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The X-ray integer and fractional Talbot effect is studied under two-wave

dynamical diffraction conditions in a perfect crystal, for the symmetrical Laue

case of diffraction. The fractional dynamical diffraction Talbot effect is studied

for the first time. A theory of the dynamical diffraction integer and fractional

Talbot effect is given, introducing the dynamical diffraction comb function. An

expression for the dynamical diffraction polarization-sensitive Talbot distance

is established. At the rational multiple depths of the Talbot depth the wavefield

amplitude for each dispersion branch is a coherent sum of the initial

distributions, shifted by rational multiples of the object period and having its

own phases. The simulated dynamical diffraction Talbot carpet for the Ronchi

grating is presented.

1. Introduction

X-ray diffraction is a tool for investigating the structure of

objects and crystals. A periodic object can be imaged using an

X-ray monochromatic plane wave. The amplitude transmis-

sion coefficient of a periodic object is a periodic function of

the coordinate along the axis, perpendicular to the propaga-

tion direction of the wave. The following question arises: what

is the wavefield behaviour behind the object? This can be

answered first in optics from the earlier work of Talbot (1836).

Talbot experimentally showed that the field intensity peri-

odically reproduces an initial periodic distribution. This period

is called the Talbot distance and the effect is called the Talbot

effect. Rayleigh (1881) gave a theoretical explanation of this

effect. A formula for the Talbot distance, zT = 2D2/�, where D

is the period of the object and � is the wavelength, was also

given. Investigations of the Talbot effect in optics have

continued to the present day (see, for example, Edgar, 1969;

Guigay, 1971; Berry & Klein, 1996; Berry & Bodenschatz,

1999; Case et al., 2009; Kim et al., 2013).

We will concentrate our attention on the Talbot effect for

X-rays (�’ 1 Å). The first observation of the Talbot effect for

X-rays was performed for a periodic phase object (Cloetens

et al., 1997). The phase object self-image at the Talbot distance

should have a uniform distribution. A simple formula for the

amplitude was obtained at the distance zT/4. The phase of

the object can be determined via the intensity at the same

distance. In the work of Momose et al. (2003), an X-ray Talbot

interferometer was presented and investigated. The inter-

ferometer consisted of two separated gratings, placed at the

Talbot distance from each other. By inclining the second

grating around the optical axis, moiré fringes were obtained.

An object placed in front of the first grating caused bending of

the fringes. Momose et al. (2009) showed that the X-ray Talbot
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interferometer allows white synchrotron radiation to be used

for high-speed imaging and tomography of soft materials and

biological objects. Kim et al. (2010) demonstrated the Talbot

effect for a broadband hard X-ray beam (��/� ’ 1). The

authors used a grating with sub-micrometer period. The X-ray

Talbot effect has also been investigated for other types

of objects (Kohn, 2016, 2018). The Talbot self-image of

secondary periodically placed point sources, obtained in the

focal plane of an array of compound parabolic lenses, was

investigated by Kohn (2016). A theoretical investigation of

the intensity distribution behind the photonic crystal inside

the Talbot period was given by Kohn (2018). The plasmon

analogue of the Talbot effect was theoretically analyzed by

Dennis et al. (2007). Plasmons are electromagnetic waves

excited on the surface of a metal. Excited interfering plasmon

waves set up a Talbot carpet on the metal surface. The surface

is planar, except for a periodic one-dimensional array of

nanoholes. The plasmons are excited by means of a plane

electromagnetic wave falling on the metal film surface.

In all cases described above, investigations of the Talbot

effect were performed in free space, except for the work of

Dennis et al. (2007), where the investigation was performed on

the surface of a metal film.

In the work of Balyan (2019), for the first time the inves-

tigation of the X-ray Talbot effect was performed in a perfect

crystal under the conditions of two-wave dynamical diffrac-

tion. The symmetrical Laue case was considered. Using the

Green function formalism of dynamical diffraction an exact

formula for the periodic object dynamical diffraction wave-

field amplitude was obtained. The analysis, based on an

approximation analogical to the paraxial approximation in

optics, shows that in the diffracted field the analogue of the

Talbot effect inside the crystal takes place. A formula for

the dynamical diffraction Talbot distance is obtained, which,

different to the case in free space, is polarization sensitive. The

Talbot distance in the crystal is less than that in free space

(2–50 m for a grating period of 10–50 mm) by a factor of 105 to

106. The simulated Talbot carpets inside the crystal were

obtained for the first time.

The behaviour of the wavefield behind a periodic object

in free space has interesting features not only at multiple

distances of the Talbot distance (the integer Talbot effect) but

also at distances which are odd multiples of half of the Talbot

distance (also called the integer Talbot effect) and rational

or irrational parts of the Talbot distance. At odd multiple

distances of half of the Talbot distance, the initial distribution

is repeated by a shift of half of the object period. At rational

multiples of the Talbot distance (the fractional Talbot effect)

the amplitude is a coherent sum of the initial distributions,

shifted with respect to each other by a rational part of D and

having its own phases (Guigay, 1971; Berry & Klein, 1996).

At irrational multiple distances of the Talbot distance, the

intensity is a fractal for gratings with sharp edges (Ronchi

grating) (Berry & Klein, 1996). This effect is called the fractal

Talbot effect in free space. Berry & Klein’s (1996) investiga-

tion used the Dirac comb function (see the text) and the

corresponding propagating comb waves.

