the structure factor F(q) with its complex

conjugate, F*(q) (Warren, 1969),

IðqÞ ¼ F�ðqÞFðqÞ; ð3Þ

with

FðqÞ ¼
XM

j¼1

fj exp ðiq 	 rjÞ: ð4Þ

Here, rj is the position of atom j in real space, fj is the atomic

scattering factor (Fox et al., 1989) and q is the scattering vector

in reciprocal space,

q ¼
2�

�
ðs� s0Þ ¼ k� k0; ð5Þ

where s and s0 are unit vectors representing the scattered and

incident beam directions, and k and k0 are the scattered and

incident wavevectors, respectively.

The full coherence of XFELs leads to interparticle inter-

ference and the beam-size effect in practical SAXS measure-

ments, which are not adequately considered in traditional

SAXS simulations. These two factors may have a strong

impact on scattering patterns at small angles and are consid-

ered here. In the calculation, the normally used 3D grid in

reciprocal space is replaced with ‘spherical sampling’. We

divide a circle on the Ewald sphere at a given scattering angle

2� into fine segments at an angle increment of d’ = constant�

(sin2�)�. The constant and the exponent � determine the

number of q points on the circle and modulate d’ as desired.

� = 1
2 is used in this study. Different circles represent different

2� with an equal interval d(2�).

Having calculated intensities for all reciprocal points, we

then project these reciprocal points onto a position-sensitive

detector in real space. The detector is positioned perpendi-

cular to the incident direction of the X-rays and the direct

beam points to the center of the detector.

For ultrafast liquid jets (e.g. 10 km s�1), a main concern is

whether the X-ray pulse width leads to ‘motion blur’ in SAXS

measurements. The scattering intensity ~II at a given q in reci-

procal space with a finite pulse length � can be calculated via

(Kluge et al., 2014)

~IIðqÞ ¼
1

�

Ztþ�
t

Iðq; tÞ dt: ð6Þ

For XFELs, the pulse intensity fluctuates between different

pulses and varies with time. For simplicity, we assume the

intensity of the incident X-rays to be independent of time and

the total number of photons to be fixed for different pulse

widths. The results in this work are not affected by this

approximation.

In this work, the X-ray wavelength is set at 1.5 Å [corre-

sponding to an XFEL at the Linac Coherent Light Source

(LCLS) or the European XFEL], although pink-beam SAXS

patterns can be calculated as well (Chen & Luo, 2018). The

beam sizes are set to be the same as the system sizes in the MD

simulations. The incident direction of the X-rays is set to be

along the plane normal of a liquid sheet (the z axis). The

parameters of the AGIPD detector of the European XFEL

are used and the detected q range is 0–1.3 Å�1. The schematic

setup for the simulated SAXS measurements is shown in Fig. 1.

3. Adiabatic expansion and fragmentation of a
liquid sheet

MD simulations of the adiabatic expansion of liquid sheets are

performed at different expansion rates. The system widths in

the y direction are fixed at 1.5 mm, and the lengths of the

systems in the x-direction with different expansion rates range

from 4 to 6 mm. Adiabatic expansion of a liquid sheet with a

velocity gradient of � = 0.1 ps�1 is used as an example to

illustrate the fragmentation process, underlying mechanisms

and data-analysis methodology.

3.1. The three stages of fragmentation of a liquid sheet

Fig. 2 shows the evolution of the atomic configurations of a

liquid sheet during adiabatic expansion (0–440 ps), which can

be divided approximately into three stages: the formation of a

2D cellular structure via void nucleation and growth (0–60 ps);

disintegration of cells (100 ps); and full fragmentation
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(440 ps). Similar phenomena have been observed in both MD

simulations and experiments (Durand & Soulard, 2012, 2013;

Sorenson et al., 2014, 2017; He et al., 2015).

