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Parametric Rietveld refinement from powder diffraction data has been utilized

in a variety of situations to understand structural phase transitions of materials

in situ. However, when analysing data from lower-resolution two-dimensional

detectors or from samples with overlapping Bragg peaks, such transitions

become difficult to observe. In this study, a weighted parametric method

is demonstrated whereby the scale factor is restrained via an inverse tan

function, making the phase boundary composition a refinable parameter.

This is demonstrated using compositionally graded samples within the

lead-free piezoelectric (BiFeO3)x (Bi0.5K0.5TiO3)y (Bi0.5Na0.5TiO3)1–x–y and

(Bi0.5Na0.5TiO3)x(BaTiO3)1–x systems. This has proven to be an effective method

for diffraction experiments with relatively low resolution, weak peak splitting or

compositionally complex multiphase samples.

1. Introduction

Phase analysis of a powder diffraction pattern plays an

important role in materials science. Being able to quantify the

phases present in a sample is necessary in the development

of all materials, including electroceramics (Daniels, 2008),

cements (Scarlett et al., 2001), metallic alloys (Clancy et al.,

2017), minerals and pharmaceuticals (Scarlett et al., 2002).

Using structural analysis, the boundaries in the phase

diagram of a solid solution can be determined by measuring

the powder diffraction patterns of several samples prepared

with different compositions. Here, multipattern, multiphase

Rietveld refinements are carried out, whereby the scale factors

of each phase relate to their respective weight or molar frac-

tions. The values of some refinable parameters will be inde-

pendent of composition (e.g. instrumental line-profile,

absorption). However, structural parameters will be corre-

lated between successive refinements and thus dependent on

their compositional coordinates (Daniels et al., 2010). There-

fore, instead of fitting n parameters in m-independent Riet-

veld refinements, one can obtain the dependence of the key

parameters on composition through a parametric multipattern

refinement (Olsen et al., 2017). This reduces the number of

free variables, their correlation and, in turn, the standard

uncertainties of their values. In practice, a parametric Rietveld

refinement involves determining equations for structural

parameters (e.g. lattice parameters, atomic positions, occu-

pancies, scale factor) as a function of a variable (e.g. compo-

sition, temperature or pressure) in order to restrain the

Rietveld refinement to fit a three-dimensional space of 2�,

intensity and a parameter dependent on the external variable

(Stinton & Evans, 2007). This has been used in a wide variety
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of studies to understand material structure with regards to

electric field, composition, temperature, magnetic field and

pressure (Daniels, 2008; Marlton et al., 2017; Daniels et al.,

2010; Olsen et al., 2017; Mabied et al., 2012; Halasz et al., 2010;

Scarlett et al., 2009). However, care must be taken when

applying the parametric technique to avoid enforcing unphy-

sical restraints on the structural model. Incorrect choice of the

structural parameters’ dependence on (or independence of)

the external variable is the main source of error, as the

resulting bias offsets the parameter uncertainties due to

statistical error and fit quality. Prior knowledge of the phases

involved and chemical plausibility of the model chosen are

therefore essential for a correct structure parameterisation.

There are some situations where phase transitions are

subtle and the structural change is small, resulting in limited

peak splitting and overlapping peaks. Such transitions are

difficult to parameterise and this task becomes more difficult

when considering diffraction data from lower diffraction

resolution two-dimensional detectors (Bernasconi & Wright,

2018; Norby, 1997). Two-dimensional detectors are key

components of modern versatile diffraction setups as they

allow for rapid data collection during in situ characterization

and adjustable angular resolution to suit a variety of diffrac-

tion techniques. In this study, a technique has been developed

that allows for the identification of subtle phase boundaries in

a series of diffraction patterns from a compositional gradient.

This method would be particularly useful for studying phase

transitions in situ or within multi-phase complex specimens.