The aim of this paper is to investigate the dynamical

diffraction integer and fractional Talbot effects introducing

the comb function for the dynamical diffraction case in the

diffracted beam. The latter is the diffracted wave, when a

Dirac comb wave falls on the surface of the crystal. Both

modes of the dispersion surface inside the crystal forms its

own set of Talbot images, which interfere with each other.

Thus, the dynamical diffraction integer and fractional Talbot

effects are accompanied by Pendellösung oscillations. The

contribution of each branch of the dispersion surface in the

fractional and integer Talbot effect will be analyzed. The

dynamical diffraction reflection coefficients of spatial harmo-

nics of an initial periodic distribution give the Bragg filtration

of higher-order spatial harmonics in the diffracted beam inside

the crystal. The absorption and polarization also affect the

dynamical diffraction integer and fractional Talbot effects. As

a result of the influence of the dynamical diffraction reflection

coefficients and absorption, even for a phase object, at

multiple Talbot distances the intensity is not uniform (contrary

to the case in free space). The fractional dynamical diffraction

Talbot effect will be compared with the fractional Talbot effect

in free space. The symmetrical Laue geometry diffraction in

the case of an incident plane monochromatic wave will be

considered. Examples for a cosine-like grating and for a

Ronchi grating are presented.

2. Basic formulas

The scheme for studying the Talbot effect for X-ray symme-

trical Laue case dynamical diffraction in ideal crystals is shown

in Fig. 1. An X-ray monochromatic beam with a wavevector

Ki
0 (wavelength �) and unit amplitude, passing through an

object with a periodic complex amplitude transmission coef-

ficient T(x) = T(x + D), falls on the entrance surface of a

perfect crystal at an angle � i relative to the atomic reflecting

planes RP, which are perpendicular to the entrance surface of

the crystal. The angle � i is close to the Bragg angle � for the

diffraction vector h, and transmitted and diffracted waves are

formed in the crystal.
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Figure 1
Scheme of the X-ray dynamical diffraction Talbot effect. On the path of
the incident beam an object with a periodic complex amplitude
transmission coefficient is placed.



The transmission coefficient can be expanded in the Fourier

series,

TðxÞ ¼
Xþ1

n¼�1

An exp 2�in
x

D

� �
; ð1Þ

An ¼
1

D

ZD=2

�D=2

TðxÞ exp �2�in
x

D

� �
dx: ð2Þ

The Ox axis of the selected coordinate system is antiparallel

to the diffraction vector h. The Oz axis is perpendicular to the

entrance surface, and the Oy axis is perpendicular to the xz

diffraction plane. The electrical field for the incident wave has

the form Ei
0 = ðE i

0�e� þ E i
0�e0�Þ expðiKi

0rÞ. The electrical fields

for the transmitted and diffracted waves inside the crystal

are presented as E0 = ðE0�e� þ E0�e0�Þ expðiK0rÞ and Eh =

ðEh�e� þ Eh�eh�Þ expðiKhrÞ. Here are introduced the polar-

ization unit vectors e� (parallel to the axis Oy, i.e. perpendi-

cular to the diffraction plane xz), e0� = ½s0e�� (polarization

vector for the incident and transmitted waves, lying in the

diffraction plane) and the polarization vector eh� = ½she�� for

the diffracted wave. e0� and eh� are perpendicular to the

wavevectors K0 and Kh = K0 + h, respectively; s0 and sh are the

unit vectors along the propagation directions of the trans-

mitting and diffracted waves, respectively. The wavevectors

are chosen so that they satisfy the exact Bragg condition

K2
0 = K2

h = k2 = (2�/�)2. The amplitudes for each polarization

state, as is well known, satisfy Takagi’s equations (Takagi,

1962,1969),

2i

k

@E0

@s
0

þ �0E0 þ C� �hhEh ¼ 0;

2i

k

@Eh

@sh

þ �0Eh þ C�hE0 ¼ 0:

ð2aÞ

Here, �0 = �0r + i�0i, �h = �hr + i�hi and � �hh = � �hhr þ i� �hhi are the

Fourier coefficients of the crystal susceptibility for the

diffraction vectors 0, h and �hh, respectively (the indices ‘r’ and

‘i’ refer to the real and imaginary parts of the susceptibility of

the crystal, respectively), C is the polarization factor and

equals unity for �-polarization and cos 2� for �-polarization.

We will find the amplitude of the diffracted wave in the

crystal for the case of a plane monochromatic incident wave.