3.1.1. Stage 1: the formation of a 2D cellular structure. The

preset velocity gradient leads to in-plane tension and random

void nucleation via thermal fluctuations (cavitation; 0–100 ps).

Void growth and coalescence result in the formation of a 2D

cellular structure consisting of interconnecting 1D cell walls

(100–200 ps).

3.1.2. Stage 2: disintegration of cells. The cell walls

undergo further tension and the cells begin to disintegrate,

producing small particles and long filaments. The small

particles achieve stress equilibrium and form spheres; this

process can be attributed to 2D percolation theory (Durand &

Soulard, 2013; He et al., 2015).

3.1.3. Stage 3: full fragmentation. To achieve stress equi-

librium, the 1D filaments break via the Poisson fragmentation

process into smaller pieces which become spherical particles

of different sizes, and the system become statistically stabilized

(440 ps; full fragmentation). The spherical shape is due to the

effect of surface tension. The surface energy is added via

partial conversion of the kinetic energy (energy balancing).

The leading edges of the liquid sheets also fragment via the

Poisson process, but are excluded in the discussion below.

3.2. Particle-shape and -size distribution analysis

Particle shapes at full fragmentation are characterized with

sphericity. The 3D sphericity � of a given particle with a

volume Vp and surface area Sp is defined as (Wadell, 1935)

� ¼
�1=3ð6VpÞ

2=3

Sp

: ð7Þ

� < 1 for non-spherical particles and � = 1 for ideal spherical

particles. The surface area and volume for each particle at full

fragmentation are obtained by Delaunay tessellation of the

whole atomistic configuration. The inset of Fig. 3 presents a

typical particle configuration (left) at full fragmentation and

(right) the corresponding reconstructed surface mesh. Since

SAXS signals are volume-squared sensitive, we define the

volume-squared-weighted mean sphericity �w. Binning of

particle sizes, similar to the particle-number size-distribution

calculation, is also used. �w for the ith bin is obtained via

�w;i ¼

P
1:5i�1V0�Vp<1:5iV0

�V2
pP

1:5i�1V0�Vp<1:5iV0
V2

p

: ð8Þ

The volume-squared-weighted mean

sphericity of particles at full fragmen-

tation is shown in Fig. 3 as a function of

particle size, along with the corre-

sponding upper and lower limits within

a statistical bin. The fluctuations on the

lower-limit curve are due to the fact that

particles are at different stages of

development towards the perfect sphe-

rical shape. The average sphericity is

0.95 
 0.01 and the �w curve is much closer to the upper-limit

curve, indicating that most particles are predominantly sphe-

rical. In the following discussions, particles at full fragmenta-

tion are assumed to be perfect spheres.

The particle-number size distribution � in terms of particle

volume V is derived, and can be well described with the

combination of a power law and an exponential law (Fig. 4),

�ðVÞ ¼ ApV�1:15
þ Ae exp �

V

Vc

� �
; ð9Þ

where Ap and Ae are constants, and Vc denotes the char-

acteristic particle size. This is in good agreement with previous

results obtained by shock-induced jetting from a groove

(Durand & Soulard, 2013) and from adiabatic expansion of a

liquid sheet at a much slower rate (He et al., 2015). For

example, the same exponent (1.15) is obtained from our fit and

by Durand & Soulard (2012) for the power law.

The power law in equation (9) describes small sizes and

originates from the breakup of 2D cells (stage 2), and an

analogy between this process and the 2D percolation process
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Figure 3
Volume-squared-weighted mean sphericity (�w) for particles of different
sizes at full fragmentation (� = 0.1 ps�1) (black solid symbols and line).
Red and blue open symbols/dashed lines denote the maximum and
minimum sphericities within a given bin, respectively. Inset: (left) a
typical particle configuration and (right) the corresponding reconstructed
surface mesh; the particle diameter is about 10 nm.