The technique is demonstrated in a lead-free piezoelectric

material. In such materials, the search for high-performance

properties has been based around the search for compositions

in proximity to morphotropic phase boundaries (Rödel et al.,

2009; Jaffe, 1971; Shashank & Sahn, 2012; Shrout & Zhang,

2007; Takenaka et al., 2008; Li et al., 2013). Such compositions

tend to exhibit enhanced piezoelectric properties and, hence,

identification of phase boundaries in these systems is critical.

We consider compositional gradients synthesized within the

(BiFeO3)x(Bi0.5K0.5TiO3)y(Bi0.5Na0.5TiO3)1–x–y(BFxBKTyBNT1–x–y)

ternary system, which exhibits subtle phase boundaries

between rhombohedral and cubic structures. This ternary

system is of interest because it has been considered for many

high-performance piezoelectric devices (Wefring et al., 2015,

2016; Khansur et al., 2016; Cheon et al., 2016; Morozov et al.,

2012, 2014; Levin et al., 2013; Bennett et al., 2013; Kazushige

et al., 2006). Additionally, an example refinement from

the (Bi0.5Na0.5TiO3)x(BaTiO3)1–x(BNTxBT1–x) binary system

(Takenaka et al., 2008) is also considered as it exhibits two

phase boundaries within the compositional range tested.

2. Method

2.1. Sample preparation

End members of the BFxBKTyBNT1–x–y ternary system

(BKT, BNT, BF75BNT25, BF75BKT25) were synthesized using

conventional solid-state synthesis techniques using starting

powders of Bi2O3 (99.9%), Na2CO3 (99.95%) (Sigma-

Aldrich), TiO2 (99.9%), Fe2O3 (99.998%) and K2CO3

(99.997%) (Alfa Aesar). The synthesis involved weighing the

relevant powders in their stoichiometric ratios and then

mixing in ethanol in a ball mill for 24 h. The powders were

then dried, calcined at 800–900�C and re-ground in a mortar

and pestle. The compositionally graded samples were

prepared via a layering technique of end member powders

(Marlton et al., 2017). Each of these covered a compositional

gradient of 12 mol% and were sintered at 1000�C. The

synthesis of the BNTxBT1–x binary gradient is described by

Marlton et al. (2017). A sample of approximately 6 mm �

0.8 mm � 0.8 mm was sectioned from the pellet with the

compositional gradient along the 6 mm direction. The surfaces

of the sample were then ground to a final grit size of 15 mm to

ensure flat surfaces and uniform thickness along the gradient.

A total of nine samples were synthesized, five of which

correspond to a gradient containing 43 mol% BF and four

containing 50 mol% BF. Each sample contains approximately

100–150 diffraction patterns, with a total of 709 and 542

diffraction patterns along all of the gradients containing

43 mol% and 50 mol% BF, respectively.

2.2. Synchrotron experiment

High-energy X-ray diffraction experiments were carried out

at beamline ID15A of the European Synchrotron Radiation

Facility. A schematic of the experiment is shown in Fig. 1. The

X-ray beam was vertically focused to a height of 50 mm and

monochromated to a wavelength of 0.16531 (1) Å. The sample

was placed in a 1.5 mm-diameter quartz tube on the end of

an alumina rod mounted on a goniometric head in the centre

of a rotation stage. Diffraction images in Debye–Scherrer
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Figure 1
Schematic illustration of the high-energy synchrotron experiment. A
beam with a wavelength of 0.16531 Å and a height of 50 mm penetrates
the compositionally graded sample. The sample is translated vertically in
50 mm steps to scan along the compositional gradient.



geometry were recorded with a Pilatus 3X CdTe 2M photon-

counting area detector positioned at 1300 mm from the

sample. The sample was translated in 50 mm steps along the

vertical axis and diffraction data were collected for 1 s at each

position. In this geometry, the detector could collect data to a

maximum 2� of 9.5�.

2.3. Refinement process

The detector geometry was calibrated using the software

FIT2D (Hammersley, 2016) and the two-dimensional diffrac-

tion images were converted to one-dimensional data via radial

integration around the 90� of azimuth in the two-dimensional

diffraction images, as shown in Fig. 1, using code written in

Igor Pro. Masking was used to remove the pixel gaps in the

detector as well as dead pixels. As the storage ring was

operating in top-up mode and the flux on the sample was

stable throughout the measurements, no normalization of the

data was performed. The resultant diffraction patterns ranged

from 2� to 9.5� in 2� with 1500 data points.