According to the dynamical diffraction theory the amplitude

of the diffracted wave inside the crystal can be presented as

a convolution of the incident wave amplitude and the corre-

sponding Green function along the entrance surface of the

crystal (Takagi, 1969; Authier, 2001; Pinsker, 1982). In this

way, also using (1), for the amplitude of a �-polarized

diffracted wave, we obtain

Ehðx; zÞ ¼
Xþ1

n¼�1

An

Zxþz tan �

x�z tan �

Gðx� x 0; zÞ exp 2�in
x 0

D

� �

� expðikx 0 cos ���Þ dx 0; ð3Þ

where the Green function

Gðx; zÞ ¼
ik�h

4 sin �
exp ik

�0z

2 cos �

� �
� J0

�c tan �

�
z2 tan2 � � x2
� �1=2

� 	
�Hðz tan � � jxjÞ; ð4Þ

�� = � i
� � is the deviation from the Bragg exact angle, � =

� cos �=ð�h� �hhÞ
1=2 (�r = Re� is the extinction length), J0 is the

zero-order Bessel function and H is the Heaviside step func-

tion. Without loss of generality, we consider the case of a

�-polarized wave. In the case of �-polarization, in the final

formulas, �h and � �hh must be replaced by �h cos 2� and

� �hh cos 2�, respectively. According to Balyan (2019), the solu-

tion (3) can be presented as

Ehðx; zÞ ¼ i
�h

� �hh

� �1=2

exp ik
�0z

2 cos �

� �
expðikx cos ���Þ

�
Xþ1

n¼�1

An exp 2�in
x

D

� � sin�ðz=�Þ�n

�n

; ð5Þ

where

�n ¼ 1þ p2
n

� �1=2
; ð6Þ

pn ¼
�n�

�h� �hh

� �1=2
sin 2� ð7Þ

and

�n� ¼ �� þ
2�n

kD cos �
: ð8Þ

Following the method given by Berry & Klein (1996), we

represent the solution using a comb wave. Such a wave

corresponds to the situation when the amplitude of the wave,

incident on the crystal, is the Dirac comb,

E i
0 ¼

X1
n¼�1

�ðx� nDÞ ¼
1

D

X1
n¼�1

exp 2�in
x

D

� �
: ð9Þ

In this case

An ¼ 1=D: ð10Þ

Formula (9) is called the Poisson formula. Thus, from (5) and

(10), for the case of the incident Dirac comb wave, the solution

is obtained in the form of a comb wave,

Eh combðx; zÞ ¼ i
�h

� �hh

� �1=2

exp ik
�0z

2 cos �

� �
expðikx cos ���Þ

1

D

�
Xþ1

n¼�1

exp 2�in
x

D

� � sin�ðz=�Þ�n

�n

: ð11Þ

Substituting (2) into (5), the solution in the general case of a

falling periodic function, as is easily seen, is represented in the

form of the convolution

Ehðx; zÞ ¼
RD=2

�D=2

Tðx 0ÞEh comb x� x 0; zð Þ dx 0: ð12Þ
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Thus, the study of dynamical diffraction of a periodic incident

field leads to the study of the properties of a comb wave.

For analytical consideration it is necessary to use some

approximations. Compared with the cases of effects in free

space, in the case of dynamical diffraction in an ideal crystal,

some difficulties arise. In (11), due to absorption, �, pn and,

therefore, �n are complex, the Fourier coefficients of the

comb wave are multiplied by the reflection coefficient 1/�n

and, moreover, due to the existence of two sheets of the

dispersion surface, the comb wave is a coherent superposition

of two comb waves corresponding to the two sheets of the

dispersion surface. These difficulties can be overcome by using

some approximations. In most cases of dynamical diffraction

the frequency of the incident radiation is greater than the

resonant frequencies of the atoms of the crystal. Therefore,

�0i � j�0rj and j�hij � j�hrj. It is easy to see that, with the

accuracy of the terms �hi /|�hr| inclusive (Balyan, 2019), the

following approximation is valid,

�
z

�
�n ’ �

z

�r

�nr � i
kz�hi

2 cos ��nr

; ð13Þ

where

�nr ¼ Re �n ¼ 1þ p2
nr

� �1=2
ð14Þ

and

pnr ¼ Re pn ¼
sin 2��n�

j�hrj
: ð15Þ

Note that in the framework of this approximation, �r = Re � =

� cos �=j�hrj. The expression (13), without loss of generality, is

written for centrosymmetric crystals, i.e. it is suggested that

�h = � �hh, �hr < 0 and �hi > 0. Let us replace the Fourier coef-

ficients An by

An�ðzÞ ¼
An

�nr

exp �
�dn�z

2 cos �

� �
; ð16Þ

where

�dn� ¼ � 1�
�hi

�0i �nr

� �
ð17Þ

are the diffraction absorption coefficients for both branches of

the dispersion surface, and

� ¼ k�0i ð18Þ

is the linear absorption coefficient of the crystal. Let us also

introduce new functions, periodic in the variable x,

T�ðx; zÞ ¼
X1

n¼�1

An�ðzÞ exp
2�inx

D

� �
: ð19Þ

Then, instead of (12), one can write

Ehðx; zÞ ¼
RD=2

�D=2



Tþðx

0; zÞEh combþðx� x 0; zÞ � T�ðx
0; zÞ

� Eh comb�ðx� x 0; zÞ
�

dx 0: ð20Þ

New comb waves have also been introduced here,

Eh comb�ðx; zÞ ¼ exp ik
�0rz

2 cos �

� �
expðikx cos ���Þ

1

2D

�
Xþ1

n¼�1

exp 2�in
x

D

� �
exp �i�

z

�r

�nr

� �
: ð21Þ

Further analysis is carried out for the case �� = 0, which is the

analogue of the perpendicular falling of the wave onto the

plane of a periodic object, in optics, i.e. for the case of the

Talbot effect (Case et al., 2009). As can be seen from (16), the

new introduced Fourier coefficients faster than the originals,

with increasing order numbers, tend to zero. As a result, in

(19) the main contribution comes from harmonics, for which

p2
nr < 1. Therefore, in (21), one can use the approximation

�nr ’ 1þ
p2

nr

2
; ð22Þ

which is equivalent to the paraxial approximation in optics.