Figure 2
Snapshots of fragmentation showing three stages during uniaxial adiabatic expansion of a liquid
microsheet at � = 0.1 ps�1: the formation of a 2D cellular structure via void nucleation and growth
(0–60 ps); disintegration of the closed-cell structure (100 ps); and full fragmentation (440 ps).



was proposed by Durand & Soulard (2013). The exponential

law describes larger particles from the 1D Poisson fragmen-

tation process of the filaments. The characteristic size for the

exponential law is Vc = 1.85 � 105 Å3 as obtained from the fit,

and the corresponding radius is Rc = 35.3 Å, for an expansion

rate of � = 0.1 ps�1. The transition point between the power

law and the exponential law can be readily identified at V ’

5 � 104 Å3 (R ’ 23 Å) in Fig. 4.

In the following discussions, exponential and power laws all

refer to the number distribution of particle sizes as a function

of particle volume, �(V).

4. Resolving nanoscale fragmentation with SAXS

At full fragmentation, particle size distributions, including

number size distributions and volume size distributions, are

derived via cluster and SAXS analyses, and compared. Two

SAXS data-analysis methods, the regularization method for

polydisperse systems (Ilavsky & Jemian, 2009) and a modified

Guinier method (originally for monodisperse systems;

Beaucage et al., 2004), are utilized. Characteristic size and

degree of dispersity are extracted from volume size distribu-

tions. The effect of expansion rate on size distribution at full

fragmentation is also explored.

4.1. SAXS analysis

The 2D SAXS pattern for the liquid sheet upon full frag-

mentation after adiabatic expansion at an expansion rate of � =

0.1 ps�1 is calculated (Fig. 5) and then integrated azimuthally

to obtain the 1D scattering curve (Fig. 6). The regularization

method as implemented in the experimental SAXS data-

analysis package Irena (Ilavsky & Jemian, 2009) is used for

retrieving the size distribution. Instead of directly obtaining

number size distributions as a function of particle volume,
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Figure 5
The 2D SAXS pattern of the liquid sheet upon full fragmentation (440 ps,
see also Fig. 2) after adiabatic expansion at a rate of � = 0.1 ps�1.

Figure 6
(a) The 1D scattering curve and (b) S(R) curves obtained with the
regularization method from the scattering curve and cluster analysis.
� = 0.1 ps�1.

Figure 4
Particle-size distribution upon full fragmentation (440 ps) obtained via
cluster analysis for an expansion rate of � = 0.1 ps�1. The particle-size
number distribution can be well described by a power law with an
exponent of �1.15 and an exponential function with a characteristic
size Vc.



�(V), we obtain the particle-volume size distribution, S, as a

function of particle radius R from the SAXS analysis with

Irena. In the following discussions, all S(R) values are

normalized to [0, 1].

4.1.1. Particle-volume size distributions. Given �(V) from

the cluster analysis, we have

�ðRÞ ¼ �½VðRÞ�
@VðRÞ

@R
: ð10Þ

Since S(R) = �(R)V(R), we can convert �(V) obtained from

the cluster analysis to S(R) and compare it with the S(R) curve

derived from the 1D SAXS curve via the regularization

method. The comparison yields excellent agreement in S(R)

between the values from the cluster analysis [filled triangles,

Fig. 6(b)] and from the SAXS pattern [red curve, Fig. 6(b)].

The main peak and the small shoulder on the left correspond

to the exponential and power-law distributions, respectively.

The small shoulder in Fig. 6(b) (from the SAXS analysis)

appears at R < 25 Å, in good accordance with the cluster

analysis (< 23 Å).

The S(R) curves derived from SAXS and those from direct

cluster analysis are in good agreement overall. However, the

particles following the power-law distribution possess a minor

volume or mass fraction, so their signature can hardly be

identified in S(R) curves [Fig. 6(b)], despite their large

number. Hence, it is the larger particles that follow the

exponential distribution and dominate the smaller particles

following the power law in volume fraction. In the following

discussions we will focus on such larger particles following an

exponential distribution.