Rietveld refinements on the resultant diffraction patterns

were conducted using the software TOPAS (Coelho, 2008).

Based on the accepted structures of the end member

compositions, cubic, rhombohedral and tetragonal symmetries

were refined as space groups Pm�33m, R3c and P4mm, respec-

tively (Takenaka et al., 2008; Rödel et al., 2009). Three

different mixed-phase Rietveld refinements were conducted

across the compositional gradients to assess the compositions

of the phase transitions. The first refinement is referred to as

the unconstrained refinement and was conducted such that

there were no constraints to the lattice parameters and scale

factors, which were allowed to refine freely. The second

refinement is referred to as the parametric refinement and

was conducted with the lattice parameters parametrically

constrained. This involved determining quadratic equations to

describe the lattice parameters of each phase as a function of

composition,

aðxÞ ¼ K2x2
þ K1xþ K0; ð1Þ

where x is the composition, a(x) is the function for the lattice

parameter with respect to composition and Kn are the poly-

nomial coefficients. The coefficients were refined for the cubic,

rhombohedral and tetragonal lattice parameters across their

respective single-phase regions and then kept fixed across the

whole gradient during a mixed-phase Rietveld refinement.

The third refinement is referred to as the weighted para-

metric refinement and was done such that the scale factor was

restrained. In this case the polynomials describing the lattice

parameters were kept fixed, as in the previous refinement. The

scale factor was restrained using the following equation,

SwpðxÞ ¼ Sp � FwpðxÞ; ð2Þ

where p relates to the phase, Swp(x) is the weighted scale

factor, Sp is the scale factor of an individual gradient sample

and Fwp(x) is the weighting function. The weighting function

is global across the compositional gradient, whereas the scale

factor is refinable for each individual gradient sample. This

is important as each gradient sample is slightly different in

thickness and hence a single global scale factor is unsuitable.

The scale factor can be slightly different for each individual

composition, but it was found to be approximately constant

across each individual sample.

The weighting function of choice is the inverse tan function.

The inverse tan function can act as an on/off switch between

the two phases and is able to have a transition period that acts

as a phase boundary. This is illustrated in Fig. 2.

Fig. 2 shows the weighting functions for two different

phases, labelled here as cubic and rhombohedral. The

weighting functions act as a switch between 0 and 1 at the

phase boundary, which is represented by the parameter b and

located at the black dashed line. The c parameter can be used

to tailor the width of the phase boundary, which is shown by

the region highlighted in orange. The functions for each phase

are exactly the same, except for the sign in front of the inverse

tan function, which is positive for the phase that starts at zero

to the left of the phase boundary and negative for the other.

From here, the equations for the weighted scale factor for the

cubic and rhombohedral phases become the following,

SwcðxÞ ¼ Sc �
1

2

1

�=2

� �
tan�1

x� bg

cg

 !
þ 1

" #
; ð3Þ

SwrðxÞ ¼ Sr �
1

2

�1

�=2

� �
tan�1

x� bg

cg

 !
þ 1

" #
; ð4Þ

where bg and cg are global refinable parameters that corre-

spond to the position of the phase boundary and the phase

boundary width, respectively. In this case, the value of cg was

fixed at 0.1. The advantage of using these weighting functions

is that it forces the refinement software to find the best point

along the gradient where the phase transition occurs and

substantially reduces the number of refined variables.

For each of these three mixed-phase Rietveld refinements,

the weight percentage of each phase could be extracted from
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Figure 2
Scale factor weighting functions used in the weighted parametric Rietveld
refinement. These inverse tan functions have been tailored such that they
act as a switch between 1 and 0, with parameters that can be refined for a
particular phase transition. The parameter b corresponds to the phase
boundary composition, whereas c is related to the phase boundary width,
where co-existence of two crystal symmetries may occur; this is indicated
by the shaded orange region.