This approximation here is also called paraxial. The condition

p2
nr < 1 of the paraxial approximation, according to definition

(15), is equivalent to the condition n2 < ðD=2�r tan �Þ2. A

more accurate analysis, based on the evaluation of the

neglected terms (Balyan, 2019), shows that it is sufficient to

require the condition

n2 <
D

�r tan �

� �2

: ð23Þ

After substituting (22) into expression (21), one can write

Eh comb�ðx; zÞ ’
1

2
exp ik

�0rz

2 cos �

� �
exp �i�

z

�r

� �
Ehp�ðx; zÞ;

ð24Þ

where

Ehp�ðx; zÞ ¼
1

D

Xþ1
n¼�1

exp 2�in
x

D

� �
exp �i�

z

�r

p2
nr

2

� �
: ð25Þ

In the paraxial approximation, from (20), we have

Ehðx; zÞ ¼
1

2
exp ik

�0rz

2 cos �

� � ZD=2

�D=2

"
Tþðx

0; zÞ exp i�
z

�r

� �

� Eh pþðx� x 0; zÞ � T�ðx
0; zÞ exp �i�

z

�r

� �

� Eh p�ðx� x 0; zÞ

#
dx 0: ð26Þ

In (25), for further analysis, it is convenient to introduce the

depth,

zTd ¼
D2

�r tan2 �
; ð27Þ

and write

Ehp�ðx; zÞ ¼
1

D

Xþ1
n¼�1

exp 2i�n
x

D

� �
exp �2i�n2 z

zTd

� �
: ð28Þ

It is convenient, also, to present (26) in the form
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Ehðx; zÞ ¼
1

2
exp ik

�0rz

2 cos �

� �
ð29Þ

� exp i�
z

�r

� �
Ehþ � exp �i�

z

�r

� �
Eh�

� 	
;

where

Eh�ðx; zÞ ¼

ZD=2

�D=2

T�ðx
0; zÞEh p�ðx� x 0; zÞ dx 0: ð30Þ

Note that

Ehpþðx; zÞ ¼ E 	hp�ðx; zÞ; ð31Þ

where * denotes the complex conjugate. The expression for

Ehp�(x, z) coincides with the corresponding expression in free

space (Berry & Klein, 1996); therefore, as in Berry & Klein

(1996), this function will be called the paraxial propagator.

Thus, the features of a dynamically diffracted wavefield in a

crystal, as in free space, are based on the properties of the

same paraxial propagator.

3. Integer dynamical diffraction Talbot effect

The integral dynamical diffraction Talbot effect has already

been studied by Balyan (2019). We will analyze this effect here

based on formulas (28)–(31). Note that, according to (28), the

function Ehp�(x, z) is periodic in x, with period D. In addition,

this function is periodic in the variable z, with a period zTd.

The initial distribution of this function, the Dirac comb

function (9), is repeated at depths z = lzTd (l = 0, 1, 2, . . . ).

By analogy with the case in free space (Berry & Klein, 1996),

the depth zTd we call the dynamical diffraction Talbot depth

(Balyan, 2019). At depths z = (2l + 1)zTd /2 (l = 0, 1, 2, . . . ), as

can be seen from (28), the initial distribution (9) is repeated

with a shift D/2 along the Ox axis. It can be said that at depths

z = lzTd /2 the initial distribution of the Dirac comb function is

repeated for even l, and for odd l it is repeated with a shift of

D/2 along the Ox axis. In this sense, there is a dynamical

diffraction integer Talbot effect for the paraxial propagator.

In free space, the role of zTd is played by the Talbot distance,

defined as zT = 2D2/� (Berry & Klein, 1996). This property,

in free space, of the paraxial propagator implies the same

property of repetition of the initial distribution T(x) also for

the propagating wave. This follows from the analogue of

relation (30) in free space (Berry & Klein, 1996). This effect

is called the integer Talbot effect in free space. We should

investigate the existence of the same effect in the case of

dynamical diffraction, based on relations (28)–(31). As can be

seen from (16), the Fourier spectrum of the initial distribution

changes due to Bragg diffraction. In addition, the Fourier

coefficients, due to absorption, become monotonically

decreasing functions of z. But the diffracted wave is still

periodic in x with period D. Thus, since the paraxial propa-

gator in the crystal remains a periodic function of z with

period zTd, from (30) it follows that the amplitudes Eh�(x, z)

[equations (29) and (30)] will be quasiperiodic in z with period

zTd. At depths z = lzTd (l = 1, 2, . . . ), Eh�(x, z) will repeat the

distributions T�ðx; zÞ, i.e. they will repeat the initial distribu-

tion approximately. It can also be argued that at depths z =

(2l + 1)zTd /2 (l = 0, 1, 2, . . . ) the diffracted wave will

approximately repeat the initial distribution with the shift D/2

along the Ox axis. This is the integer Talbot effect in the case

of dynamical diffraction. More specifically, from (30) it follows

that, with z = lzTd (l = 1, 2, . . . ),

Eh�ðx; zÞ ¼ �T�ðx; zÞ: ð32Þ

If z = (2l + 1)zTd/2 (l = 0, 1, 2, . . . ), again, from (30), it follows

Eh�ðx; zÞ ¼ �T�ðxþD=2; zÞ: ð33Þ

From (29), (32) and (33) at z = lzTd (l = 1, 2, . . . ), it follows

Ehðx; zÞ ¼
1

2
exp ik

�0rz

2 cos �

� �
ð34Þ

� exp i�
z

�r

� �
Tþðx; zÞ � exp �i�

z

�r

� �
T�ðx; zÞ

� 	
;

and at z = (2l + 1)zTd/2 (l = 0, 1, 2, . . . )