4.1.2. Characteristic sizes and degree of dispersity
obtained from S(R). S(R) offers a piece of information of

particular interest, characteristic sizes for certain distributions.

For the instance of an exponential distribution, �(V) =

A exp(�V/Vc) and V(R) = 4
3�R3. Then,

SðRÞ ¼
16

3
A�2R5 exp �

R3

R3
c

� �
: ð11Þ

The maximum of S(R) is located at Rmax, i.e.

@SðRÞ

@R

���
Rmax

¼ 0; ð12Þ

and it follows that

Rmax ¼
5

3

� �1=3

Rc ’ 1:186Rc: ð13Þ

This means that one can deduce the characteristic particle size

from the location of the maximum of S(R) obtained by SAXS

analysis for an exponential size distribution, via equation (13).

From Fig. 6, Rmax = 42.6 Å, so Rc = 35.9 Å; this value agrees

with Rc from the direct cluster analysis within 1.4%.

The full width at half-maximum (FWHM) of S(R) for an

exponential distribution �(V) can also be determined via

SðRÞ

SðRmaxÞ
¼ 0:5: ð14Þ

Two positive solutions to the above equation are R =

0.699Rmax and 1.302Rmax , so FWHMS = 0.603Rmax. We intro-

duce the polydispersity, P, for an exponential size number

distribution, defined as

PS ¼
FWHMS

Rmax

: ð15Þ

Thus, the ideal value of PS is 60.3% for exponential size

distributions, regardless of the characteristic size. From the

SAXS and cluster analyses, we obtain PS from the particle-size

distributions at full fragmentation (� = 0.1 ps�1) as 49.4 and

42.3%, respectively. The deviations are likely to be caused by

the small sampling size in our simulations, but are still

acceptable.

4.1.3. Deducing characteristic sizes with the modified
Guinier approach. The widely used Guinier approach,

originally intended for monodisperse systems, can also be used

to derive characteristic sizes for polydisperse systems after

certain modification (the modified Guinier approach). For a

monodisperse system, the radius of gyration, Rg, of primary

particles can be obtained under the Guinier approximation as

IðqÞ ¼ Ið0Þ exp �
1

3
q2R2

g

� �
; ð16Þ

for qRg < 1.3 (Feigin & Svergun, 1987). The particle radius R

follows as R = (5/3)1/2Rg for monodisperse spherical particles.

Given the simplicity of the Guinier approach, it is desirable

to extend its use to polydisperse systems with sizes spanning a

few orders of magnitude. In the modified Guinier approach,

the ‘average’ particle size for a polydisperse system is the

square root of the volume-squared-weighted mean radius

(Beaucage et al., 2004)

Rweighted ¼

R
VðRÞ

2�ðRÞR2 dRR
VðRÞ2�ðRÞ dR

 !1=2

: ð17Þ

Presumably, the measured radius of gyration for a poly-

disperse system is also volume-squared weighted and similar

to a monodisperse system, Rweighted = (5/3)1/2Rg, weighted. For a

polydisperse system with an exponential size number distri-

bution, �(V) = A exp(�V/Vc). We have from equation (10)

Rweighted ¼ Rc

R
t 10 expð�t 3Þ dtR
t 8 expð�t 3Þ dt

� �1=2

; ð18Þ

where t = R/Rc . In principle, the integration in equation (18)

should be conducted from zero to infinity, and we have

Rweighted ’ 1.44Rc for polydisperse systems with exponential

size number distributions, independent of particle size.

However, in our case, the radius is effectively below 1.66Rc

[Fig. 7(b)], and Rweighted ’ 1.32Rc.

Volume-squared-weighted radii of gyration for different

strain rates are obtained by fitting the low-q portions of the

scattering curves (Fig. 8) and the corresponding characteristic

sizes are deduced (Table 1). The absolute relative errors for

the modified Guinier method are less than 3%, comparable

with those for the regularization method. However, the high

accuracy of this method relies on a priori knowledge of the
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particle size distributions, while such prior information is not

required for the regularization method.