TOPAS. To ensure local minima were explored, refined

parameters were slightly randomized after convergence and

the refinement was repeated. This was conducted for a total

of 1500 iterations, which was approximately 20 refinement

(randomization) cycles. It was also assumed in each case that

the composition x varied linearly along the gradient samples.

3. Results and discussion

Fig. 3(a) shows the samples that were

produced on the BFxBKTyBNT1–x–y

ternary phase diagram. Fig. 3(b) shows

line plots for characteristic peaks from

the diffraction patterns as a function

of composition for gradient samples

containing 43 mol% BF. These are the

113R3c, 111c and 022c peaks. These line

plots show that the peak positions along

the compositional gradient overlap and

there is very little observable peak

splitting. The variations along the

gradient are very subtle, making it

difficult to discern where the phase

boundary occurs. In Fig. 3(c), complete

diffraction patterns and their fits from

the weighted parametric refinement are

shown for selected compositions along

the gradient containing 43 mol% BF.

There are small differences between the

fit and the observed data. These are due

to the difficulties in producing a smooth

transition of the lattice parameters for

the five independent compositionally

graded samples. The fitting could

potentially be improved through opti-

mizing sample synthesis for smoother

gradients, or additional variables and

outlier exclusion rules in the parametric

refinements that compensate for these

errors.

Fig. 4 shows the results of the Riet-

veld refinement procedures on the

samples with a compositional gradient

containing 43 mol% BF in (a)–(c) and

50 mol% BF in (d)–( f). The weight

percentage fractions of the cubic and

rhombohedral phases from the refine-

ment procedures, i.e. unconstrained,

parametric and weighted parametric,

are shown in Figs. 4(a) and 4(d), 4(b)

and 4(e), and 4(c) and 4( f), respectively.

It can be seen in Fig. 4(a) that an

unconstrained mixed-phase refinement

does not provide any information as to

the location of the phase boundary and

also implies that the entire gradient is

cubic. The parametric refinement in

Fig. 4(b) begins to show a transition between the two different

phases at approximately 25 mol% BKT. This is due to the

parametric constraints guiding the fits in the correct direction.

However, this is unreliable as shown by the rhombohedral end

where a mixed-phase model may give the mathematical

minimum in the refinement algorithm. When the weighting

function is used to restrain the fit, as shown in Fig. 4(c), a
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Figure 3
(a) Ternary phase diagram for the BF–BKT–BNT system. The coloured bars indicate the locations
of each of the samples produced and measured in the current study. (b) Line plots for characteristic
peaks along the gradient containing 43 mol% BF. The 113R3c peak gradually disappears with
increasing BKT content, whilst the 111c and 022c reflections become narrower. (c) Representative
diffraction patterns and fits from the weighted parametric refinement for three different
compositions along the gradient containing 43 mol% BF.

Figure 4
Phase fraction results from the mixed phase Rietveld refinements for samples containing 43 mol%
(left) and 50 mol% (right) BF, with (a)–(c) and (d)–( f ) corresponding to the unconstrained,
parametric and weighted parametric Rietveld refinements. In (a) and (d) the refinement was
conducted without constraints to the lattice parameters or scale factor and the results indicate that
the entire gradient is cubic or mixed phase. In (b) and (e) the lattice parameters were constrained by
a parametric refinement, which begins to show some separation between the rhombohedral and
cubic regions along the gradient. However, there is a lot of noise in the rhombohedral region, which
makes the boundary unclear. In (c) and ( f ) the restraints to the scale factor were introduced and
this shows clear separation between the two phases.



clearer transition between the two phases at 23.6 mol% BKT

is found.

Figs. 4(d)–4( f) shows the same fitting results for samples

with a compositional gradient containing 50 mol% BF. In

Fig. 4(d), the phase separation is worse than in Fig. 4(a),

showing that the unconstrained mixed-phase fit does not

provide any useful information. However, in Fig. 4(e) there is

a substantial improvement to the phase separation that is also

better than the results in Fig. 4(b). However, it still appears to

be mixed phase on the rhombohedral end of the gradient. In

Fig. 4( f), the refinement is further improved, indicating that

the phase boundary occurs at 22.8 mol% BKT.