Ehðx; zÞ ¼
1

2
exp ik

�0rz

2 cos �

� �"
exp i�

z

�r

� �
Tþðx�D=2; zÞ

� exp �i�
z

�r

� �
T�ðx�D=2; zÞ

#
: ð35Þ

According to (34) and (35), for the intensity Ih(x, z) =

|Eh(x, z)|2 we find

Ihðx; zÞ ¼
1

4

"
T2
þðx; zÞ þ T2

�ðx; zÞ

� 2Tþðx; zÞT�ðx; zÞ cos 2�
z

�r

� �#
;

for z ¼ lzTd ðl ¼ 1; 2; . . .Þ; ð36Þ

Ihðx; zÞ ¼
1

4

"
T2
þðx�D=2; zÞ þ T2

�ðx�D=2; zÞ

� 2Tþðx�D=2; zÞT�ðx�D=2; zÞ cos 2�
z

�r

� �#
;

for z ¼ ð2l þ 1ÞzTd=2 ðl ¼ 0; 1; 2; . . .Þ:

Note that according to condition (23) and definition (27), the

condition (23) can be written as

zTd >�r: ð37Þ

It follows from (36) that at depths z = lzTd (l = 1, 2, . . . ) and z =

(2l + 1)zTd/2 (l = 0, 1, 2, . . . ), in the case of the dynamical

diffraction Talbot effect, because of the presence of two

branches of the dispersion surface, the reconstructed distri-

butions T�ðx; zÞ interfere coherently. To further analyze the

resulting expression (36), we first consider the case without a

periodic object. Then A0 = 1 and An = 0 for n 6¼ 0, and from

(36) it follows that pendulum oscillations, i.e. interference

fringes over the crystal depth, with a period �r are obtained.

In the case of a periodic object, at the same time we have
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depth oscillations with periods zTd and zTd/2 and pendulum

oscillations. Consequently, the maxima of the periodic distri-

bution over zTd will be cut by several lines of the pendulum

oscillations. At the depths �z 
 1, the highly absorbing

branch with the ‘�’ index does not make a noticeable

contribution to the intensity. At such depths, only a weakly

absorbing branch with the ‘+’ index remains. Therefore, the

pendulum oscillations vanish and oscillations in zTd and zTd/2

only of the weakly absorbed mode remain. Note that an

important consequence follows from the expression (19). If

the object is a phase object, then in free space its self-image

will have a homogeneous intensity distribution (Cloetens et al.,

1997). Inside the crystal, the self-image intensity distribution is

not homogeneous and will have a contrast.

4. Fractional dynamical diffraction Talbot effect

Investigations of the Talbot effect in free space show that at

distances z = (l + q/r)zTd, where l, r and q are non-negative

integers, q < r and r and q are mutually prime numbers, the

features of the Talbot images can also be revealed analytically

(Guigay, 1971; Berry & Klein, 1996; Case et al., 2009). We

should investigate these images in the case of dynamical

diffraction. Following the work of Case et al. (2009), we

substitute the value z = (l + q/r)zTd into (28). Then we obtain

Ehp�ðx; zÞ ¼
1

D

Xþ1
n¼�1

exp 2i�n
x

D

� �
exp �2i�n2 q

r

� �
: ð38Þ

The term expð�2i�n2q=rÞ is periodic in n with period r.

Therefore, this term can be expanded into a discrete Fourier

series,

exp �2i�n2 q

r

� �
¼
Xr� 1

m¼ 0

am exp �2i�m
n

r

� �
: ð39Þ

The coefficients am are determined using the relations

Xr� 1

n¼ 0

exp �2i�m
n

r

� �
exp �2i�m0

n

r

� �
¼ r�mm0 : ð40Þ

Thus, from (39) and (40), we have

am ¼
1

r

Xr� 1

n¼ 0

exp �2i�ðn2 �mnÞ
q

r

h i
: ð41Þ

Substituting (39) into (38), we find

Ehp�ðx; zÞ ¼
1

D

Xr� 1

m¼ 0

am

Xþ1
n¼�1

exp 2i�n
ðx�mD=rÞ

D

� 	
: ð42Þ

According to the formula (9), from (42) we have

Ehp�ðx; zÞ ¼
Xr� 1

m¼ 0

am �ðx�mD=r� nDÞ; ð43Þ

and according to (21)

Ehpþðx; zÞ ¼
Xr� 1

m¼ 0

a	m �ðx�mD=r� nDÞ: ð44Þ

Substituting (43) and (44) into (29), and performing integra-

tion, for the amplitude at the depth z = (l + q/r)zTd, we find the

expression

Ehðx; zÞ ¼
1

2
exp ik

�0rz

2 cos �

� �

�

"
exp i�

z

�r

� �Xr� 1

m¼ 0

a	mTþðx�mD=r; zÞ

� exp �i�
z

�r

� �Xr� 1

m¼ 0

amT�ðx�mD=r; zÞ

#
: ð45Þ

Thus, the Talbot fractional effect is a field consisting of a

coherent superposition of r displaced relative to the other

terms of the initial distribution, multiplied by the corre-

sponding coefficient am. In the case of dynamical diffraction

each branch of the dispersion surface has its own collection of

initial distributions and these two sets also interfere with each

other. In the case of dynamical diffraction, the Fourier coef-

ficients of the initial distribution are changed due to Bragg

filtering of the harmonics, and also depend on z due to

absorption.

It follows from the derivation that (45) can also be used for

q = 1 and r = 1. In this case, from (41), it follows that a0 = 1.