4.2. Effect of expansion rate

MD simulations of uniaxial adiabatic expansion of liquid

sheets are performed at different expansion rates, � = 0.075,

0.1, 0.125 and 0.15 ps�1, and 2D and 1D scattering patterns are

calculated [Fig. 7(a)]. Particle-volume size distributions and

average sizes at full fragmentation are obtained from SAXS

patterns via the regularization method and the modified

Guinier method, and compared with those obtained directly

via cluster analysis. A relation between characteristic particle

size and expansion rate is obtained.

At full fragmentation, the S(R) curves for different strain

rates obtained via cluster analysis [symbols, Fig. 7(b)] and

SAXS analysis with the regularization method [lines, Fig. 7(b)]

are in excellent accord. (The same fitting parameters are used

to retrieve the size distribution from SAXS patterns.) Higher

expansion rates lead to smaller particle sizes [Fig. 7(b)]. The

corresponding characteristic sizes obtained from the S(R)

curves are also in good agreement with those obtained from

cluster analysis (within 4%; Table 1).

Rc(�) is obtained with the regularization [S(R)] method, the

weighted Guinier method and the cluster analysis. As shown

in Table 1, the characteristic particle size, Rc , is strongly

dependent on the strain rate, and higher strain rates lead to

smaller particle sizes. The results agree with each other and all

show linear relations in the log–log plots (Fig. 9); their slopes

(exponents) are�0.45 
 0.02,�0.40 
 0.03 and�0.40 
 0.03.

Hence, the relation between the characteristic size Rc and the

strain rate � can be described by a rate-dependent power law.

5. Implications for experiments on XFELs

XFEL pulse widths vary in the range of 10–100 fs, and we

consider below the effect of XFEL pulse width on SAXS

patterns and size distribution determination for the full range

of 0–100 fs. Anisotropic SAXS patterns for the second stage of

fragmentation (disintegration of networks) are examined as a

forward simulation example of more complicated processes

to aid data interpretation. Possible implementation of the
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Table 1
Characteristic sizes (Rc) for liquid fragmentation with different strain
rates obtained by different methods.

Error here refers to the error relative to Rc obtained from cluster analysis.

Cluster analysis S(R) Guinier method

� (ps�1) Rc (Å) Rc (Å) Error (%) Rc (Å) Error (%)

0.150 30.1 30.4 1.0 29.7 �1.3
0.125 32.3 32.3 0.0 33.1 �2.5
0.100 35.4 35.9 1.4 35.4 0.0
0.075 39.8 41.3 3.8 39.7 �0.5

Figure 8
Guinier plots for different strain rates obtained via the weighted Guinier
analysis. Fitting is performed within 0.005 < qRg < 1.6. The systematic
error of this fit is less than 10% for homogeneous spheres.

Figure 7
(a) 1D scattering curves obtained by integrating simulated 2D patterns
(open symbols) and the fitting results with the regularization method
(solid lines). (b) The corresponding S(R) curves for different expansion
rates obtained by analyzing the 1D scattering curves with the
regularization method (solid lines) and by analyzing the atomic
configurations using the cluster analysis method (open symbols).
Numbers denote � (ps�1).



proposed measurements at an XFEL source is discussed

as well.

5.1. Effect of pulse width

To evaluate the effect of X-ray pulse width, scattering

patterns for an expansion rate of � = 0.1 ps�1 with pulse

durations of 0 (snapshot), 10, 50 and 100 fs are calculated.

Here, ~IIðqÞ is obtained by discretizing equation (6), i.e. super-

imposing the individual scattering signals I(q, t) which are

equally distributed in [t, t + �], and �t = 2 fs.