This method has also been applied to the gradient in the

BNTxBT1–x system that has a gradient from BNT100 to

BNT88BT12. This gradient shows a transition from rhombo-

hedral to cubic to tetragonal (Marlton et al., 2017). Conducting

an unconstrained mixed-phase Rietveld refinement across this

gradient produces the results observed in Fig. 5(a). Similar to

the previous systems, this method produces a very unclear

phase analysis. In Fig. 5(b), the lattice parameters have been

parametrically constrained and this gives a clearer picture as

to the presence of the individual phases, but still implies that

much of the gradient is mixed phase. The weighted parametric

Rietveld refinement produces the results observed in Fig. 5(c).

The equations for the rhombohedral and tetragonal phases in

this case are similar to those used previously. However, for the

cubic phase the equation was different, being the sum of two

inverse tan functions for the two different phase boundaries.

This technique produces a much clearer picture of the phase

transitions occurring in this system, with accurate quantifica-

tion of the phase boundary compositions.

These example gradients have illustrated the difficulty in

determining the location of the phase boundaries in these

systems. When the mixed-phase refinement is unconstrained it

is unable to discern between the different phases. When the

lattice parameters become parametrically constrained, the

refinement is guided in the right direction as to which peaks to

fit for each phase. However, due to the close proximity of the

different peaks, it falls into a mixed-phase fit even in the

single-phase regions and is unable to identify where the phase

boundary occurs. The addition of the weighting function

restraint to the refinement drastically improves the quality of

the phase analysis. This is because the weighting function

guides the refinement to find the best fit across the gradient

based upon the location of the phase boundary. This simplifies

the fitting procedure and avoids the need to constrain other

diffraction parameters such as peak width.

This technique may benefit problems where phase bound-

aries are difficult to discern due to low-resolution diffraction

data or overlapping peaks from multiple phases with similar

unit cells. In some diffraction experiments, high resolution can

be attained at the cost of high-throughput in situ studies. The

technique presented here allows for accurate identification

of phase transitions from a lower-resolution high-throughput

diffraction experiment. It has been demonstrated to not be

limited to studying two-phase systems and can be expanded to

multi-phase systems.
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Acta Mater. 58, 2103–2111.

research papers

1642 Frederick Marlton et al. � Weighted parametric structural refinements J. Synchrotron Rad. (2019). 26, 1638–1643

Figure 5
Phase fraction results from the mixed phase Rietveld refinements for the
sample in the BNTxBT1–x system, with (a), (b) and (c) corresponding
to the unconstrained, parametric and weighted parametric Rietveld
refinements, respectively. In (a) the refinement was conducted with no
constraints to the lattice parameters or scale factor and would indicate
that the entire gradient is mixed phase. In (b) the lattice parameters were
constrained by a parametric refinement, which begins to show some
separation between the three-phase regions along the gradient. However,
each region does not reach 100%, which makes the boundaries unclear.
In (c) the restraints to the scale factor were introduced and this shows
clear separation between the three phases.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5105&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5105&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5105&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5105&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5105&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5105&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5105&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5105&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5105&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5105&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5105&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5105&bbid=BB7


Halasz, I., Dinnebier, R. E. & Angel, R. (2010). J. Appl. Cryst. 43,
504–510.

Hammersley, A. P. (2016). J. Appl. Cryst. 49, 646–652.
Jaffe, B. (1971). Piezoelectric Ceramics. London: Academic Press.
Kazushige, Y., Yuji, H., Hajime, N. & Tadashi, T. (2006). Jpn. J. Appl.

Phys. 45, 4493–4496.
Khansur, N. H., Benton, R., Dinh, T. H., Lee, J., Jones, J. L. & Daniels,

J. E. (2016). J. Appl. Phys. 119, 234101.
Levin, I., Reaney, I. M., Anton, E., Jo, W., Rödel, J., Pokorny, J.,
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