Then (45) goes into (34), i.e. we obtain the integer Talbot

effect at the depths z = lzTd (l = 1, 2, . . . ). In the case of q = 1

and r = 2, from (41), we have a0 = 0 and a1 = 1. Therefore, (45)

and (35) coincide, i.e. the Talbot integer effect for the depths z

= (2l + 1)zTd /2 (l = 0, 1, 2, . . . ) is obtained. In the general case,

the coefficients am are the Gauss sum (Berry & Klein, 1996),

known in classical number theory. Here we consider a few

special cases.

4.1. Case I: z = zTd/4, i.e. q = 1, r = 4

In this case, according to (41), a0 = ð1=
ffiffiffi
2
p
Þ expð�i�=4Þ, a1 =

0, a2 = ð1=
ffiffiffi
2
p

expði�=4Þ, a3 = 0. Substituting these values into

(45), we find

Ehðx; zÞ ¼
1

2
ffiffiffi
2
p exp ik

�0rz

2 cos �

� �n
exp

�
i�

z

�r

�
�



expði�=4ÞTþðx; zÞ

þ expð�i�=4ÞTþðx�D=2; zÞ
�

� exp
�
� i�

z

�r

�h
expð�i�=4ÞT�ðx; zÞ

þ expði�=4ÞT�ðx�D=2; zÞ
io
: ð46Þ

4.2. Case II: z = zTd /8, i.e. q = 1, r = 8

In this case, from (41) we have a0 = expð�i�=4Þ=2, a1 = 0,

a2 = 1/2, a3 = 0, a4 = � expð�i�=4Þ=2, a5 = 0, a6 = 1/2, a7 = 0.

Accordingly, substituting these values into (45) for the

amplitude of the diffracted wave, we find
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Ehðx; zÞ ¼
1

4
exp

�
ik

�0rz

2 cos �

�

�

 
exp

�
i�

z

�r

�n
expði�=4Þ Tþðx; zÞ þ Tþðx�D=2; zÞ


 �
þ Tþðx�D=4; zÞ þ Tþðx� 3D=4; zÞ

o
� exp

�
� i�

z

�r

�n
expð�i�=4Þ T�ðx; zÞ þ T�ðx�D=2; zÞ


 �

þ T�ðx�D=4; zÞ þ T�ðx� 3D=4; zÞ
o!
: ð47Þ

4.3. Case III: z = 3zTd /4, i.e. q = 3, r = 4

From formula (41) we obtain a0 = (1 + i)/2, a1 = a3 = 0, a2 =

(1� i)/2. Substituting these values into (45), for the amplitude

we obtain

Ehðx; zÞ ¼
1

2
ffiffiffi
2
p exp

�
ik

�0rz

2 cos �

�
�

n
exp

�
i�

z

�r

�

expð�i�=4ÞTþðx; zÞ

þ expði�=4ÞTþðx�D=2; zÞ
�

� exp
�
� i�

z

�r

�

expði�=4ÞT�ðx; zÞ

þ expð�i�=4ÞT�ðx�D=2; zÞ
�o
: ð48Þ

Comparing expressions (46)–(48) with the corresponding

expressions in free space (Guigay, 1971; Cloetens et al., 1997),

one can notice that the terms for the branch expð�i�z=�rÞ

coincide with the expressions in free space. However, in the

crystal there is also an image from another branch of the

dispersion surface. The fractional Talbot effect in a crystal is

accompanied by the interference of images of two branches of

the dispersion surface, i.e. accompanied by pendulum oscilla-

tions.

5. Examples of dynamic diffraction integer and
fractional Talbot effects

In order to verify the conclusions of the approximate, analy-

tical consideration, we can numerically simulate images inside

a crystal, based on the exact formula (5) or use the exact

formulas (11) and (12).

In both cases, bearing in mind that |1/�n| monotonously

decreases with increasing |n|, in the case of an object with an

infinite set of harmonics, one can keep a finite number of

terms both in (5) and (11). With an increase in |n|, the Fourier

coefficients also decrease due to absorption, see (16).

To illustrate the above-obtained results, as an example,

consider the reflection of Si (220) for Mo K	 radiation (� =

0.71 Å, � = 10.63�), �-polarization. For silicon, �0r = �3.162 �

10�6, �0i = 0.165 � 10�7, �hr = � �hhr = �1.901 � 10�6, �hi = � �hhi =

0.159 � 10�7 (Pinsker, 1982). Accordingly, we have, �r =

36.6 mm and �r tan � = 6.9 mm. The deviation from the exact

Bragg condition �� = 0.

5.1. Cosine-like grating

As a periodic object, we take an object with a limited

Fourier spectrum: a cosine-like grating. In this case,

TðxÞ ¼
1þ cosð2�x=DÞ

2
; ð49Þ

A0 = 0.5, A�1 = 0.25 and An = 0 for |n| > 1. Fig. 2(a) depicts the

initial distribution T 2(x).
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Figure 2
The integer dynamical diffraction Talbot effect at the depth zTd for a
cosine-like grating. (a) The intensity of the initial distribution T 2(x).
(b) The intensity inside the crystal, according to the exact formula (5)
(curve 1, blue) and according to the approximate formula (36) (curve 2,
red). (c) Comparison of the intensities of the weakly absorbing (curve 1,
blue) and strongly absorbing modes (curve 2, green), calculated by the
exact formula (5).