For stage 3, fragmentation largely stops while the total

system volume continues to expand. The configurations are

still dynamic and evolving. We take configurations within the

pulse width centered at t = 440 ps and calculate the corre-

sponding SAXS patterns. The resultant 1D scattering curves

are smoother for pulse durations of 10, 50 and 100 fs than for

the snapshot due to better statistics [Fig. 10(a)], indicating a

better signal-to-noise ratio in real experiments due to a longer

acquisition time. Fig. 10(b) demonstrates that no obvious

deviations of the resultant S(R) curves (analyzed with the

regularization method) are observed for pulse durations of 10,

50 and 100 fs. The slight deviation of the S(R) curves for finite

pulse widths from that for the snapshot and others at the

small/large size limits arises from the better smoothness of

the scattering curves for longer pulse durations. For more

complicated cases as in stage 2 (see below), varying the pulse

width between 0 and 100 fs also has a negligible effect on the

SAXS patterns and subsquent analysis.

5.2. Early stages of fragmentation

Early stages such as stage 2 (the disintegration of cellular

structures) are also of interest. However, the configuration is

highly anisotropic [Fig. 11(a), filaments tend to lie in the

direction of expansion] and different subcells are connected or

close to each other (i.e. the assumption of a dilute system is not

valid anymore). GAPD makes it possible for us to simulate

fully coherent scattering patterns for such systems with strong

anisotropy and interparticle interaction (E et al., 2018).

2D scattering patterns during stage 2 near t = 80 ps are

calculated for X-ray pulse durations of 0 (snapshot), 10, 50 and

100 fs. An anisotropic intensity distribution can be clearly

observed in the 2D scattering patterns [Fig. 11(b)], indicating

the existence of anisotropic structures, which is in accord with

the MD configurations (disintegration of cellular structures).

As an example, two segments (vertical and horizontal, or V

and H) of the 2D patterns are azimuthally integrated within

30�. Direct simulations with such programs as GAPD are

necessary for data interpretation of such anisotropic 2D

scattering patterns.

For XFEL pulse durations up to 100 fs, the differences in

the SAXS patterns are negligible [Fig. 11(c)]. Hence, SAXS

measurements with pulse durations up to 100 fs are feasible to

probe such fragmentation dynamics at stages 2 and 3. With

regard to stage 1 (predominantly void nucleation and growth),

it can also be probed by ultrafast SAXS measurements.

However, the process differs significantly from fragmentation

(stages 2 and 3) and is beyond the scope of this work.

research papers

J. Synchrotron Rad. (2019). 26, 1412–1421 Sen Chen et al. � Resolving nanoscale fragmentation with ultrafast SAXS 1419

Figure 10
The effect of pulse width on the determination of particle-size
distribution at the full fragmentation stage (t = 440 ps, stage 3).
Expansion rate � = 0.1 ps�1. (a) 1D scattering curves obtained for
different pulse durations. Solid lines denote intensity fits. (b) The
corresponding S(R) for different pulse durations.

Figure 9
A log–log plot of the characteristic size Rc as a function of expansion rate
�. Solid lines denote linear fits.



5.3. Statistics of obtained data

As constrained by computational capability, the X-ray

beam size and system size are limited to approximately

1.5 mm � 4.0 mm. For real XFEL experiments, the beam size

ranges from 10 to 100 mm (order of magnitude). With a beam

size of 100 mm � 100 mm, the illuminated area is about

1.7 � 103 times larger than that used in this work. Therefore,

much better data statistics are expected in real XFEL

experiments.

5.4. Potential XFEL experiments

5.4.1. Generation of liquid sheets. Liquid sheets can be

produced from shocked metallic foils (tens to hundreds of

micrometres thick) with surface grooves (e.g. sinusoidal

grooves). Intense shock loading delivered by high-power laser

irradiation drives the growth of the Richtmyer–Meshkov

instability (Brouillette, 2002) from a grooved surface into

metallic jets. Melting on shock or release of the jets forms

liquid sheets. The dynamic event durations are normally below

1 ns. Various effects on the size distribution of nanoparticles at

full fragmentation, such as the scaled perturbation amplitude

for a sinusoidal surface (De Rességuier et al., 2016), half-angle

and groove size and shock breakout pressure, can be investi-

gated. On the other hand, high-pressure liquid jets forced

through a shaped nozzle can also be used to produce liquid

jets.