In the case of D = 40 mm, we have zTd = 1.2 mm and

D=ð�r tan �Þ = 5.8. It follows from the last relation that the

condition (23) of the paraxial approximation is sufficiently

well satisfied. Note that in free space, according to the formula

for the Talbot distance zT = 2D2/� (Berry & Klein, 1996;

Cloetens et al., 1997), the Talbot distance zT = 45.2 m. We will

compare the intensity distributions at the depth zT for

the integer Talbot effect, using the approximate expression

(36) and comparing with the exact expression (5). Comparison

of the intensity distributions for the fractional Talbot effect at

the depth zT/4 is carried out on the basis of the approximate

expression (46) and the exact expression (5).

Fig. 2(b) shows the intensity distribution at the depth zT

based on the exact formula (5) and the approximate expres-

sion (36). As can be seen from this figure, the intensity of the

approximate expression agrees well with the intensity calcu-

lated by the exact formula. This result is a direct consequence

of the good fulfilment of the condition of the paraxial

approximation (23). Both intensities, with an accuracy of

accounting for the Bragg dependence of harmonics, absorp-

tion and the interference effect of two branches (the

pendulum effect), coincide with the initial distribution. In

order to identify the effects of the pendulum effect on the

resulting distribution, Fig. 2(b) shows the intensities of both

branches separately, as well as the full distribution, calculated

by the exact formula (5). As can be seen from this figure, both

branches reproduce the initial distribution, the difference

being that the strongly absorbing mode has a much lower

intensity. According to (17), for these branches, the dynamic

absorption is determined by the values �d0+zTd = 0.07 and

�d0�zTd = 3.6 and in this case �zTd = 1.8. It also follows from

this figure that the interference between the two branches

does not violate the Talbot effect.

Let us turn to the fractional dynamical diffraction Talbot

effect at depth zTd/4 = 310 mm. For comparison, Fig. 3(a)

shows the intensity distribution in free space for the same

wavelength and object at the distance zT /4 = 11.3 m. Here one

can see the interference of the initial distribution and the same

distribution shifted by D/2 and multiplied by the corre-

sponding phases. Fig. 3(b) shows the intensity distribution,

calculated by the exact formula (5) and by the approximate

formula (46) at the depth zTd /4, inside the crystal. One can see

good agreement of the approximate distribution with the

exact one. It can be seen that the intensity distribution in free

space has a period two times shorter than inside the crystal.

Inside the crystal, the period coincides with the period of

the object. To identify the cause, Fig. 3(b) shows the intensity

distribution inside the crystal for weakly and strongly

absorbing branches separately, at the same depth zTd /4,

calculated using the exact formula (5). It is clear from this

figure that the intensity behaviour of both branches is almost

the same as in free space, but some modulation is observed,

which is apparently due to different absorption of harmonics

and from a different dependence of harmonics on the

diffraction reflection coefficient inside the crystal. However,

because of the interference of both branches, the maxima

at D/2 are suppressed. The interference of the branches is

significant, since at the depth zTd/4 we have �d0+zTd = 0.02 and

�d0�zTd = 0.9, and their amplitudes are comparable.

5.2. Ronchi grating

The Ronchi grating (Berry & Klein, 1996) is a system of

periodically located slits with a period D and with a slit width

D/2 [see the inset of Fig. 4(a)]. The transmission coefficient

T(x) for the Ronchi grating in the unit cell |x| < D/2 is given by

the expressions T(x) = 1 if |x| < D/4 and T(x) = 0 if |x| > D/4. It

is supposed that the point with the coordinate x = 0 is the

centre of one of the slits. For the Ronchi grating, it is easy to
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Figure 3
Fractional dynamical diffraction Talbot effect for a cosine-like grating.
(a) The intensity distribution in free space at the distance zT / 4. (b) The
intensity distribution inside the crystal at the depth zTd / 4 calculated by
the exact formula (5) (curve 1, blue) and by the approximate formula (46)
(curve 2, green). (c) The intensities of the weakly absorbing (curve 1,
blue) and strongly absorbing modes (curve 2, green) calculated by the
exact formula (5) at the depth zTd / 4.



see that A0 = 0.5, A2m = 0, A2m+1 = (�1)m/[�(2m + 1)], m =

0;�1;�2; . . .. For the period D = 40 mm, the condition of the

paraxial approximation (23) can be considered as fulfilled up

to |n| = 5 (m = �3;�2; . . . ; 2) inclusively. We will keep in the

Fourier series the terms up to |n| = 5. In Fig. 4(a), the initial

distribution T 2(x) is compared with the intensity inside the

crystal, calculated using the exact formula (5) and the

approximate formula (36), at the depth zTd. One can see a

good agreement of approximate calculations with the exact

and initial distribution. To reveal the influence of the inter-

ference of the two branches on the Talbot effect, in Fig. 4(b)

the intensities of strongly and weakly absorbed modes are

compared with the total intensity, calculated using the exact

formula (5). Fig. 5(a) shows the intensity distribution in free

space at the distance zT /4. Fig. 5(b) shows the intensity

distributions at the depth zTd/4, calculated by the exact

formula (5) and the approximate formula (46). Fig. 5(c) shows

the intensity distributions of weakly and strongly absorbed

modes at the depth zTd /4, calculated by the exact formula (5).
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Figure 4
The integral dynamical diffraction Talbot effect at the depth zTd for the
Ronchi grating. (a) The intensity of the initial distribution T 2(x) (terms
up to |n| = 5 in Fourier series are left). (b) The intensity inside the crystal,
according to the exact formula (5) (curve 1, blue) and according to the
approximate formula (36) (curve 2, green). (c) Comparison of the
intensities of the weakly absorbing (curve 1, blue) and strongly absorbing
modes (curve 2, green), calculated by the exact formula (5).