5.4.2. Ultrafast SAXS measurements. X-rays are incident

along the plane normal of a liquid sheet (Fig. 1). As shown

above, the pulse width of current XFEL sources (10–100 fs)

such as the European XFEL and LCLS is sufficiently narrow

for SAXS measurements on ultrafast dynamic events. Probing

the XFEL pulse for single-pulse SAXS measurements is

synchronized with a high-power laser, and a certain delay is

introduced between the laser loading and the X-ray probe to

obtain snapshots at different stages of fragmentation. Direct

X-ray detectors with low noise like AGIPD at the European

XFEL are preferred for data acquisition.

6. Conclusions

We have investigated the feasibility of resolving the nanoscale

fragmentation of liquids with ultrafast SAXS via large-scale

MD simulations. A relation between particle-volume size

distribution and particle-number size distribution has been

determined. SAXS data interpretation, including the retrieval

of particle-volume size distribution via the regularization

method and average size determination with the weighted

Guinier method, has been explored. The particle sizes

obtained from simulated SAXS are in excellent agreement

with results from direct cluster analysis. The effect of expan-

sion rate on the final particle size distributions and char-

acteristic sizes have been explored. Our results show that, for

XFEL pulses up to�100 fs, the effect of pulse width on SAXS

measurements of ultrafast fragmentation of liquids can be

neglected. For a liquid sheet dynamically loaded to full frag-

mentation, the particle size distribution can be described with

a combination of a power law and an exponential function,

and the rate dependence of the characteristic size with a rate-

dependent power law. Data interpretation for earlier frag-

mentation stages with anisotropic scattering patterns requires

forward SAXS simulations. Our results demonstrate the

feasibility of resolving the nanoscale dynamics of fragmenta-

tion and similar processes with SAXS, and provide guidance

for future XFEL experiments and data interpretation.
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Figure 11
Anisotropic SAXS patterns at stage 2 (disintegration of cells). (a) An MD snapshot of the real-space structure at t = 80 ps. (b) The corresponding
anisotropic 2D SAXS pattern. Vertical (V) and horizontal (H) segments (30� wide) along the azimuthal direction are analyzed independently. (c) 1D
scattering curves of the selected segments for different pulse widths.
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Monfared, S., Oró, D., Grover, M., Hammerberg, J., LaLone, B., Pack,

C., Schauer, M., Stevens, G., Stone, J., Turley, W. & Buttler, W. T.
(2014). J. Appl. Phys. 116, 063504.

Monfared, S. K., Buttler, W. T., Frayer, D. K., Grover, M., LaLone,
B. M., Stevens, G. D., Stone, J. B., Turley, W. D. & Schauer, M. M.
(2015). J. Appl. Phys. 117, 223105.

Morris, C. L., Brown, E. N., Agee, C., Bernert, T., Bourke, M. A. M.,
Burkett, M., Buttler, W., Byler, D. D., Chen, C.-F., Clarke, A. J.,
Cooley, J. C., Gibbs, P. J., Imhoff, S. D., Jones, R., Kwiatkowski, K.,
Mariam, F. G., Merrill, F. E., Murray, M. M., Olinger, C. T., Oro,
D. M., Nedrow, P., Saunders, A., Terrones, G., Trouw, F., Tupa, D.,
Vogan, W., Winkler, B., Wang, Z. & Zellner, M. B. (2016). Exp.
Mech. 56, 111–120.

Plimpton, S. (1995). J. Comput. Phys. 117, 1–19.
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