Figure 5
Fractional dynamical diffraction Talbot effect for the Ronchi grating.
(a) The intensity distribution in free space at the distance zT / 4. (b) The
intensity distribution inside the crystal at the depth zTd / 4 calculated by
the exact formula (5) (curve 1, blue) and by the approximate formula (46)
(curve 2, green). (c) The intensities of the weakly absorbing (curve 1,
blue) and strongly absorbing modes (curve 2, green) calculated by the
exact formula (5) at the depth zTd / 4.



Finally, Fig. 6 shows the intensity distribution inside the

crystal up to the depth 5.5zTd (dynamical diffraction Talbot

carpet). It is seen that the spots of the initial distribution are

accompanied by Pendellösung fringes. At large depths, the

Pendellösung fringes lose their contrast due to the absorption

of the strongly absorbing mode.

Note that the Talbot carpet inside the crystal can be

observed using the same technique, as in the case of Pendel-

lösung fringes (Pinsker, 1982), i.e. using a wedge-shaped

crystal, with the top line, being perpendicular to the reflecting

atomic planes (Balyan, 2019).

6. Summary

In this article the integer and fractional Talbot effect is studied

under two-wave dynamical diffraction conditions in a perfect

crystal, for the symmetrical Laue case of diffraction. The

fractional dynamical diffraction Talbot effect is studied for

the first time.

The well known dynamical diffraction effects without a

periodic object, i.e. extinction modulations (Pendellösung

fringes), the Borrman effect, polarization sensitivity of Bragg

diffraction and sensitivity of the diffracted wave intensity

to the deviation of the incident wave from the Bragg exact

direction, accompanies the Talbot effect inside the crystal.

The dynamical diffraction comb wave for the diffracted

wave, corresponding to the incidence Dirac comb wave,

describes well the Talbot effect inside the crystal. The dyna-

mical diffraction Talbot distance is polarization sensitive. At

the rational multiple depths of the Talbot depth the wavefield

amplitude for each dispersion branch is a coherent sum of the

initial distributions, shifted by rational multiple of the object

period and having its own phases. The dynamical diffraction

Talbot image for a phase object, different from the Talbot

image in free space, at integer multiples of Talbot distance, has

an inhomogeneous intensity distribution due to absorption

and deviation parameter dependence of the spatial harmonics

of the initial distribution, inside the crystal.

Dynamical diffraction Talbot carpets and Pendellösung

fringes inside the crystal can be observed by means of a

wedge-shaped crystal.

Possible applications of the dynamical diffraction Talbot

effect can be investigations of crystal structure, investigations

of periodic and non-periodic objects, using X-rays, electron

and neutron waves and so on.

References

Authier, A. (2001). Dynamical Theory of X-ray Diffraction. Oxford
University Press.

Balyan, M. K. (2019). J. Opt. 21, 055603.
Berry, M. V. & Bodenschatz, E. (1999). J. Mod. Opt. 46, 349–365.
Berry, M. V. & Klein, S. (1996). J. Mod. Opt. 43, 2139–2164.
Case, W. B., Tomandl, M., Deachapunya, S. & Arndt, M. (2009).

Opt. Express, 17, 20966–20974.
Cloetens, P., Guigay, J. P., De Martino, S., Baruchel, J. & Schlenker, M.

(1997). Opt. Lett. 22, 1059–1061.
Dennis, M. R., Zheludev, N. I. & Garcı́a de Abajo, F. J. (2007).

Opt. Express, 15, 9692–9700.
Edgar, R. F. (1969). Opt. Acta: Int. J. Opt. 16, 281–287.
Guigay, G. P. (1971). Opt. Acta: Int. J. Opt. 18, 677–682.
Kim, J. M., Cho, I. H., Lee, S. Y., Kang, H. C., Conley, R., Liu, Ch.,

Macrander, A. T., Noh, D. Y. & do, Y. (2010). Opt. Express, 18,
24975–24982.

Kim, M.-S., Scharf, T., Menzel, C., Rockstuhl, C. & Herzig, H. P.
(2013). Opt. Express, 21, 1287–1300.

Kohn, V. G. (2016). J. Synch. Investig. 10, 698–704.
Kohn, V. G. (2018). J. Synchrotron Rad. 25, 425–431.
Momose, A., Kawamoto, S., Koyama, I., Hamaishi, Y., Takai, K. &

Suzuki, Y. (2003). Jpn. J. Appl. Phys. 42, L866–L868.
Momose, A., Yashiro, W., Maikusa, H. & Takeda, Y. (2009). Opt.

Express, 17, 12540–12545.
Pinsker, Z. G. (1982). X-ray Crystalloptics. Moscow: Nauka. (In

Russian.)
Rayleigh, L. (1881). London, Edinb. Dubl. Philos. Mag. J. Sci. 11,

196–205.
Takagi, S. (1962). Acta Cryst. 15, 1311–1312.
Takagi, S. (1969). J. Phys. Soc. Jpn, 26, 1239–1253.
Talbot, H. F. (1836). Philos. Mag. 9, 401–407.

research papers

J. Synchrotron Rad. (2019). 26, 1650–1659 Minas K. Balyan � X-ray dynamical diffraction analogues 1659

Figure 6
Dynamical diffraction Talbot carpet for the Ronchi grating inside the
crystal.
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